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AN ANALYSIS OF THE POLE PLACEMENT PROBLEM II. THE MULTI-INPUT
CASE*

VOLKER MEHRMANNT AND HONGGUO XUt

Abstract. For the solution of the multi-input pole placement problem we derive explicit formulas for the sub-
space from which the feedback gain matrix can be chosen and for the feedback gain as well as the eigenvector matrix
of the closed-loop system. We discuss which Jordan structures can be assigned and also when diagonalizability can
be achieved. Based on these formulas we study the conditioning of the pole-placement problem in terms of pertur-
bations in the data and show how the conditioning depends on the condition number of the closed loop eigenvector
matrix, the norm of the feedback matrix and the distance to uncontrollability.
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1. Introduction. In this paper we continue the analysis of the conditioning of the pole
placement problem in [22] with the multi-input case. We study multi-input time-invariant
linear systems

(1.1) i = dx(t)/dt = Ax(t) + Bu(t), 2(0) = x,

with A € C™*™, B € C"™*™. For such systems we analyse the following problem:

PrROBLEM 1. Multi-input pole placement (MIPP)Given a set ofx complex numbers
P = {\,...,\n} C C, find a matrixF' € C™*", such that the set of eigenvalues of
A — BF is equal toP. (Here we assume in the real case that thePsé closed under
complex conjugation.) It is well-known [14, 37] thaf@eedback gaimatrix F' that solves
this problem for all possible sef® C C exists if and only if(4, B) is controllable i.e.,

1.2) rank[A — A\],,, B =n, VA eC
or
(1.3) rank[B, AB, ..., A" 'B] = n.

Due to its wide range of applications there is a vast literature on this problem. Exten-
sions of Ackermann’s explicit formula [1] for the single-input case were given in [33, 32].
Also many numerical algorithms were developed for this problem, see [27, 36, 15, 24, 25]
For some of these methods numerical backward stability has been established, see e.g.
[15, 25, 24, 5, 6, 3]. Nonetheless it is observed very often that the numerical results (even
from numerically stable methods or explicit formulas) are very inaccurate. This observation
led to the conjecture in [12] (supported by intensive numerical testing) that the pole place-
ment problem becomes inherently ill-conditioned when the system size is increasing. This
conjecture has been heavily debated, since some of the perturbation results derived in recent
years do not seem to support this conjecture [2, 17, 29, 18].
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The reason for the discrepancy in opinions about the conditioning of the pole assigment
problem is that one has to distinguish between two aspects of the pole placement problem, the
computation of the feedbadk and the computation of the closed loop matfix- BF or its
spectrum, respectively. Both can be viewedessiltof the pole placement problem but they
exhibit different pertubation results. A striking example for the difference is given in [22]
for the single-input case, where the exact feedback was used but the poles of the computed
closed loop system were nowhere near to the desired poles. In our opinion the most important
goal of pole placement is that the poles of the closed loop system obtained with the computed
feedback are close to the desired ones. If the desired poles of the exact closed loop system
are very sensitive to perturbations then this ultimate goal cannot be guaranteed. And this may
happen even if the computation Bfis reliable or even exact.

A new analysis that covers all the aspects of the problem is therefore necessary and it
was given for the single-input case in [22]. In this paper we will continue this analysis for
the multi-input case. We will derive explicit formulas for the feedback maktix These
formulas are different from the formulas derived in [33, 32] and display all the freedom in
the solution, which is clearly fom > 1 not uniquely determined from the data B, P. To
remove the non-uniqueness several directions can be taken. The most common approach is
to try to minimize the norm of the feedback matdkxunder all possible feedbacks that
achieve the desired pole assigment, see [24, 27, 36, 25, 16]. Another approach is to optimize
the robustness of the closed-loop system [15].

In this paper we study the whole solution set, i.e., the set of feedbacks that place the poles
and describe it analytically. We also derive explicit formulas for the closed-loop eigenvector
matrix. Based on these formulas we will then give perturbation bounds which are multi-input
versions of the bounds for the single-input problem in [22] and display the problems that can
arise when choosing one or the other method for making the feedback unique.

Throughout the paper we will assume tljdt B) is controllable and thatank B = m.

We will use the superscripl to represent the conjugate transpose. All used norms are
spectral norms.

2. The null space offA — AI, B]. We begin our analysis with a characterization of the
nullspace of A — \I, B] for a given\ € C. Since(A4, B) is controllable, from (1.2) we have
thatrank[A — AI, B] = n, VA € C. So the dimension of the null spacenis

Let _U‘;A , with Uy, € C™*™ V), € C™*™, be such that its columns span the null
spaceV, of [A — \I, B], i.e.,

(2.1) [ A=A, B}[_U%}:o,
or
(2.2) (A~ AL)Ux = BVj.

Before we can characterize this nullspace, we have to introduce some notation and recall
some well-known facts from linear systems theory.

The basis for most of the results concerning the analysis and also the numerical solution
of the control problem under consideration are canonical and condensed forms. The most
useful form in the context of numerical methods is the staircase orthogonal form [34, 35].

LEMMA 2.1.[35] Let A € C"*™, B € C"*™, (A, B) controllable andrank(B) = m.



ETNA

Kent State University
etna@mcs.kent.edu

Volker Mehrmann and Hongguo Xu 79

Then there exists a unitary matrix € C™*"™ such that

ny no ... N

ny=m
ni A1}1 ALQ e e Al,s n Bl
) A2}1 A272 e e AQ’S o 0
@3)Q"AQ=mns | 0 Asp . ... As.|, Q"B=7ms | O |
Ns As,s—l As,s Ms 0
with By, Ai1,..., A, s square,B; nonsingular, and the matriced; ,_; € C™*™-1,{ =
2,...,s, all have full row rank. f; > no > ... > ny). The indices; play an important

role in the following constructions and we will also need the following indices derived from
then;. Set

(2.4) di =n; —nip1, 1=1,...,8—1, ds := ng,
and
(2.5) mi=di+...+di=m—ni1,i=1,...,s—1, ws=m.

