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Abstract:The present study investigated the effects of variable viscosity and thermal conductivity on a two-dimensional

steady laminar magnetohydrodynamic (MHD) free convective boundary layer flow of a dusty fluid over a vertical porous

flat plate with viscous dissipation, Joule heating, and heat generation/absorption. Governing partial differential equations

of motion were reduced to a system of ordinary differential equations using similarity transformations. The resulting

boundary value problem was then solved numerically using the shooting technique. Velocity, temperature, and species

concentration profiles of fluid and solid particles were obtained for different flow governing parameters. The results are

presented in graphs. We found that viscosity and species concentration decrease and temperature increases with the

increasing value of the viscosity variation parameter for both the fluid and dust particles. Quite the opposite phenomenon

was seen with the thermal conductivity variation parameter. Finally, the skin friction coefficient, Nusselt number, and

Sherwood number are presented in tables for various flow governing parameters.
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1. Introduction

Dusty fluid flows are concerned with the motion of liquid or gas containing immiscible inert solid particles.

Common examples of dusty fluid systems include blood flow in arteries, flows in rocket tubes, gas cooling

systems to enhance the heat transfer process, movement of inert solid particles in the atmosphere and other

suspended particles in seas and oceans.

Flow of dusty and electrically conducting fluid along a vertical porous plate in the presence of transverse

magnetic field is very important as it has many practical applications in different areas such as applications in

gas cooling systems, centrifugal separation of matter from fluid, several manufacturing processes in industries

like extrusion of plastic sheets, steel manufacturing industry, glass fiber, and paper production. Moreover, it is

used in metal spinning, the cooling of metallic plates in a cooling bath, polymer technology, powder technology,

paint spraying, blood rheology, etc.

Thus, the study of these problems is mathematically interesting and useful for modelling the physical

phenomena to address complex issues related to fluid flow characteristics.

Saffman [1] carried out pioneering work on the stability of laminar flow of a dusty gas, describing the

fluid-particle system and deriving the motion of gas equations carrying the dust particles. Boundary layer flow

of a dusty fluid over a semiinfinite flat plate has been analyzed by Datta and Mishra [2]. The phenomenon
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of the flow of dusty fluid and heat transfer in the boundary layer has been studied by a number of authors

such as Asmolov and Manuilovich [3], Palani and Ganesan [4], Agranat [5], and Vajravelu and Nayfeh [6].

Gireesha et al. [7] analyzed the boundary layer flow and heat transfer of dusty fluid over a stretching sheet

with nonuniform heat source/sink. They reported that temperature-dependent heat sinks are better suited for

cooling purposes. Gireesha et al . [8,9] also discussed the boundary layer flow and heat transfer of a dusty

fluid over a stretching sheet with viscous dissipation for both steady and unsteady flows. Kishan and Deepa

[10] analyzed the effect of viscous dissipation on stagnation point flow and heat transfer of a micropolar fluid

with uniform suction/blowing. The effect of viscous dissipation on laminar mixed convection fluid in a vertical

double passage channel was studied by Gaikwad and Rahuldev [11]. Investigations on the effects of variable

viscosity and thermal conductivity on convective heat transfer in a dusty fluid over a vertical permeable surface

with radiation and viscous dissipation were conducted by Hazarika [12].

In the aforementioned studies, the effects of physical properties were assumed as constant. However, it is

known from the work of Herwig and Wicken [13] that these properties may change with temperature changes.

When the effects of variable viscosity and thermal conductivity are taken into account, flow characteristics are

significantly changed compared with the constant property case. In the present study an attempt was made

to study the combined effects of variable viscosity and variable thermal conductivity on free convection flow of

dusty fluid along a vertical porous plate embedded in a porous medium with magnetic field and heat generation.

Following Lai and Kulacki [14] and Choudhury and Hazarika [15], the fluid viscosity and thermal conductivity

were assumed to vary as inverse linear functions of temperature.

The governing boundary layer equations were transformed into ordinary differential equations using

suitable similarity transformations. Numerical solutions of these ordinary differential equations with the

prescribed boundary conditions were obtained using the fourth order Runge–Kutta shooting technique. The

effects of various parameters on these solutions are discussed and illustrated through a set of figures and tables.

