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result, we propose an iterative method for finding an element to solve a class of split
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1 Introduction

The variational inequality problem (VIP) is generated from the method of mathematical
physics and nonlinear programming. It has considerable applications in many fields, such
as physics, mechanics, engineering, economic decision, control theory and so on. Varia-
tional inequality is actually a system of partial differential equations. In 1964, Stampacchia
[1] first introduced the VIP for modeling in the mechanics problem. The VIP was gener-
ated from mathematical physics equations early on because the Lax-Milgram theorem was
extended from the Hilbert space to its nonempty closed convex subset, so we got the first
existence and uniqueness theorem of VIP. In the 1990s, the VIP became more and more
important in nonlinear analysis and optimization problem.

The VIP is to find an element x* € C satisfying the inequality
(Ax*,x-x*)>0, VxeC, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H and A is a mapping
of C into H. The set of solutions of VIP (1.1) is denoted by VI(C, A).
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We can easily show that x* € VI(C, A) is equivalent to

x* = Pc(I — MA)x*.

A simple iterative method algorithm for solving VIP (1.1) is the projection method

Xl = PC(I - AA)xn (12)

for each n € N, where P¢ is the metric projection of H into C and A is a positive real

2
L—Z, then

there exists a unique point in VI(C, A), and the sequence {x,} generated by (1.2) converges

number. Indeed, if A is 17-strongly monotone and L-Lipschitz continuous, 0 < X <

strongly to this point. If A is «-inverse strongly monotone, the solution of VIP (1.1) does
not always exist. Assume that VI(C,A) is nonempty, 0 < A < 2w, then VI(C,A) is a closed
and convex subset of H. The sequence {x,} generated by (1.2) converges weakly to one of
the points in VI(C,A). But if A is monotone and Lipschitz continuous, the sequence {x,,}
generated by (1.2) is not always convergent. So, we cannot use algorithm (1.2) to solve VIP
(1.1).

In 1976, Korpelevich [2] introduced the following so-called extragradient method
for solving VIP (1.1) when A is monotone and k-Lipschitz continuous in the finite-

dimensional Euclidean space R":

w = Pc(x, — MAx,),
In = Pc( ) 13)
Xn+l = PC(xn - AAyn):

for each n € N, where X € (0, %). The sequence {x,} converges to a point in VI(C, A).

The split feasibility problem (SFP) is also important in nonlinear analysis and optimiza-
tion. In 1994, Censor and Elfving [3] first proposed it for modeling in medical image recon-
struction. Recently, the SFP has been widely used in intensity-modulation therapy treat-
ment planning.

The SFP is to find a point x* satisfying the conditions
x*eC and Ax*€Q, (1.4)

where C and Q are nonempty closed convex of real Hilbert spaces H; and Hj, respectively,
and A is a bounded linear operator of H; into H,.

Censor and Elfving used their algorithm to solve the SFP in the finite-dimensional Eu-
clidean space R”. In 2001, Byrne [4] improved and extended Censor and Elfving’s algo-
rithm and introduced a new method called CQ algorithm for solving the SFP (1.4)

%1 = Py — yA*(I - Po)Ax,) (L5)

for each n € N, where 0 < y < ﬁ and A* is the adjoint operator of A. The sequence {x,}
generated by (1.5) converges weakly to a point which solves SFP (1.4).

Very recently, Censor et al. [5] combined the variational inequality problem and the split
feasibility problem and proposed a new problem called split variational inequality problem
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(SVIP). The SVIP is to find a point x* satisfying
x* e VI(C,f) and Ax* e VI(Q,g), (1.6)

where C and Q are nonempty closed convex of the real Hilbert spaces H; and H,, respec-
tively, and A is a bounded linear operator of H; into H.
For solving SVIP (1.6), Censor, Gibali and Reich introduced the following algorithm:

%ns1 = Pc(l = Af) (%0 + yA* (PoU - 1g) — 1) Ax,,) (1.7)
for each n € N. They obtained the following result.