An immediate consequence of the staircase form is that the indjcds 7; are invariant
under adding multiples of the identity td, i.e., these indices are the same for the pairs
(A, B) and(A — X\, B). This follows, since the subdiagonal blocks in the staircase form,
which determine these invariants, are the same if we add a shift to the diagonal.
If we allow nonunitary transformations we can get a more condensed form, similar to the
Luenberger canonical form [21], which follows directly from the staircase orthogonal form.
LEMMA 2.2.[21] Let A € C™*™, B € C™*™, (A, B) controllable andrank(B) = m.
Then there exist nonsingular matric8se C™*™, T € C™*™ such that

A:=5"1AS
d1 N2 d2 ns . ds—l Ng ds
ny -14171 0 14172 0 c. 14173_1 0 Al,s
n9 0 In2 12122 0 NN 1212’5,1 0 AAQ}S
ns 0 In3 N 1213’5,1 0 AA3}S
Ns—1 As—l,s—l 0 As—l,s
N L 0 I As s

26) B:=S'BT= [ 181 } ,

where the indices; andd; are related as in (2.4).
Let us further introduce the Krylov matrices

(2.7) Kip:=[B,AB,..., A" 'B|, K := [B,AB, ..., A*'B],
and the block matrices

Xl,l Xl,k
(2.8) X = o € chmxmi
Xk,k
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X171 N Xl,k
(29) X = = djag(T"”’T)Xk c Ckmxmc7
Xk

(2.10) Ry :=[A11,A10,...,A14], Ry:=TR,ecC™™,

where
d;
R Ti—1 [ 0
Xii=d; Ig, |, i=1,...,k,
Ni+1 L 0
dj

X = 0 i=1,...k—1,j=i+1,...,k
T g | Ay | B ’ B

Xi’j ::TXZ‘J‘, i:1,...,l€,j:i,...,k.

Letus also abbreviat¥ := X, R := R,, K := K,. Then we can characterize the nullspace
of [A, B] as follows. ) R R
LEMMA 2.3.Let Xy, X, Rk, R, K, K; be as introduced in (2.7)—(2.10). Then

(2.11) AKXy, = BRi, AKX, = BRi, k=1,...,s

and the columns of

U | [ KX
Vo | | =R
span the nullspaca/, of [A4, B]. -
AFiroof. The proof follows directly from the fact tha@Kka = S(AKyXy), BR =
S(BRy,) and the special structure of the block columngip i.e., forl <[ <s,

di ... di_o di—1 ny
ny [ * e * Al,l—l 0 1
N N ni—1 * * Al—l,l—l 0
(2.12) AR =y 0 ... 0 0 L, |,
ni+1 0o ... 0 0 0
N L0 ... 0 0 0 |

by just multiplying out both sides of the equations in (2.11). Note that it follows directly from
the controllability assumption and the staircase form (2.3) that the full nullspace is obtained
for k = s, since then the dimension of the space spanned by the columns of

|5

is m = ny, which, as noted before, is the dimension of the nullspa¢d aB]. O
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We need some further notation. Let

J J
(213) Gi,j = ZAliiBXlJ', é)aj = ZAliiBXlJ, 1= 17 ey S, ] = Z'7 ey S,
l=1 l=i
and set
Vv’i = [@’i,i; s ;(—)’L,S] € Cnxnia 1= 17 sy Sy
(2.14) W= [Wi, Wa, ..., W] € C"™™,
Y, = [Xi,iw“;Xi,s] ecmxni’ 1=1,...,8s,
Y = [Y15Y27' aYs] € cmrn,

Furthermore define

(2.15) Zij=n; [ 0 L,],i>j,
and
0
o, 0 0 I,
Ni=| 0 I3 , N =
5 S0 o
0 ... 0 z-s,s—l 0 0

LEMMA 2.4. The matricedV, W, defined in (2.14) have the following properties.
i)

(216)  Wi=KX, W=KX, X=[XNX_ . N"'X].
i)
(2.17) W = AWN + BY.

iil) W is nonsingular.
Proof.

i) follows directly from the definition of1’; andWV'.
i) Using the form ofi¥/, N we have

AWN = AWy, Wa, ..., W,|N
= A[0,Ws;...;0, Ws_1;0]
=1[0,4035,...,A0,;...;0,AO ;0]
=100,012,...,014...;0,05_1 ;0]
—B[0,X1,2,...,X15;---50, X1 5;0]
=W — BY.
iii) We have

W =S5(S7'W)
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= S[él,h sy é1,s§ S @s—l,s—la O5-1,5,05 9]

5 8, ¢

I,

for an appropriate permutation matr which follows directly from the definition Otf-)i,j
in (2.13). ThusJ¥ is nonsingular. O

REMARK 1. If m = 1 (the single-input case), thek = [a1,...,a,_1,1]T, R =
—ag, and by (1.3)K = [B,..., A" ! B] is nonsingular. SincelK X = BR, we find that
ao, - . ., a,_1 are the coefficients of the (monic) characteristic polynomial pffe.,

n—1

EN) = A"+ apAt = det(M, — A).
k=0

Usingadi\l,—A) := Z;é ApAE, where adjA) represents the adjoint matrix of the square
matrix A, it is not difficult to verify thati, = AoB andW = [AyB,... A,_1B].

We are now able to give a simple characterization of the nullspalcé ef\I, B] for an
arbitrary \.

THEOREM2.5.LetE)  := (I — AN)~! [ I,

0 ] Then the columns of
U/\k W E)\Jc

2.18 ’ = ’ k=12 ...

(2.18) { —Vak } [ —(Rp — A\YEx ) ] 1SS

span the subspacés), ;. of dimensionr;, of the nullspace ofA — A1, B]. In particular, for
k = s we obtain the whole nullspac¥, spanned by the columns of

(2.19) { _UQA ] = [ _(RVY%?SEA,S) ]

which has dimension, = m. Hence, we haveA — AU, = BV,.
Proof. By (2.17) we have

(A= X)W = AW — AW = AW — AMAWN — ABY = AW (I — AN) — ABY.
Sincel — AN is nonsingular, we get
(A= X)W (I —AN)"' = AW — ABY (I — AN)~!

and then by multiplying wit)‘{ 6" } from the right we obtain
(A= AOWE\, =AW [ ng } — ABY E) i.
I,

By Lemma 2.3 and (2.16) we have thail’ 0o | = BRj;, and hence the result follows.

The dimension ofV), ;. is directly determined from the fact that
rank Uy, = rank W E) j, = rank E) j, = 7.

d
In this section we have derived explicit formulas for matrices whose columns span the
right nullspace of A — \I, B]. These formulas will be used in the following section to derive
explicit expressions fof’ and also the closed loop eigenvector matrix.
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3. Formulas for F" and the closed loop eigenvector matrix In this section we derive
explicit expressions for the feedback matfixand the closed loop eigenvector matrix. Other
explicit formulas for the feedback matriX are given in [33, 32]. They are different from our
formulas in that they do not display the whole solution set and also do not give the closed
loop Jordan canonical form.