2. Mathematical analysis

Consider a steady two-dimensional laminar boundary layer flow of an incompressible viscous electrically con-

ducting dusty fluid along a vertical stretching permeable sheet in porous medium. The sheet is coinciding with

the plane y =0, with the flow being confined to y > 0. Two equal and opposite forces are applied along the

x-axis, so that the sheet is stretched, keeping the origin fixed. A transverse uniform magnetic field of strength

B0 is applied in the y -direction as shown in Figure 1.
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Figure 1. Schematic diagram of the flow.
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The analysis is based on the following assumptions:

• Viscous dissipation, Joule heating, and heat generation are taken into account.

• Physical properties are assumed as constant except for the fluid viscosity and thermal conductivity.

• The magnetic Reynolds number is assumed to be small so that the induced magnetic field is negligible.

• Dust particles are assumed to be electrically nonconductive, spherical in shape, having the same radius

and mass, and undeformable.

• The number density of dust particles is taken as constant throughout the flow.

Using the above assumptions together with the usual boundary layer approximations and following

Vajravelu and Nayfeh [6], we get the equations of motion as follows:

For the fluid phase:

Equation of continuity:

∂u

∂x
+

∂v

∂y
= 0 (2.1)

Momentum equation: u∂u
∂x + v ∂u

∂y = 1
ρ

∂
∂y

(
µ∂u

∂y

)
+ KN

ρ (up − u) + gβ∗(T − T∞)

−σB2
0

ρ
u− µ

ρk
u− c

k
u2 (2.2)

Energy equation: ρcp

(
u∂T

∂x + v ∂T
∂y

)
= ∂

∂y

(
λ∂T

∂y

)
+

Ncp
τT

(Tp − T ) + N
τv
(up − u)2

+Q0(T − T∞) + µ

(
∂u

∂y

)2

+
J⃗2

σ
(2.3)

Species concentration equation:
u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

(
D1

∂C

∂y

)
(2.4)

For the dust phase:

Equation of continuity: ∂

∂x
(ρpup) +

∂

∂y
(ρpvp) = 0 (2.5)

Momentum equations:
up

∂up

∂x
+ vp

∂up

∂y
=

K

m
(u− up) (2.6)

up
∂vp
∂x

+ vp
∂vp
∂y

=
K

m
(v − vp) (2.7)

Energy equation:

up
∂Tp

∂x
+ vp

∂Tp

∂y
= − cp

cmτT
(Tp − T ) (2.8)

Species concentration equation:

up
∂Cp

∂x
+ vp

∂Cp

∂y
=

∂

∂y

(
D2

∂Cp

∂y

)
(2.9)
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where (u, v) and (up, vp) are the velocity components of fluid and dust particle phases along the x and y

directions, respectively. µ, ρ, ρp and N are the coefficient of viscosity of the fluid, density of the fluid, density of

the particle phase, and the number density of the particle phase, respectively. K is the Stokes’ resistance (drag

coefficient), m is the mass of the dust particle, g is the acceleration due to gravity, and β∗ is the volumetric

coefficient of thermal expansion. T and Tp are the temperatures of the fluid and dust particles inside the

boundary layer, respectively. T∞ and Tp∞ are the temperatures of fluid and dust particles in the free-stream,

respectively. J⃗ is the electric current density, σ is the electrical conductivity, k is the Darcy permeability

constant, c is the stretching rate, cp and cm are the specific heats of fluid and dust particles at constant

pressure, respectively, τT is the thermal equilibrium time (the time required by the dust cloud to adjust its

temperature to the fluid), τv is the relaxation time of the dust particle (time required by a dust particle to

adjust its velocity relative to the fluid), λ is the thermal conductivity of the fluid, Q0 is the volumetric rate

of heat generation, C and Cp are the concentrations of the fluid and dust phase within the boundary layer,

respectively. D1 and D2 are the coefficients of mass diffusivity of the fluid and dust particles, respectively.

The boundary conditions are:

At y = 0 :

u = Uw = cx, v = vw(x), T = Tw = T∞ +A
(
x
l

)2
,

C = Cw = C∞ +B
(
x
l

)2
, Cp = Cpw = Cp∞ + E

(
x
l

)2
As y → ∞ :

u → 0, up → 0, vp → v, ρp → ωρ,

T → T∞, Tp → T∞, C → C∞, Cp → Cp∞



(2.10)

where c > 0 is the stretching rate, vw(x) represents the permeability of the porous surface, and ω is the density

ratio. A, B, and E are positive constants and l =
√

υ∞
c is the characteristic length. Cpw and Cp∞ are the

species concentrations of dust particles at the surface of the plate and sufficiently far away from the flat surface,

respectively.