Theorem 1.1 ([5, 6]) Let A : H — Hy be a bounded linear operator, f : Hi — H, and
g : Hy — H, be respectively ay and oy inverse strongly monotone operators and set o :=
min{ay, a3 }. Assume that SVIP (1.6) is consistent, y € (0, %) with L being the spectral radius
of the operator A*A, \ € (0,2«a) and suppose that for all x* solving SVIP (1.6),

(f(x),Pc(I - M)(x) - x*) >0, VxeH. (1.8)
Then the sequence {x,} generated by (1.7) converges weakly to a solution of SVIP (1.6).

In this paper, based on the work by Censor et al. combined with Korpelevich’s extra-
gradient method and Byrne’s CQ algorithm, we propose an iterative method for finding
an element to solve a class of split variational inequality problems under weaker condi-
tions and get a weak convergence theorem. As applications, we obtain some new weak
convergence theorems by using our weak convergence result to solve related problems in
nonlinear analysis and optimization.

2 Preliminaries
In this section, we introduce some mathematical symbols, definitions, lemmas and corol-
laries which can be used in the proofs of our main results.

Let N and R be the sets of positive integers and real numbers, respectively. Let H be a
real Hilbert space with the inner product (-, -) and the norm || - ||. Let {x,,} be a sequence in
H, we denote the sequence {x,} converging weakly to x by ‘x,, — &’ and the sequence {x,}
converging strongly to x by ‘x,, — «’ z is called a weak cluster point of {x,} if there exists a
subsequence {x,,} of {x,} converging weakly to z. The set of all weak cluster points of {x,}
is denoted by wy,(x,,). A fixed point of the mapping T : H — H is a point x € H such that
Tx = x. The set of all fixed points of the mapping T is denoted by Fix(T').

We introduce some useful operators.

Definition 2.1 ([7]) Let T, A : H — H be nonlinear operators.

(i) T is nonexpansive if
ITx - Tyl < llx-yl, VYxyeH.
(i) T is firmly nonexpansive if

(Tx — Ty, x—y) > | Tx — Ty||*, Vx,y€H.



Tian and Jiang Journal of Inequalities and Applications (2017) 2017:123 Page 4 of 17

(ili) T is L-Lipschitz continuous, with L > 0, if
| Tx =Tyl <Llx-yl, VayeH.
(iv) T is a-averaged if
T=(010-a)+as,

where a € (0,1) and S: H — H is nonexpansive. In particular, a firmly
nonexpansive mapping is %—averaged.
(v) A is monotone if

(Ax —Ay,x—y) >0, Vx,yeH.

(vi) A is n-strongly monotone, with > 0, if
(Ax — Ay,x —y) > n||x—y||2, Vx,y € H.

(vii) A is v-inverse strongly monotone (v-ism), with v > 0, if
(Ax — Ay,x —y) > v||Ax — Ay||>, Vx,yeH.

We can easily show that if T is a nonexpansive mapping and assume that Fix(T) is
nonempty, then Fix(T) is a closed convex subset of H.

We need the propositions of averaged mappings and inverse strongly monotone map-
pings.

Lemma 2.2 ([7]) We have the following propositions.
(i) T is nonexpansive if and only if the complement I — T is %—Z'SWZ.

(i) If Tisv-ismandy >0, then yT is %—z’sm.

(ili) T is averaged if and only if the complement I — T is v-ism for some v > % Indeed, for
a €(0,1), T is a-averaged if and only if I - T is 5-ism.

(iv) If Ty is g -averaged and T, is ay-averaged, where ay, oy € (0,1), then the composite
T T, is a-averaged, where a = a1 + oty — Q10tp.

(v) If Ty and T, are averaged and have a common fixed point, then
Fix(T1T,) = Fix(T;) NFix(T5).

Lemma 2.3 ([8]) Let H; and H, be real Hilbert spaces. Let A : HH — H, be a bounded

linear operator with A #0 and T : Hy — Hj be a nonexpansive mapping. Then A*(I - T)A
1

2IAI2 -1smi.

is

Let C be a nonempty closed convex subset of H. For each x € H, there exists a unique
nearest point in C, denoted by Pcx, such that

lle = Pex|| < llx—yll, VyeC.