Set

(3.1) Urr :=rangeUy i, Wag:=rangeViy, k=1,...,s,

whereU, i, Vi, are defined in (2.18). In particular we gét := range Uy (U = Uy ;).
V)\ = range V,\ (V)\ = V)\7S).
Let (A, g) be an eigenpairofi — BF, i.e.,

(A—BF)g=MAgor(A— Al)g=BFg=: Bz.

Using the representation of the nullspacé4f— A\I, B] in (2.19) there is a vectat € C™
suchthay = Uy ¢, z = V)\¢. Clearlylt, is just the space containing all possible eigenvectors
of A — BF associated with\.

Let us first consider a single Jordan bloEk= AI + N,,, where

[0 1 0 ... 0
0
N, = 0
0 1
0

- = pXp

LeEmMA 3.1. Suppose thatl — BF' has a Jordan block of size x p associated with\
and the corresponding chain of principle vectorgis. . ., g, i.e.,

(3.2 (A= BE)[g1,---,9p] =91, - 9p)Jp-

LetG, = [g1,..-,9p], Zp =8 FGp =: [z1,...,2]. Then there exist matriceB, =
[¢1,...,¢p]€ C™*P andl’, € C™*P such that

(3.3) G, =WT,, Z, = R®, — YT,.J,,
where
¢p
(3.4) T, = 12’1?'3%
o105

satisfiesank I'), = p. (Here the matriceg; ; are as defined in (2.15).)
Proof. By adding— AW N on both sides of (2.17) we obtain

W({I —AN)=(A—X)WN + BY.
Hence we have that

(3.5) W= (A= XWN(I —AN)"' + BY(I - AN)"L.
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LetFE = 181 then via induction we prove that there exist vecipys= C™ such that the

following expressions hold fayy, 2.

k

(3.6) gr =W > N"NI—=AN)7E¢pi1y,
j=1
k . .
(3.7) 2 =Vadr =Y Y NI = AN) 7 Edpir-j,
j=2

fork=1,2,...,p.
For £k = 1 we have from (3.2) thag; is an eigenvector of — BF'. So there exists a
¢1 € C™ such that

(3.8) g1 =WEy b1 =W(I —AN)'E¢y, 21 = Vachy.

Suppose now that (3.6) and (3.7) hold fgrwe will show that they also hold fo¥ + 1.
By (3.2),(A — M )gr+1 = Bzr+1 + gk By (3.6), (3.5) it follows that

k
g = (A= ADW Y N/(I—-AN)"UtVEg.
j=1
k . .
+BY Y NN I = AN) UtV Eg ;.

=1
Then there existg, ., € C™, (note thatN* = 0 for k > s,) such that

k
gir1 = W{({I = AN)'Egpy1 + Y  N/(I = AN) VTV B¢}

j=1
k+1 ‘ ‘

=W NN I=AN)7 E¢ria;
j=1

and

k
Zp1 = Vadkar =Y Y NTTHI = AN) UtV Eg,
j=1
k+1 ‘ ‘
=Vadki1 —Y > N/2(I = AN) 7 Egpia ;.
j=2

Now with (3.6) and (3.7) we obtain
Gp =W NN - AN)TE®,N) " = WT,,
j=1

p
Zp =Va®, =Y Y NI2I - AN) T E®, N} .
j=2
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Using the formula

) , S /k—1 )
NJ—l(I _ )\N)—j — < i 1))\k—J‘Nk—17

=y M T
we obtain
- (k-1 k—j nTk—1 j—1
=) ( i1 NI N1 E®, N
j=1 k=j
s s ]{) o 1 e 0 i
=0 io1 A Ti1®p | )N
J=1 k=j 0
s i 0 k
k-1 L
= Te1®, | ( ( , 1)A’HN;1)
k=1 L 0 Jj=1 J =
~ (I)P
s 0 T51®,J,
= L ®p(Mp + Np)]%l = :
k=1 0 : .
B z-s,l(I)pJ;_
Since

P
Y NITAI = AN) T E®,N) ' = (I - AN)"'T,N,,
j=2

we getZ, = V&, — Y(I — AN)"'I',N,, and then with/y, = R — A\Y (I — AN)"'E we
obtain

@pJp
Tp1®,J,N
Z,=R®, - Y(I - AN)™" e

Isﬁlfpr;*le

Itis then easy to check that, = R®, — YT, J, by using the explicit formula for the inverse
of (I — AN)~! and by calculating the blocks from top to bottom. Thenk I",, = p follows
fromrank W = n andrank G, = p. 0O

After having obtained the formula for each different Jordan block, we have the following
theorem for a general Jordan matrix.

THEOREM3.2. Let

(39) J = diag(JLl, ey Jlﬂ"l’ ey Jq71, ey Jq,rq)7

whereJ;; = A\, + Np,,. There exists arf” so that.J is the Jordan canonical form of
A — BF if and only if there exists a matrik € C"*" so that

)
Toa®J
(3.10) T= _

To 1 ®Jo 1
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is nonsingular. If such a nonsingul@rexists, then witliy := WT andZ := R® —YT'J, we
have thatF = ZG~! is a feedback gain that assigns the desired eigenstructure and moreover
A—BF =GJG™L.

Proof. The necessity follows directly from Lemma 3.1. For sufficiency, using (2.16),
(2.11) and (2.17), we have

Ty ®J
AWT = AW, ® + AW, ..., W] :
T, @05
= AW ® + A[0, Ws;...;0, W,; 0]TJ

= BR® + AWNTJ
=BR®+WTI'J—-BYI'J=BZ+ WTI'J.

Sincel andWW are nonsingular, we get
A—BZWT) ' =wrJwr) !

and thusF = Z(WT)~! is a feedback matrix which completes the task.
REMARK 2.
o

Note that” := [R, —Y] rJ | = [R, —Y]¥, and one can easily verify th#l'~! has
a condensed form as the Luenberger like form (2.6). This fact indicates the relationship of
the formula (3.10) to the formulas used in the well known assignment methods via canonical

forms [37]. The following results follow from the special structurd of

COROLLARY 3.3. Consider the pole placement problem of Theorem 3.2, witfiven
asin (3.9). A necessary condition for the existencE ofith .J as the Jordan canonical form
of A — BF is that® is chosen so thatJ*, ) is controllable. A sufficient condition is
that there exist® € C™*" so that(J, ¥#) is controllable and has the same indicgsas
(A, B).