3. Method of solution

To convert the governing equations into a set of similarity equations, we introduce the following transformations:

u = cxf ′(η), v = −√
υ∞cf(η), η =

√
c

υ∞
y,

up = cxF (η), vp =
√
cυ∞G(η), ρr = H(η),

θ(η) = T−T∞
Tw−T∞

, θp(η) =
Tp−T∞
Tw−T∞

where T − T∞ = A
(
x
l

)2
θ(η),

ϕ(η) = C−C∞
Cw−C∞

where C − C∞ = B
(
x
l

)2
ϕ(η),

ϕp(η) =
Cp−Cp∞
Cpw−Cp∞

where Cp − Cp∞ = E
(
x
l

)2
ϕp(η).


(3.1)

where υ∞ is the kinematic viscosity of the fluid in the free stream, and ρr =
ρp

ρ is the relative density. The

prime ( ′ ) denotes the derivative with respect to η .
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The viscosity of the fluid is assumed to be an inverse linear function of temperature, and it can be

expressed, following Lai and Kulacki [14], in this way:

1

µ
=

1

µ∞
[1 + δ (T − T∞)] (3.2)

or,
1

µ
= α (T − Tr) ,

where α = δ
µ∞

and Tr = T∞ − 1
δ

Moreover, the thermal conductivity of the fluid varies with temperature. Following Choudhury and

Hazarika [15], we assumed the thermal conductivity of the fluid as:

1

λ
=

1

λ∞
[1 + ξ (T − T∞)] (3.3)

or,
1

λ
= ζ (T − Tc) ,

where ζ = ξ
λ∞

and Tc = T∞ − 1
ξ .

Here, α , δ , ξ , ζ , Tr and Tc are constants and their values depend on the reference state and thermal

properties of the fluid, i.e. υ (kinematic viscosity) and λ (thermal conductivity). µ∞ and λ∞ are the viscosity

and thermal conductivity of the ambient fluid.

Let us introduce two dimensionless parameters:

θr = Tr−T∞
Tw−T∞

is the dimensionless reference temperature corresponding to viscosity, called the viscosity

variation parameter, and θc = Tc−T∞
Tw−T∞

is the dimensionless reference temperature corresponding to thermal

conductivity, called the thermal conductivity variation parameter. It is also important to note that θr and θc

are negative for liquids and positive for gases [16].

Using these two parameters in Eqs. (3.2) and (3.3), we can write the coefficient of viscosity and thermal

conductivity as follows:

µ = −µ∞θr
θ−θr

and

λ = − λ∞θc
θ − θc

(3.4)

Substituting Eqs. (3.1)–(3.4) in (2.2)–(2.9), we get:

θr
θ − θr

f ′′′ − θr
(θ − θr)2

θ′f ′′ − ff ′′ + f ′2 +
Fs

Da
f ′2 − l∗βH(F − f ′) +Mf ′

− 1

DaRe

θr
θ − θr

f ′ −Grθ = 0 (3.5)

GF ′ + F 2 + β(F − f ′) = 0 (3.6)

GG′ + β(f +G) = 0 (3.7)
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G2H ′ − βH(f +G) +GFH = 0 (3.8)

θc
θ − θc

θ′′ − θc
(θ − θc)2

θ′2 + Pr(2f ′θ − fθ′)− N

ρcτT
Pr(θp − θ)− N

ρcτv
PrEc(F − f ′)2

−PrQθ − θr
θ − θr

PrEcf ′′2 − PrEcMf ′2 = 0 (3.9)

Gθ′p + 2Fθp +
cp

ccmτT
(θp − θ) = 0 (3.10)

θr
θ − θr

ϕ′′ − θr
(θ − θr)2

θ′ϕ′ + Sc(2f ′ϕ− fϕ′) = 0 (3.11)

θr
θ − θr

ϕ′′
p − θr

(θ − θr)2
θ′ϕ′

p + Scp(2Fϕp +Gϕ′
p) = 0 (3.12)

where the dimensionless parameters are defined as follows:

l* = mN/ ρ is the mass concentration,

τ = m/K is the relaxation time of particle phase,

β = l/cτ is the fluid particle interaction parameter,

ρr = ρp/ρ is the relative density,

Gr = gβ∗(Tw−T∞)
c2x is the Grashof number,

M =
σB2

0

ρc is the magnetic field parameter,

Da = k
x2 is the Darcy number,

Re = uw(x)x
υ∞

is the Reynolds number,

Fs = c
x is the Forchhemier number,

Pr =
µ∞cp
λ∞

is the Prandtl number,

Ec =
u2
0

cp(Tw−T∞) is the Eckert number ,

Q = Q0

cρcp
is the heat generating parameter,

Sc = υ
Dm is the Schmidt number.