P is called the metric projection of H into C. We know that P¢ is firmly nonexpansive.
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Lemma 2.4 ([9]) Let C be a nonempty closed convex subset of a real Hilbert space H. Given
x € H and z € C. Then z = Pcx if and only if there holds the inequality

x—2z,z-y9>0, VyeC.

Lemma 2.5 ([9]) Let C be a nonempty closed convex subset of a real Hilbert space H. Given
x € H and z € C. Then z = Pcx if and only if there holds the inequality

2 2
e =ylI* = llx = 21> + ly -2, VyeC.
We introduce some definitions and propositions about set-valued mappings.

Definition 2.6 ([8]) Let B be a set-valued mapping of H into 2. We denote the effective
domain of B by D(B), D(B) is defined by

D(B) ={x € H:Bx #0}.
A set-valued mapping B is called monotone if
(x—y,u—v)>0, Vx,y€D(B),ucBx,veBy.

A monotone mapping B is called maximal if its graph is not properly contained in the
graph of any other monotone mappings on D(B).

In fact, the definition of the maximal monotone mapping is not very convenient to use.
We usually use a property of the maximal monotone mapping: A monotone mapping B is
maximal if and only if for (x,u) € H x H, (x — y,u —v) > 0 for each (y,v) € G(B) implies
u € Bx

For a maximal monotone mapping B, we define its resolvent J, by

J,:=+rB)':H— D(B),

where r > 0. We know that J, is firmly nonexpansive and Fix(J,) = B0 for each r > 0.
For a nonempty closed convex subset C, the normal cone to C at x € C is defined by

Nex={zeH:(z,y-x) <0,Vye C}.
It can be easily shown that N¢ is a maximal monotone mapping and its resolvent is Pc.

Lemma 2.7 ([10]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A be a monotone and k-Lipschitz continuous mapping of C into H. Define

Av+Ncv, YrveC,
@, Vv ¢ C.

V=

Then B is maximal monotone and 0 € Bv if and only if v e VI(C,A).
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Lemma 2.8 ([10]) Let H, and H, be real Hilbert spaces. Let B : Hy — 2™\ be a maxi-
mal monotone mapping, and let ], be the resolvent of B for r > 0. Let T : Hy — H, be a
nonexpansive mapping, and let A : Hy — Hj be a bounded linear operator. Suppose that
BONAYFix(T) #0. Let r,y > 0 and z € H,. Then the following are equivalent:
(i) z=J,(I - yA*(I - T)A)z;
(i) 0 e A*(I - T)Az + Bz;
(iii) ze B'0NAFix(T).

Corollary 2.9 Let H, and H, be real Hilbert spaces. Let C be a nonempty closed con-
vex subset of Hy. Let T : Hy — H, be a nonexpansive mapping, and let A : Hi — H; be a
bounded linear operator. Suppose that C N A Fix(T) # 0. Let y > 0 and z € Hy. Then the
following are equivalent:
(i) z=PcI-yA*(I-T)A)z;
(i) 0 € A*(I-T)Az + Ncz;
(iii) z e CN A Fix(T).

Proof Putting B = N¢ in Lemma 2.8, we obtain the desired result. O
We also need the following lemmas.

Lemma 2.10 ([11]) Let H be a real Hilbert space and T : H — H be a nonexpansive map-
ping with Fix(T) # 0. If {x,,} is a sequence in H converging weakly to x and if {(I — T)x,}
converges strongly to y, then (I — T)x = y.

Lemma 2.11 ([12]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{x,} be a sequence in H satisfying the properties:

() limy— oo [l%, — ul| exists for each u € C;

(i) wy(x,) CC.
Then {x,} converges weakly to a point in C.

Lemma 2.12 ([13]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Let {x,} be a sequence in H. Suppose that

%n1 — ull < 1%y —ull, VueC,
foreveryn=0,1,2,.... Then the sequence {Pcx,} converges strongly to a point in C.

3 Main results

In this section, based on Censor, Gibali and Reich’s recent work and combining it with
Byrne’s CQ algorithm and Korpelevich’s extragradient method, we propose a new iterative
method for solving a class of the SVIP under weaker conditions in a Hilbert space.