Proof. The necessary condition is obvious. For the sufficient condition observe that we
can writeB = BT with T' as in (2.6). TheW = W H, where

W = [B,ABI},,..., A*' BT,
H = diag(Zy1,...,Z.1)[X,NX,..., N*"1X].

ThusW has a dual structure . Therefored = ¥T can be used to determine a feedback
gain F', whereT € C™*™ is nonsingular and is determined by computing the condensed
from (2.6) for(J*, ¥H). O

Theorem 3.2 also leads to a characterization of the set of feedbacks that assign a desired
Jordan structure.

COROLLARY 3.4. The set of all feedbacks that assign the Jordan structure in (3.9) is
given by

(3.11) {F=2G"'"=(R®—-YTJ)(WT) '|detT # 0, I'asin (3.10).

REMARK 3. Note that we do not have to choose a maifiin Jordan form in Theo-
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rem 3.2. In fact/ can be chosen arbitrarily, since for an arbitrary nonsinglar

dQ o
1,12Q(Q1JQ) To 1 ®J
I'o= : - : ’
T,10Q(Q1JQ)* ! 7,16

where® = ®Q, J = Q'JQ. In particular for a real problem we can choogén real
canonical form and also choose a réal

REMARK 4. In the single-input case, i.en = 1, the Jordan form must be nondegen-
erate, see [22]. Hence fofin (3.9), we need; = ... =7, = 1. Let® = [¢1,...,¢,]
andor = [Pk 1, - -, Prpp] € C¥Pr letE(N) = det(A, — A), Z(\) = adj(\, — A), asin
Remark 1. Then we can easily verify that

G=WI=[Gy,...,G,diag(®y,...,,),

7 =—[7y,..., 2, diag(®1, ..., B,),

where
(3.12) Gr = [EO)B,EM (\e)B, ..., 2P~ (\)B],
(3.13) Zi = [€0w), ED (), ..., €PN,

pr—1

b= b Nj,.
=0

Herec®) and=®) represent thé-th derivatives with respect ta. Obviously we need;
nonsingular forl < k < ¢, so in this case the formulas reduce to

G:=[G1,...,Gyl, F=—[Z1,...,2,)G™ ",

with Gy, Zj, defined in (3.12) and (3.13).

Note that this is another variation of the formulas for the single-input case, see [22].
By using the properties af(\) and=()\), it is easy to rederive the formulas in [22] when
AMA) NP =0.

Though it is well known that for an arbitrary pole set if (A, B) is controllable then
there always exists af that assigns the elements®Bfas eigenvalues, it is not true that we
can assign an arbitrary Jordan structurd inB F' when there are multiple poles. This already
follows from the single-input case. See also [22, 7, 30, 31, 4, 9]. We see from Theorem 3.2
that in order to have a desired Jordan structure, the existence of a nonsingulafnaatiix
(3.10) is needed.

We will now discuss when we can obtain a diagonalizable BF. Note that in order
to have a robust closed loop system, it is absolutely essential that the closed loop system
is diagonalizable and has no multiple eigenvalues, since it is well known from the pertur-
bation theory for eigenvalues [11, 28] that otherwise small perturbations may lead to large
perturbations in the closed loop eigenvalues.

In the following we study necessary and sufficient conditions for the existence of a feed-
back that assigns for a given controllable matrix gair B) and poles\y, . .., A, with mul-
tiplicities 1, . . . , 7, and a diagonal Jordan canonical form of the closed loop system

(3.14) A—BF = Gdiag(M1y,,. .., M\, )G™' = GAG™".
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This problem has already been solved in [26, 19] using the theory of invariant polynomials.
It is also discussed in [15], where necessary conditions are given efeénh) is uncontrol-
lable.

Here we will give a different characterization in terms of the results of Theorem 3.2 and
the multiplicitesr, . . ., 4. In the proof we will also show a way to explicitely construct the
eigenvector matrixz and the feedback gaif, provided they exist.

Notice that multiplication with¥ s defined in Theorem 2.5 sets up a one to one mapping
betweerC™ and the eigenspace df — BF associated with a pole. By (2.18) a vector

¢ = { (d)) } eC™ peCm
uniquely determines an eigenvectogas W (I — AN) " E¢ € Uy .

LEMMA 3.5. Let (A, B) be controllable. Given arbitrary poles;,..., s, and an
integer! with 1 <! < s. For each pole\; choose an arbitrary vectay; € Uy, ;, whereldy, ;

defined in (3.1) is the subspace of the nullspacedof \;I, B]. If k > Zﬁ:l d;i, then the
vectorsgy, . . ., g, must be linear dependent.

Proof. Sinceg; € Uy, , there exists a correspondigg = [ %7 } with qﬁl € C™
such thatgq; = UA{,,S(bi' Let &, := [¢1,...,¢k], Ak = diag(/\l,...,)\k) and I'y =

Dy,
To 1B Ay . .
) . By Lemma 3.1,G, = [¢1,..-,9x] = WT and, sinceW is invert-
z-s,lq)kAzil
ible, rank G, = rankI'y,. Applying an appropriate row permutatiofly can be trans-
RS
[ . Oy 2Ak . . S
formed to{ 11)’“ } with T, = 2 and whered, 1 = [¢1,..., k], ri iS
(i)kJAg;l

the bottom(m;, — m;—1) x k submatrix ofém. Because the number of rows b, is

Y (m = mia) = Y did,
l
rank G = rank ', = rankfk < Zdﬂ
i=1

Sok > 22:1 d;i implies thatgs, . . ., g5 are linear dependentd

THEOREM 3.6. Let (4, B) be controllable. Given poles,, ..., A\, with multiplicities
r1,...,rq satisfyingr; > ro > -+ > r,. Then there exists a feedback matfixso that
A(A—BF) ={)\,...,A\;} andA — BF is diagonalizable if and only if

k k
(3.15) ZriSZni, k=1,...,q.
i=1 i=1

Proof. To prove the necessity, suppose that a feedback matrénd a nonsingular
G exist, such that (3.14) holds. Partitigh := [G1,...,G,], whereG; € C™*"i with
range G; C U,,. We will prove (3.15) by induction.
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If £ = 1, then from Theorem 2.5 we have thiin U/, = m = ny. Sincerange G1 C Uy, ,
rank G; < np. On the other hand7 nonsingular implies thatank G; = r, and therefore
(5] S ni.