The boundary conditions (2.10) are reduced to:

f = fw, f ′ = 1, θ = 1, ϕ = 1, ϕp = 1 at η = 0

f ′ = 0, F = 0, G = −f,H = ω, θ = 0, θp = 0, ϕ = 0, ϕp = 0asη → ∞

 (3.13)

Governing Eqs. (3.5)–(3.13) are solved numerically using the fourth order Runge–Kutta method with the

shooting technique.

The skin friction coefficient (Cf ), Nusselt number (Nu), and Sherwood number (Sh) are the parameters

of physical and engineering interest, defined as follows:
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The skin friction coefficient is defined as:

Cf = 2τw
ρ∞u2

0
, where τw = µ ∂u

∂y

)
y=0

is the shearing stress.

Using the nondimensional variables, we finally get the skin friction coefficient as:

Cf = − 2θr
1− θr

Re−1/2f ′′(0).

The local Nusselt number is defined as:

Nu = −xqw
λ∞(Tw−T∞) , where qw = −λ∂T

∂y

)
y=0

is the heat transfer from the sheet.

Using the nondimensional variables, we get:

Nu =
θc

1− θc
Re1/2θ′(0).

The local Sherwood number is defined as:

Sh = xmw

Dm∞(Cw−C∞) , where mw = −Dm ∂C
∂y

)
y=0

is the mass flux at the surface and Dm∞ is the

diffusion coefficient at free stream.

Using the nondimensional variables we get the following:

Sh = −Re−1/2Sc−1 θr
1− θr

ϕ′(0).

4. Results and discussion

The boundary value problem (3.5–3.13) was solved using the fourth order Runge–Kutta shooting method. Com-

putations were carried out for different values of the viscosity variation parameter (θr), thermal conductivity

variation parameter (θc), magnetic parameter (M), Eckert number (Ec), Prandtl number (Pr), heat generating

parameter (Q), fluid particle interaction parameter (β), and the number density of dust particles (N), i.e. the

number of dust particles per unit volume of the mixture. Results are presented through graphs for velocity

f ′(η) and F (η), temperature θ(η) and Θp(η), and species concentration ϕ(η) and Φp(η) in Figures 2–22. The

values of the parameters are taken as: fw=1, λ=0.5, Q=0.75, Re=10, Fs=0.1, Da=1.5, Gm = Gr = 0.5, M

= 1, Pr = 0.71, Sc = Sc p= 0.22, l ∗= 0.2, β = 0.5, N = 0.5, ρ = 1, c = 0.6, τT = 0.5, τv = 1, ω = 0.1,

Ec = 0.05, c p = cm = 0.2, θr = 5, and θc =3, unless stated otherwise.

Figures 2–4 show the effect of θr and Figures 5–7 present the effect of θc on velocities f ′ and F ,

temperatures Θ and Θp , and species concentrations ϕ and ϕp , respectively. From Figures 2–4 it is seen that

for increasing values of the viscosity variation parameter θr , velocity, and species concentration decrease for

both the fluid and dust phases, whereas temperature increases. This is expected because in a gas, viscosity

increases with increasing temperature. Figures 5–7 show that an increase in the thermal conductivity variation

parameter θc leads to increases in the velocity and species concentration profiles for both the fluid and dust

phases, while the opposite happens with the temperature profiles for both phases. This is expected because

thermal conductivity is an inverse linear function of temperature.
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Figure 2. Velocity profile for different Θr . Figure 3. Temperature profile for different Θr .
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Figure 4. Concentration profile for different Θr . Figure 5. Velocity profile for different Θc .