First, we consider a class of the generalized split feasibility problems (GSFP): finding
an element that solves a variational inequality problem such that its image under a given
bounded linear operator is in a fixed point set of a nonexpansive mapping, i.e., find x*
satisfying

x* e VI(C,f) and Ax* € Fix(T). (3.1)
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Theorem 3.1 Let Hy and H, be real Hilbert spaces. Let C be a nonempty closed convex
subset of Hy. Let A : Hi — Hy be a bounded linear operator such that A #0, f : C — H;
be a monotone and k-Lipschitz continuous mapping and T : Hy — H, be a nonexpansive
mapping. Setting I' = {z € VI(C,f) : Az € Fix(T)}, assume that I # (. Let the sequences
{xn}, {yn} and {t,,} be generated by x; =x € C and

Yu = Pc(x, — Y A*(L — T)Ax,),
ty = PC(yn - )"r(f(yn))» (32)
Xn+l = PC(yn - )"r(f(tn));

for each n € N, where {y,} C [a, b] for some a,b € (0, W) and {\,} C [c,d] for some c,d €

(o, %). Then the sequence {x,} converges weakly to a point z € I, where z = lim,,_, oo Prx,.

Proof From Lemma 2.2(ii), (iii), (iv) and Lemma 2.3, we can easily know that Pc(I —
VuA*(I = T)A) is %-averaged. So, y, can be rewritten as

Yn = (1 - an)xn + oy ann: (33)

LyallAl2
2

where o, = and V,, is a nonexpansive mapping for each n € N.

Let u € I', we have

7 — ul)?
= [ (@ = ) 6o = ) + @ (Vi — )|
= (1= )l — ull® + | Vit = 1l* = tu(1 = 0t) 6 = Vi >
< lloen — utll® = otn (1 = &) 60 = Vi 1>

< llan —u]®. (3.4)
So, we obtain that
(1= ) % = Vil |* < [0 = 2l* = [l — el (3.5)
On the other hand, from Lemma 2.5, we have

%1 — >
< = 2af ) = u]]* = 9 = hf 82) = [
=y = 1 = lyn = %t > + 20n{f (60), 1 — K1)
= llyn = wll® = llyn = HuarlI” + 22 ((f (&), 4 — 1)
+{f () tn — %n11))
=y = ull® = 17 = a[I” + 200 ((F (8) — f (0), 10 — )
+{f (), 1 = tu) + {f (En), b — Xs1))

<llyn- M”z = lyn _xn+1||2 + 2)\n<f(tn); I _xn+1)
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= |lyn = u”Z —lyn - tn||2 = 2(n =ty by — Xni1)
- ”tn - xn+1||2 + 2)Ln(f(tn)r Ly _xn+1)
= 1y — el = 1y = tall® = 1tw — KprII”

+ 2(yn - )erf(tn) — by Xps1 — tVl)' (3.6)

Then, from Lemma 2.4, we obtain that

(3 = Anf () = s Honi1 — L)
= (0 = df On) = tus i1 = bn) + (onf On) = A (60> X1 = )
< (Af On) = donf (80), X1 — L)
= Mnlf On) = f (6), %1 — )
< [f ) = F (&) | 1201 =
< Ankllyn = Eull 141 = Eal.- 3.7)

So, we have

%1 — 221
< Ny = ull®* = 1y = tall* = It = X 1>
+ 20,k Y5 — tall %1 — Eal
< Nyw = ull® = Myn = tall* = 1t = x>
+ A2k = tall® + a1 — tal?
< Ny — ull® + (A2* = 1) 13 = 2]l
< lyn — ull®

< 1%, — ull?. (3.8)
Therefore, there exists
¢= lim |x, —u|, (3.9)
n— 00

and the sequence {x,} is bounded. From (3.5), we also get

(L= ) 1% = Vinl|* < Nl — sl|* = %1 — 1l (3.10)
Hence
X, — Vuxy—> 0, n— o0. (3.11)

From (3.3), we can get

Xy —yy— 0, n— o0. (3.12)
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From (3.8), we also get

2 1
yn = tull” < Y=
So,

Y=ty —> 0, n— oo.
From (3.12) and (3.14), we have
Xp—1t,— 0, n— o0.