Now suppose that (3.15) holds fér If (3.15) would not hold fork + 1 then by applying
the induction hypothesis, we obtain > ... > rpi 1 > ngy1. SinceG; is of full column
rank and by Theorem 2.%,1 = m — 7, = dimUy, — dimU), i, it follows thatl; :=
dim(range G; N Ux, k) > T — Ny, ¢ = 1,...,k+ 1. Let g;1,...,g:, be a basis of
range G; NU», . AS

k+1 k+1 k k
Zli > Z(Tz‘ —Npy1) > Z(m —Ngt1) = Zdii,
=1 =1 =1 =1
by Lemma 3.5,g1,1,...,91,015-- > 9k+1,1,-- -, Gk+1,1,,, are linear dependent. In other
words, there exists a nonzero vectosuch tha{G,, . .., Gr4+1]v = 0. HenceG is singular,

which is a contradiction.
To prove sufficiency, using Theorem 3.2, we construct a métrxC™*" so that

o
Ty, 00

I =
T, 1005t

is nonsingular, wher& is diagonal and has the forlA PT with A is as in (3.14) and® a
permutation matrix. Let

d1 2d2 . Sds
d1 (1)171 @172 . (I)l,s ¢(1) ¢(1)
d2 @272 . D ,s . L oo 1,d;
® =, ) .|, with @, ; = ;
: R Q)
ds O Pd, .,

and¢!’) = [ WO WD) | e ciwith w™) #0foralli = 1,...,5,5 = 1,...,d,
l=1,...,i Partition¥ accordingly as

d1 2d2 e Sds
dq Uy .
2d2 \112 - 1/%,1
. , With U, =
sd, v, Vids

andy; ; = diag(u?’”, ce ngi’j)).
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Then we obtain

i @171 @172 @173 T
Dy Dy 6

)

(I)Q 2\112 @273\113

s—2 —2
(1)571,571\:[/3_1 (1)571,5\:[/?
0 @875@2*2
s—1
b, WS

It follows from the form of®; ; that, by applying a row permutatioli,can be transformed to
the form

) A : ) ()
I= T |, withT; = T2z
i )
I I
and
1 ... 1
(4,9) (4,9)
o 2 v _ y y
I‘% = . : dlag(wgl’”, . ,wEZ’J)).
(yy’j))i_l . (V‘(iﬁj))i—l

Sincel is block upper triangular and since edijﬁ; is a product of a nonsingular diagonal

matrix and a Vandermonde matrix, which is nonsingularif”’ ..., ") are distinct, it
follows that the matrix’, or equivalentlyl’, is nonsingular. So it remains to show that the

z/j(.i’j) can be chosen from the eigenvalues so that all the occuring Vandermonde matrices are
nonsingular. Itis easy to see that condition (3.15) guarantees this chice.

4. Perturbation Theory. In this section we consider how the feedback gain and the ac-
tual poles of the closed loop system change under small perturbations to the system matrices
and the given poles. It is clear from the perturbation theory for the eigenvalue problem [28]
that we need a diagonalizable closed loop system with distinct poles if we want that the closed
loop system is insensitive to perturbations. The following result, which is a generalization of
the perturbation result of Sun [29], also holds in the case of multiple poles if diagonalizable
closed loop systems exist for some choice of feedback.

THEOREM 4.1. Given a controllable matrix paif A, B), and a set of pole =
{\1,...,A\n}. Consider a perturbed syste(ni,B) which is also controllable and a per-
turbed set of pole® = {\;,..., \,}. SetA— A =: 64, B— B =: B and\x — A\, =: Ak,

k =1,...,n. Suppose that both the pole placement problemsith, P and A, B, P have
solutions with a diagonalizable closed loop matrix. Set

(4.1) e:=|[04,dB]].
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and suppose that
€+ |5)\z| 3
4.2 L N i)
(4.2) X S TA—NLE) %

Then there exists a feedback géin= F + §F of (4, B) such that

(4.3) ||5F||<¥ m (YL BT (?A A)\I;||)B]()e+|5)\i|)}7

MA — BF) = P andA — BF is diagonalizable. A
Moreover, for each eigenvalye of the closed loop matrid — BF, (i.e., the perturbed
feedback is used for the unperturbed system), there is a correspakdén@ such that

(4.4) i — Ni| < [0Xi| + ein/1 + | F|2.

Herer, & are the scaled spectral condition numbersiof BF and A — BF', respectively (cf.
[8]), 0,.(A) is the smallest singular value ¢f, and B is the Moore-Penrose pseudoinverse
of B.

Proof. Suppose thatl — BF = G diag(\1, ..., )G L. LetG == [g1, ..., gnl, lg:] = 1,

i=1,...,n. LetZ = FG := [z,...,2,] andw; = { i ],then
(3

Consider a singular value decomposition
(4.6)A—XNI,Bl=U[ X 0]VH with ¥=diag(oi,...,00),01>...> 0op.

The controllability of(A, B) implies thato,, # 0. SetV = [V;, V5] with V5, € C"*™, then
range Vo = kernel[A — \;I, B]. So there exists a nonzewo € C™ such thatw, = Vsa.
Since we requir¢g;| = 1, from (4.5) it follows that|z;| < |Bf(A — X\;I)| and thus

@.7) laf = VIgil + 1z < /1 +1BI(A - XD,

Similarly for the perturbed problem there exists a matfixe C"*™ with V7V = I,,,,
such thafA — A1, B]V; = 0, or [A — X\, B]Va = —[§A — A;1,6B]Va. Using (4.6) we
have that/#V, = —S~1UH[§A — 6)\;1,6B]V,. Hence

VT3] < (e + 6l)fom =7 < 5.
Performing a singular value decompositiMng = YlEQYQH, we obtain fromI,, =
VIV = (Vo) (Vo) + (V1Vo) 1 (V1 Vs), that| I, — 53] = [V Va|? < 2. Hence
i — Saf < 72,

Letw; be chosen analogousdg but for the perturbed problem and assume that Vg&,
with & = Y5Y; a. Note that it may happen that for this choiceiothe related’ is singular.
We can overcome this difficulty as follows. By our hypothesis, a nonsmgbtdways exists
for the perturbed problem. Consider the matiikt) = G + tG. Sincedet G(t) # 0 for
sufficiently larger anddet G( ) is a polynomial irt, it has at most roots. So we can choose
a nonsingulac(t) with |¢| > 0 arbitrary small. This is equivalent to chosingiafor eachi,
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which tends tai;. Moreover, in this sense, the determinéthakesd — BF' diagonalizable.
By (4.2), (4.7) we obtain

lw; — ;]| = [(VaY1 — VaY2) Yy o = [VH (VoY1 — 12Y2) Y, o

— IVERY2Y a2 + |(In — YH VY)Y a2
N 5
< Nl IV 12 + [ = Dal? < Jalv/72 4 7 < S7]al.