Notice that P¢ is firmly nonexpansive, so

%41 = 2l
= | Pc(yn = Anf (1)) = Pc(yn = Anf ) |
< |y = 2nf &) = 0 + 2nf 00|
= || f (&) = 2 )|
= [f (&) = f )|
< MkllEn = yull-

We obtain
xn+1_tn_>0y n— oQ.
From (3.15) and (3.17), we have

Xps1 — Xy, — 0, n— o0.

2 2
(o = 2ell* = 11 = ual|?).

Page 9 of 17

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Since {x,} is bounded, for each z € w,,(x,), there exists a subsequence {x,,} of {x,} con-

verging weakly to z. Without loss of generality, the subsequence {y,,} of {y,} converges

to a point y € (0, W). Since A*(I — T)A is inverse strongly monotone, we know that

{A*(I - T)Ax,,} is bounded. Since P is firmly nonexpansive,

| Pc(l =y A" = T)A)xy, = Pc(I = AU = T)A), | < lym, = PI|A*U = T)Ax,, .

From y,, — 7, we have

Pc(I - ynA*I - T)A)x,, - Pc(I - pA*(I - T)A)x,, — O,

From (3.12), we have

%, = Pc(I =y A*(I = T)A)xy, — 0, i — o0.

(3.19)

(3.20)
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Since

| = Pc(I = PA*U = T)A)xy, |
S Hx”i - PC(I - Vn,A*(I - T)A)xni ||

+ | Pc(I = yuA*(I = T)A)xy, — Pc(I - PA* (I - T)A)%y, |,

we have

%p, —Pc(I - pA*(I - T)A)x,, — 0, i—> o0. (3.21)
From Lemma 2.10, we obtain that

z € Fix(Pc(I - pA*(I - T)A)).
From Corollary 2.9, we obtain

ze CNATFix(T). (3.22)

Now, we show that z € VI(C,f). From (3.12), (3.15) and (3.18), we have y,, =~ z, t,, = z

and x,,,,; — z.

Let

~ f)+Ncv, VYve(C,
@, Vv ¢ C.

Bv

From Lemma 2.7, we know that B is maximal monotone and 0 € Bv if and only if v €
VI(C,f).
For each (v, w) € G(B), we have
we Bv=f(v)+ Ncv.
Hence
w—f(v) € Ncv.
So, we obtain that
(v—p,w—f(v)) >0, VpeC. (3.23)
On the other hand, from v € C and
%na1 = Pc(yu = Muf (8)),

we get

(y" - )\'Vlf(tﬂ) —Xn+1hr ¥+l — V> > 0
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and hence

Xl — Yn

— f(t,,)> - 0. (3.24)

<V —Xn+ls
Therefore, from (3.23) and (3.24), we obtain that

(V—=%p41, W)
= (V - xni+lrf(v)>

xn,'+ - Jn;
> (V - xn,-+1)f(V)> - <V - xn,—+1¢ )\1’7)) +f(tn,-)>

= (V — xn,-+1:f(V) _f(t”i)) - <V - xni+1’ w>

= <V - xnﬁl»f(v) _f(xn[+1)> + <V - xnﬁl’f(xnﬁl) _f(tn,'»

_ <V_xm u>
1 A'nl
Xpisl — Vs
> (V - xnﬁlrf(xnﬁl) _f(tn,')> - <V - xni+1: %ynl> (325)
As i — 00, we have
v—z,w) > 0. .
( ) =0 (3.26)

Since B is maximal monotone, we have 0 € Bz and hence z € VI(C, f). So, we obtain that

wy(x,) CT. (3.27)

From Lemma 2.11, we get

xy—zeT, (3.28)

and from Lemma 2.12, we obtain

z= lim Prx,. (3.29)
n— 00
O
Remark 3.2

(i) Iff =0and T = Pg, problem (3.1) reduces to the SFP introduced by Censor and
Elfving, and the algorithm in Theorem 3.1 reduces to Byrne’s CQ algorithm for
solving the SFP.

(i) If T =1, problem (3.1) reduces to the VIP, and the algorithm in Theorem 3.1
reduces to Korpelevich’s extragradient method for solving the VIP with a monotone
mapping.

(iii) If A =1,f =0and C = Hj, problem (3.1) reduces to the fixed point problem of a
nonexpansive mapping.
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Now, we consider SVIP (1.6).

Theorem 3.3 Let Hy and H, be real Hilbert spaces. Let C be a nonempty closed con-
vex subset of H; and Q be a nonempty closed convex subset of Hy. Let A : Hy — H be a
bounded linear operator such that A #0, let f : C — H; be a monotone and k-Lipschitz
continuous mapping and g : Hy — H, be an a-inverse strongly monotone mapping. Setting
I'={z e VI(C,f) : Az € VI(Q, g)}, assume that T # (). Let the sequences {x,}, {yn} and {t,}
be generated by x; =x € C and

Yn = Pc(xy — yuA* (I = Po(I — ng))Axy),
tn = Pc(Vn = Af ), (3.30)
Xn+l = PC()/n - )Vr(f(tn)):

for each n € N, where {y,} C [a,b] for some a,b € (0, W), {Ay} C [c,d] for some c,d €
(0, %), wu € (0,2w). Then the sequence {x,} converges weakly to a point z € I', where z =

lim,,_, o Prx;,.

Proof From Lemma 2.4, we can easily know that z € VI(Q,g) if and only if z = Po(I -
ng)z for > 0, and for u € (0,2c), Po(I — pg) is nonexpansive. Putting T = Pg(I — ug) in
Theorem 3.1, we get the desired result. O

Remark 3.4

(i) Iff=0andg=0, SVIP (1.6) reduces to the SFP introduced by Censor and Elfving,
and the algorithm in Theorem 3.3 reduces to Byrne’s CQ algorithm for solving the
SEP.

(i) Iff =0, C=H; and A =1, SVIP (1.6) reduces to the VIP and the algorithm in
Theorem 3.3 reduces to (1.2) for solving the VIP with an inverse strongly monotone
mapping.

(iii) If g =0 and Q = Hy, SVIP (1.6) reduces to the VIP and the algorithm in
Theorem 3.1 reduces to Korpelevich’s extragradient method for solving the VIP
with a monotone mapping.

4 Application
In this part, some applications which are useful in nonlinear analysis and optimization
problems in a Hilbert space will be introduced. This section deals with some weak conver-
gence theorems for some generalized split feasibility problems (GSFP) and some related
problems by Theorem 3.1 and Theorem 3.3.

Let C be a nonempty closed convex subset of a real Hilbert space H,andlet F: C x C —
R be a bifunction. Consider the equilibrium problem, i.e., find x* satisfying

F(x*,y) >0, VyeC. (4.1)

We denote the set of solutions of equilibrium problem (4.1) by EP(F). For solving equilib-
rium problem (4.1), we assume that F satisfies the following properties:

(A1) F(x,x)=0 forallx € C;

(A2) Fis monotone, i.e., F(x,y)+ F(y,x) <0 forallx,y € C;
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(A3) foreachx,y,z € C,limgyo F(tz + (1 - t)x,y) < F(x,9);
(A4) for each x € C,y +— F(x,y) is convex and lower semicontinuous.
Then we have the following lemmas.

Lemma 4.1 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H, and
let F be a bifunction of C x C into R satisfying the properties (Al)-(A4). Let r be a positive
real number and x € H. Then there exists z € C such that

1
F(z,y)+-(y-zz-x)>0, VyeC.
r

Lemma 4.2 ([15]) Assume that F : C x C — R is a bifunction satisfying the properties
(A1)-(A4). For r > 0 and x € H, define the resolvent T, : H — C of F by

1
T.x = {zeC:F(z,y)+ -(y—z,z—x) ZO,VyeC}, Vx € H.
r

Then the following hold.:
(i) T, is single-valued;
(ii) 7, is firmly nonexpansive, i.e.,

| Tox — Toyl|> < (Tox — T,y,x—y), Vx,y€H;

(iii) Fix(T,) = EP(F);
(iv) EP(F) is closed and convex.

Applying Theorem 3.1, Lemma 4.1 and Lemma 4.2, we get the following results.