Let G, Z be constructed analogous®) Z, thenF = ZG~!, F = F + §F = ZG'.
Therefore

SF=2G'-2G7'=(Z-2)G '+ Z2(G ' -G

- G-G .
—mn] 5% |
=—[F0[ w1 —w ... Wp-w, |GTL

By (4.7) andk := |G[|G] > |G|, we have

[6F] < Vnky/1 + | F|2 max |w; — 1]

<5V \/1+||BT(A_)\1‘I)"2(€+|5)\i|)}
=7y on([A— NI, B)) ’

r\/ 14 |F]? max{
7

which implies (4.3). o . o .
For (4.4), rewriteA — BF'asA— BF — (§A— 6 BF). SinceA(A— BF) = P, by applying
the Bauer-Fike Theorem, e.g. [11, pp. 342], for each eigenyaloé A — BF there exists a

corresponding.;, so thatl; — A\;| < #|6A — dBF| < eky/1 4 |F|2. UsingA; = \; + 6,
we obtain (4.4). O
Note that under additional mild restrictions on the perturbed matrices and poles we obtain
a similar upper bound fd F'| with | F| replaced by F|. Such a bound for the single-input
case was given in [22]. We prefer the given bound from the computational point of view,
since’ is the quantity that is computed.
In the given upper bounds the normBfand the spectral condition numbeare related.
COROLLARY 4.2.Under the hypotheses of Thereom 4.1 we have

(4.8) |F| < vnrmax BT (A — X))

Proof. Using (4.5) we obtain that, = BT(A — \I)g;. Since|g:| = 1, |Z] <
vnmax; |Bf (A — X\1)| and thenf” = ZG~! yields (4.8). O

Theorem 4.1 only gives upper bounds for the perturbations. This is the usual situation in
most perturbation results. To complete the perturbation theory it would be nice to show that
these bounds are tight and actually close to the exact perturbations. We will demonstrate the
tightness of the bounds via a numerical example below. The main factor that contributes to
the sensitivity of the feedback gaifi and the poles of the the closed-loop systdm BE’
obtained with the perturbed feedbakkis S := x,/1 + [F|2. In the bound forF" there is
an additional factod := 1/ min; 0,,[A — \; I, B]. This latter factor is closely related to the
distance to uncontrollability

(4.9) dy(A,B) = min o, [A— A\, B,
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[10]. Itis obviousifd, (A, B) is small theni can be very large and the problem to compiite

is likely to be ill-conditioned. 1id,,(A, B) is large, then clearly is small and then this factor
plays a minor role in the perturbation bounds. The other dominating f&asmore difficult

to analyze. In the single-input case it was discussed in [22, 23] how this factor is influenced
by the choice of poles. It was observed tlsais essentially given by the condition number

of the Cauchy matrixC’ = [ﬁ], where they; are the eigenvalues of and the)\; are the
desired poles. Unfortunately this condition number is usually very large, in particular if the
system dimension is large. In [23] it was also discussed how the polegan be chosen to
minimizeS. The situation in the multi-input case is much more complicated. Notice that (4.8)
implies thatS essentially behaves like’. Furthermore we see from (2.16) and Theorem 3.2,

with a diagonal matrix/, that

G =KXT
)
. oJ
=[B,AB,..., A 'B|X diag(I, 2.1, ... Zs1) _ ,
o Js—1

whereK, X are as in (2.16). If as a special case
A = diag(v,...,vn), J =diag(A1, ..., ),
then there exists a permutation matfsuch that
[B,AB,..., A" B]P = [diag(b11, . . .,bn1)Va, ..., diag(bim, . - . , bpm ) Val,

with the Vandermonde-like matrix

1 un vt
Va =
s—1
1 v, ... v

We also obtain analogously that there exists a premutation mpxch that

P

dJ
PT . = [diag(¢11a'"7¢1n)VJ7~~~7diag(¢m17~~~;¢mn)VJ]T

e

with a Vandermonde-like matri¥X’; formed from the);. It is well known that such Van-
dermonde matrices are usually very ill-conditioned (see [13, Chapter 21] and the references
therein), in particular it is large.

There may be some fortunate circumstances by which the ill conditioning of the Vander-
monde factors is cancelled out by the middle term or when forming the product, but in general
this cannot be expected.

From the relationshig: < s < n — m + 1, which follows from the staircase from,
we see that for large in order to have a small and thus a reasonable conditioning of the
Vandermonde matrices, we need that alscs large.

We see from this rough analysis th@&tdepends critically on the choice of poles and we
can expect thaf is large if s is large. Thus, we can conclude thatifs large then the pole
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assignment problem will in general be ill-conditioned. It is not difficult, however, to contrive
examples with good conditioning, by takiagwith well-conditioned eigenvector matrix (say
a normal matrix) and then, choosif®yand F of small norm, formingd = A + BF, see
[2, 3]. Butin general we can expect neitét| norS to be small.

Another way to analyze the conditioning Gfis obtained from

AG — BZ = GJ, Z =FQG.

If again A and J are diagonal, and if; # X;, i,j = 1,...,n andG = [g;j]nxn, then
gij = e!BZe;/(vi — A\;), Wheree; is theith column of7,,,. SoG is a generalized Cauchy
matrix which usually has a large condition number.

Let us demonstrate the above analysis via an example.

ExampLE 1. LetA = diag(1,...,20), P = {-1,...,—20} let B be formed from the
first m columns of a randor20 x 20 orthogonal matrix.

The following results were obtained on a pentium-s PC with machine precigior=
2.22 x 10716, under Matlab Version 4.2. The MATLAB pole placement code of Miminis and
Paige [24] was used to compute the feedback gain. Wenrénom 1 to 20 and in each case
we compute®0 times with20 random updated matricds. In Table 1 we list the geometric

means (over the 20 experiments):ofF, bound, err, where boundps|[A, B]|#4/1 + | F|=2,
and errsnax;<;<20 |it: — Ai|, with A; and the real parts gf; arranged in increased order. In
the second column we list the average valuesftaken over the 20 random tests for each
(This value ofs is actually the least possible value or generic value.) Note that faoall
tests the values afin; o,,([A — A\ I, B]) varied from2.0 to 2.24.

m| s |k F Bound Err

1 120[35x%x10% [1.1x10™ | 1.7 x10° 7.3 x 104

2 [10|1.8x 10" | 5.0x 10 | 3.9 x 108 2.7 x 102

3 | 7121x10|24x10%|2.2x106 1.4 x 102

4 | 5 |74x10™"M|58x%x107 |1.9x 10° 2.4 x 10!