Theorem 4.3 Let H; and H, be real Hilbert spaces. Let C be a nonempty closed convex
subset of Hy and Q be a nonempty closed convex subset of Hy. Let A : Hy — Hj be a bounded
linear operator such that A # 0, let f : C — H; be a monotone and k-Lipschitz continuous
mapping and F : Q x Q — R be a bifunction satisfying (A1)-(A4). Setting I = {z € VI(C,f) :
Az € EP(F)}, assume that U # (). Let the sequences {x,}, {y,} and {t,} be generated by x; =
xe€ Cand

In = Pc(xy — yuA* (I - T))Axy),
ty = PC(yn - knf()’n)): (4~2)
Xn+l = PC(yn - )‘-nf(tn)),

for each n € N, where {y,} C [a, b] for some a,b € (0, W) and {A,} C [c,d] for some c,d €
(o, %), T, is a resolvent of F for r > 0. Then the sequence {x,} converges weakly to a point
z €', where z = lim,,_, o, Prx,,.

Proof Putting T = T, in Theorem 3.1, we get the desired result by Lemmas 4.1 and 4.2. O
The following theorems are related to the zero points of maximal monotone mappings.

Theorem 4.4 Let Hy and H, be real Hilbert spaces. Let C be a nonempty closed convex sub-
set of Hy and Q be a nonempty closed convex subset of Hy. Let A : Hi — Hy be a bounded
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linear operator such that A # 0, let f : C — H; be a monotone and k-Lipschitz continu-
ous mapping and B : Hy — 212 be a maximal monotone mapping with D(B) # 0. Setting
I = {z € VI(C,f) : Az € B0}, assume that T # (. Let the sequences {x,}, {y,} and {t,} be
generated by x; =x € C and

Yn = PC(xn - ynA*(I _]r)Axn);
= PC(yn - )‘rzf(yn))» (4'3)
Xn+l = PC(yn - )"nf(tn))’

for each n € N, where {y,} C [a, b] for some a,b € (0, W) and {A,} C [c,d] for some c¢,d €
(o, %), Jr is a resolvent of B for r > 0. Then the sequence {x,} converges weakly to a point
z €I, where z = lim,,_, o, Prx,,.

Proof Putting T =], in Theorem 3.1, we get the desired result. 0

Theorem 4.5 Let H, and H, be real Hilbert spaces. Let C be a nonempty closed convex
subset of Hy and Q be a nonempty closed convex subset of Hy. Let A : H; — Hj be a bounded
linear operator such that A # 0, f : C — H; be a monotone and k-Lipschitz continuous
mapping, B: Hy — 22 be a maximal monotone mapping with D(B) # @ and F : Hy — H,
be an a-inverse strongly monotone mapping. Setting T = {z € VI(C,f) : Az € (B + F)~'0},
assume that I" # (. Let the sequences {x,}, {y,} and {t,} be generated by x; =x € C and

Yn = Pc(x, - VnA*(I —J:(I = rF))Ax,),
ty = PC(yn - )‘rzf(yn)), (4~4)
Xn+l = PC()/n - )‘-nf(tn))’

for each n € N, where {y,} C |a, b] for some a,b € (0, W) and {A,} C [c,d] for some c¢,d €

(0, %), Jr is a resolvent of B for r € (0,2). Then the sequence {x,} converges weakly to a
point z € T, where z = 1im,,_, o Prx,,.

Proof We can easily prove that z € (B + F)™10 if and only if z = J,(I — rF)z and J,(I — rF) is
nonexpansive. Putting T = J,.(I — rF) in Theorem 3.1, we get the desired result. O

For a nonempty closed convex subset C, the constrained convex minimization problem
is to find x* € C such that

P(x*) = min ¢ (x), (4.5)

where C is a nonempty closed convex subset of a real Hilbert space H and ¢ is a real-valued
convex function. The set of solutions of constrained convex minimization problem (4.5)
is denoted by arg minycc ¢(x).

Lemma 4.6 Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. Let ¢ be a convex function of H into R. If ¢ is differentiable, then z is a solution of (4.5)
if and only if z € VI(C, V).
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Proof Let z be a solution of (4.5). Foreachx € C,z+ A(x—2z) € C, VX €(0,1). Since ¢ is

differentiable, we have

. dz+A(x—2)-9(2)
(Vo= iy

>0.