5 | 4 |1.2x10"|1.3x10%° |7.3x10* 1.0 x 10!

6 | 4]21x10"|26x10* |25x10* 5.8

7 | 3 ]1.7x10"|4.2x10* |3.1x10% 2.0

8 | 3 ]1.7x10"|1.1x10* |8.6x10° 7.8 x 1071
9 | 3]24x10"|9.0x10% |9.8x 103 6.6 x 1071
10| 2 [ 21x10%|26x%x10% |29x 103 3.8 x 107!
111 2 |1.8x 10 | 7.9%x10% |6.5x 10 1.0 x 107*
121 2 19.2x10'2|5.0x10% |2.0x 10? 3.6 x 1073
13| 2 | 5.7x 101 [ 45%x10% | 1.1 1.5 x 1074
14 2 [21x10[3.2x%x10% [3.0x107! |6.7x107°
15 2 [34x%x109|28x10% [42x1072 [1.3x1075
16 | 2 [ 5.9%x10% |2.6x10% |6.7x10"% |3.0x1077
1712 |31x107 [22x%x10% |3.0x107° |1.6x 108
18 2 | 1.6 x105 [2.0%x10% |1.4x10~7 |1.0x 10710
19| 2 | 70%x10% [1.9%x10% |59x10710[9.9x 10713
20| 1 |1.0 3.5x 10" | 1.5x 1071 | 2.6 x 10714

In this example, if we consider the poles of the closed loop matrices, it makes sense to
interpret the results of the numerical method onlysfoe> 8, since only then the error is less

Table 1



ETNA

Kent State University
etna@mcs.kent.edu

Volker Mehrmann and Hongguo Xu 95

than1 . Whenm becomes larger, then the computed poles become more accurate and the
bounds become tighter. Usually the bounds tend to overestimate the errer Byorders of
magnitude, but they really reveal the relation of the conditioning of the closed loop matrices
and the scale of the input. Notice that the bounds are valid regardless of the methods that is
used. For each numerical method it may use some micro structures of the matrices. So the
accuray of the computed results (feedback matrices or the poles of the closed loop matrices)
may be improved.

5. Analysis of pole placement strategiesWWe see from the perturbation analysis that
serious numerical difficulties may arise in the pole assignment problem. First of alk if
large, then we can expect that the problem is ill-conditioned, regardless which strategy is
used to resolve the freedom . But even ifs is small, then not every strategy to fix the
freedom inF" will lead to a robust closed loop system. Clearly a minimizatiorj 0 as
approached in [4, 16] or a local minimization as done in [36] will improve the upper bound
in (4.3). Corollary 4.2, however, indicates that the minimization: afs described in [15]
may be a better choice, since it automatically also minimizes an upper bouf¥d|foNote,
however, that the computational cost is an order of magnitude larger, than in the methods that
minimize| F|.

Certainly an optimization of := x+/1 + | F'|?> would be even more promising, since then
a smaller upper bound is optimized. Using the explicit characterizatidn @fis actually
possible to write down an explicit optimization problem &in the form

(51)  minS = min{|[WE(@)[|0(@)7 W V1 +]Z(@)0(@)- W},

whereZ (®), I'(®) are as in Theorem 3.2. Fein not too large, we can approach this mini-
mization problem with standard optimization software and actually in practice one probably
usually does not need the global minimum, but just one, wésesmall enough to guarantee
a small bound (4.3), which then can be actually computed and used as condition estimator.

6. Future research. Pole placement is often used as a substitute problem for the solu-
tion of another problem, like stabilization or damped stabilization, see, e.g., [12]. If this is
the case, then also the poles,, ..., \,} are free to vary in a given sét C C. For the
single-input case, where we have no freedom'jithis problem was discussed in [23].

But for the substitute problendi might not be the right measure to optimize, since one
usually also wants that the poles are robustly bounded away from the boundaned.,
are robustly stable. Then also the distance to the compleménsbbuld be included in the
measure. This topic is currently under investigation.

The analysis that we have given can also be used to study pole assignment via output
feedback, i.e., the problem of determining a feedhfaeck C™*?, such thatd — BF'C has a
desired set of poles, whefte € CP*" describes an output equation of the form

(6.1) y = Cu.

It is evident from Theorem 3.2 that a solution to the output feedback problem exists if and
only if there exists a matri® € C"*" so thafl" as in (3.10) is nonsingular and

(6.2) FC=2zG71
with Z, G as in Theorem 3.2. This condition is equivalent to

(6.3) range(ZT~1)# C range(CW).
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If (A", C™) is also controllable, anagalous to Theorem 3.2, by considering the problem
AH — CH(BF)? = G-HTHGH, there areZ,. := R,V — Y.I'. andG— = W.T,, so that

(6.4) BF = (z.G"H =w Hr HzH

HereW., R., Y. andT. are similar as in the state feedback case, but fof, C*), ¥ ¢
cP*m still has to be chosen. In this case the output feedback problem is solvable if and only
if there exist® and ¥ so that

(6.5) WT =W, T H orTTH = (WHwW)~L.

Note that in this case (6.2) and (6.4) are automatically satisfied from the structiféamod

W.. Itis currently under investigation to obtain more explicit formulas for this problem.
Another important variant of the pole assignment problem is when not only poles but also

some eigenvectors of the closed loop system are given, see [20].

7. Conclusion. We have continued the analysis of the pole placement problem in [22]
for the multi-input case and we have derived explicit formulas for the feedback matrix and
the closed loop eigenvector matrix as well as new perturbation results.

We observe a similar behaviour as in the single-input case, and we come to a similar con-
clusion, that we can expect the pole placement problem to be ill-conditioretdefnumber
of blocks in the staircase form of the matrix is large. This is definitely the case wl&n
large andn is small.