Conversely, if z € VI(C, V@), i.e,, (V@(2),x—z) > 0, Vx e C. Since ¢ is convex, we have

P(x) = ¢(2) + (Vo(2),x — 2) = ¢ (2).
Hence z is a solution of (4.5). O
Applying Theorem 3.3 and Lemma 4.6, we obtain the following result.

Theorem 4.7 Let H; and H, be real Hilbert spaces. Let C be a nonempty closed convex
subset of Hy and Q be a nonempty closed convex subset of Hy. Let A : Hy — Hj be a bounded
linear operator such that A #0, let f : C — Hy be a monotone and k-Lipschitz continuous
mapping and ¢ : Hy — R be a differentiable convex function, and suppose that V¢ is o-
ism. Setting I = {z € VI(C,f) : Az € argminyeq ¢(9)}, assume that T # J. Let the sequences
{xn}, {yn} and {t,} be generated by x, =x € C and

Yn = Pc(xn = yuA™(I = PoI — nV@))Ax,),
ty = PC()/n - A-nf()’n)): (46)
Xn+l = PC(yn - )"r(f(tn));
for each n € N, where {y,} C [a, b] for some a,b € (0, W) and {)\,} C [c,d] for some c,d €
(o, %), wu € (0,2w). Then the sequence {x,} converges weakly to a point z € I", where z =

lim,,_, o Prxy,.
Proof Putting g = V¢ in Theorem 3.3, we get the desired result by Lemma 4.6. O

Applying Theorem 3.3 and Lemma 4.6, we obtain the following result. The problem
to solve in the following theorem is called split minimization problem (SMP). It is also

important in nonlinear analysis and optimization.

Theorem 4.8 Let H; and H, be real Hilbert spaces. Let C be a nonempty closed convex
subset of Hy and Q be a nonempty closed convex subset of Hy. Let A : Hy — H; be a bounded
linear operator such that A # 0, ¢1 and ¢, be differentiable convex functions of Hy into R
and H, into R, respectively. Suppose that V¢, is k-Lipschitz continuous and V¢, is o-
ism. Setting I' = {z € argminyec ¢1(x) : Az € argminyeq $2(y)}, assume that T # (. Let the
sequences {x,}, {y,} and {t,} be generated by x; = x € C and

Yn = Pc(x, — J/nA*(I - PQ(I - MV¢2))AJC,,),
ty = PC(yn - )\nv¢l()/n))’ (4'~7)
X+l = PC(yn - )WIV(pl(tn))’
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for each n € N, where {y,} C [a, b] for some a,b € (0, W) and {\,} C [c,d] for some c,d €
(o, %), wu € (0,2a). Then the sequence {x,} converges weakly to a point z € I', where z =

lim,,_, o Prx,,.

Proof Since ¢ is convex, we can easily obtain that V¢, is monotone. Putting f = V¢, and
g = V¢, in Theorem 3.3, we obtain the desired result by Lemma 4.6. O

5 Conclusion
It should be pointed out that the variational inequality problem and the split feasibility
problem are important in nonlinear analysis and optimization. Censor et al. have recently
introduced an algorithm which solves the split feasibility problem generated from the vari-
ational inequality problem and the split feasibility problem. The base of this paper is the
work done by Censor et al. combined with Byrne’s CQ algorithm for solving the split fea-
sibility problem and Korpelevich’s extragradient method for solving the variational in-
equality problem with a monotone mapping. The main aim of this paper is to propose an
iterative method to find an element for solving a class of split feasibility problems under
weaker conditions. As applications, we obtain some new weak convergence theorems by
using our weak convergence result to solve the related problems in a Hilbert space.
Theorem 3.3 improves and extends Theorem 1.1 in the following ways:
(i) The inverse strongly monotone mapping f is extended to the case of a monotone
and Lipschitz continuous mapping.
(i) The fixed coefficient y is extended to the case of a sequence {y,}.

(iii) (1.8) is not necessary in Theorem 3.3.
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