REFERENCES

[1] J. AckERMANN, Der entwurf linearer regelungssysteme im zustandstaBegelungstechnik und Prozess-
datenverarbeitung7 (1992), pp. 297-300.
[2] M. ArNoOLD, Algorithms and conditioning for eigenvalue assignméttD thesis, Northern Illinois Univer-
sity, De Kalb, Illinois, USA, 1993.
[3] M. ArRNOLD AND B.N. DATTA, Single-input eigenvalue assignment algorithms. A close;-loBleport,
Northern lllinois University, Department of Mathematical Sciences, De Kalb, Il. 60115, 1997.
[4] S.P. BHATTACHARYYA AND E. DE SouzA, Pole assignment via Sylvester’s equatior8ystems Control
Lett., 1 (1982), pp. 261-263.
[5] C.L.Cox AND W.F. Moss Backward error anlysis for a pole assignment algorith®IAM J. Matrix Anal.
Appl., 10 (1989), pp. 446-456.
[6] C.L.Cox AND W.F. Moss Backward error anlysis for a pole assignment algorithm ii: The complex,case
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1159-1171.
[7] B.N. DATTA AND K. DATTA, On eigenvalue and canonical form assignmentsnear Algebra Appl., 131
(1990), pp. 161-182.
[8] J.W. DEMMEL, The condition number of equivalence transformations that block diagonalize matrix pencils
in Matrix Pencils B. Kagstom and A. Ruhe, eds., Springer Verlag, Berlin, 1982, pp. 2-16.
[9] G. DuAN, Solutions of the equatiodV + BW = V F and their application to eigenstructure assignment
in linear systems|EEE Trans. Automat. Control, AC-38 (1993), pp. 276-280.
[10] R. EISING, Between controllable and uncontrollabl&ystems and Control Lett.s, 4 (1984), pp. 263—264.
[11] G.H. GoLuB AND C.F. VAN LOAN, Matrix Computations Johns Hopkins University Press, Baltimore,
second edm, 1989.
[12] C. HE, A. J. Laus, AND V. MEHRMANN, Placing plenty of poles is pretty preposterpusDFG-
Forschergruppe Scientific Parallel Computing. Preprint 95-17, Fak. f. Mathematik, TU Chemnitz-
Zwickau, D-09107, Chemnitz, FRG, 1995.
[13] N.J. HGHAM, Accuracy and Stability of Numerical AlgorithmSIAM Philadelphia, 1996.
[14] T. KaiLATH, Systems TheoryPrentice-Hall, Englewood Cliffs, NJ, 1980.
[15] J. KAuTsKY, N. K. NicHoLs, AND P. VAN DOOREN, Robust pole assignment in linear state feedback
Internat. J. Control, 41 (1985), pp. 1129-1155.
[16] L.H. KEEL, J.A. FLEMING, AND S.P. BHATTACHARYA, Minimum norm pole assignment via Sylvester’s
equation Contemp. Math., 47 (1985), pp. 265-272.
[17] M.M.KONSTANTINOV AND P.HR. PETKOV, Conditioning of linear state feedbackechnical Report: 93-61,
Dept. of Engineering, Leicester University, 1993.



(18]
(19]
(20]
(21]
(22]
(23]
(24]
(25]
(26]
(27]

(28]
(29]

(30]
(31]
(32]
(33]
(34]
(35]

(36]
(37]

ETNA

Kent State University
etna@mcs.kent.edu

Volker Mehrmann and Hongguo Xu 97

M.M. KONSTANTINOV, P.HR. PETKOV, AND N.D. CHRISTOV, Conditioning of the output pole assignment
In Proc. 3rd European Control Conference, Vol.paiges 2072—2077, Rome, 1995.

V. KUCERA AND D. ZAGALAK , Fundamental theorem of state feedback for singular systémtmatica,

24 (1988), pp. 653—658.

LiTTLEBOY AND N. K. NicHOLS, Modal coupling in linear control systems using robust eigenstructure
assignment Linear Algebra Appl., to appear, 1996.

D. G. LUENBERGER Canonical forms for linear multivariable system$EEE Trans. Automat. Control,
AC-12 (1967), pp. 290-293.

V. MEHRMANN AND H. XU, An analysis of the pole placement problem. I. The single-input c&dectron.
Trans. Numer. Anal., 4 (1996), pp. 89-105.

V. MEHRMANN AND H. XU, Choosing the poles so that the single-input pole placement problem is well-
conditioned SIAM J. Matrix Anal. Appl., to appear, 1998.

G.S. MiMINIS AND C.C. RuIGE, A direct algorithm for pole assignment of linear time-invariant multi-input
linear systems using state feedbaékitomatica, 24 (1988), pp. 343-356.

P.HR. PETKOV, N.D. CHRISTOV, AND M.M. KONSTANTINOV, Reliability of the algorithms and software
for synthesis of linear optimal system$echnical report, Dept. of Automatics, Higher Institute of Me-
chanical and Electrical Engineering, B1.2; 1156 Sofia, Bulgaria, 1986.

H.H. ROSENBROCK State Space and Multivariable TheoMYiley, New York, 1970.

V. SIMA, An efficient Schur method to solve the stabilization problEEE Trans. Automat. Control, AC-26
(1981), pp. 724-725.

G. W. STEWART AND J.-G. SUN, Matrix Perturbation Theory Academic Press, London, 1990.

J. G. SN, Perturbation analysis of the pole assignment prohleBIAM J. Matrix Anal. Appl., 17 (1996),
pp. 313-331.

C.-C. Tsul, A complete analytical solution to the equatidm — FT' = LC and its applications IEEE
Trans. Automat. Control, AC-32 (1987), pp. 742—744.

C.-C. Tsul, An algorithm for computing state feedback in multi input linear syste®1aM J. Matrix Anal.
Appl., 14 (1993), pp. 33—-44.

M. VaLASEK AND N. OLGAC, Efficient eigenvalue assignments for general linear MIMO systems. Auto-
matica, 31 (1995), pp. 1605-1617,.

M. VALASEK AND N. OLGAC, Efficient pole placement technique for linear time-variant SISO systéais
Proc. Control Theory Appl., 142 (1995), pp. 451-458.

P. VAN DOOREN The computation of Kronecker’s canonical form of a singular pencilinear Algebra
Appl., 27 (1979), pp. 103-121.

P. VAN DOOREN, The generalized eigenstructure problem in linear system thel@#E Trans. Automat.
Control, AC-26 (1981) pp. 111-129.

A. VARGA, A Schur method for pole assignmelEE Trans. Automat. Control, AC-26 (1981) pp. 517-519.

W.M. WONHAM, On pole assignment in multi input controllable linear system&EE Trans. Automat.
Control, AC-12 (1967), pp.660—665.