Velocity profiles, temperature profiles, and concentration profiles for different values of the magnetic

parameter M are presented in Figures 8–10. Figure 8 shows that fluid velocity considerably decreased with the

increasing values of M due to the effect of Lorentz force, for which one resistive term appears in the momentum

equations and a Joule dissipation term appears in the energy equation. Clearly the transverse magnetic field

opposes fluid velocity. Notice that the velocity of the dust particle phase also decreases with increasing values of

M , although solid particles are electrically nonconductive. This is expected because fluid velocity is the source

of dust particle velocity. Figure 9 depicts the temperature profiles for different values of the magnetic parameter

M . Analysis of the graph shows that the effect of increasing values of M is to enhance the temperature, tending

asymptotically to zero as the distance increases from the boundary for both the fluid and dust phases. This is

due to the fact that Joule dissipation increases as magnetic parameter M increases. We infer from Figure 10

that species concentration increases with increasing values of M .
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Figure 6. Temperature profile for different Θc . Figure 7. Concentration profile for different Θc .
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Figure 8. Velocity profile for different M . Figure 9. Temperature profile for different M .

Figures 11–13 indicate the effect of the Prandtl number Pr on velocities f ′ and F , temperatures Θ and

Θp , and species concentrations ϕ and ϕp , respectively. Since Pr is the ratio of boundary layer velocity to

thermal boundary layer velocity, boundary layer velocity and thermal boundary layer velocity coincide when

Pr = 1. When Pr < 1, it means that heat diffuses very quickly compared with velocity, hence velocity and

temperature decrease with the increase of Pr, but species concentration increases under the same condition.

Velocity, temperature, and species concentration profiles for different values of heat generating parameter

Q are plotted for both the fluid and dust phase in Figures 14–16. It is observed from Figure 14 that velocity

profiles increase with the increase of the heat generating parameter Q . It is due to the fact that when heat

is generated, the buoyancy force increases, which induces the flow rate to increase, giving rise to an increase

in the velocity profiles for both fluid and dust phases. From Figure 15 it is seen that when the value of the

heat generation parameter Q increases, the temperature distribution also increases significantly, while species

concentration decreases.
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Figure 10. Concentration profile for different M . Figure 11. Velocity profile for different Pr.
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Figure 12. Temperature profile for different Pr. Figure 13. Concentration profile for different Pr.

Figures 17–19 illustrate the variations of velocity, temperature, and species concentration profiles for

various values of the fluid particle interaction parameter β . It is clearly observed from these figures that

velocity increases with the increase of β , but temperature and species concentration profiles decrease for both

the fluid and dust phases.

Figures 20–22 depict the velocity, temperature, and species concentration profiles for different values of

the number density parameter N . As N increases, velocity and temperature profiles for both the fluid and

dust phases decrease, while species concentration increases.

Tables 1–10 demonstrate the effects of various parameters on the skin friction coefficient Cf , representing

plate shearing stress, the rate of heat transfer from the plate to the fluid in terms of the Nusselt number Nu ,

and the rate of mass transfer in terms of the Sherwood number Sh .
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Figure 14. Velocity profile for different Q . Figure 15. Temperature profile for different Q .
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Figure 16. Concentration profile for different Q . Figure 17. Velocity profile for different β .

Table 1. Effects of Θr and M on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local

Sherwood number (Sh) .

M→ 0.5 1 1.5
Θr ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.34795 19.24611 –0.33524 –0.39123 18.84529 –0.32963 –0.43035 18.49486 –0.32493
5 –0.33546 18.98571 –0.32436 –0.37622 18.56517 –0.31871 –0.41291 18.19926 –0.31399
7 –0.33053 18.87846 –0.31996 –0.37032 18.45021 –0.3143 –0.40607 18.07834 –0.30958
9 –0.32789 18.81997 –0.31757 –0.36716 18.38761 –0.31191 –0.40242 18.01259 –0.3072

From these tables it is observed that the skin friction coefficient Cf decreases with increasing values of

the thermal conductivity parameter θc , the magnetic parameter M , Prandtl number Pr, Eckert number Ec,

and the number density parameter N . However, it increases with the increase of the viscosity parameter θr and

the fluid particle interaction parameter β . Physically negative values of Cf mean that the surface exerts a drag

force on the fluid so that stretching the surface will induce the flow.
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Figure 18. Temperature profile for different β . Figure 19. Concentration profile for different β .
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Figure 20. Velocity profile for different N . Figure 21. Temperature profile for different N .
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Figure 22. Concentration profile for different N .
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Table 2. Effects of Θc and M on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local

Sherwood number (Sh) .

M→ 0.5 1 1.5
Θc ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.29267 9.960165 –0.29685 –0.32835 9.626789 –0.29103 –0.36016 9.341308 –0.2862
5 –0.29599 11.69225 –0.29667 –0.33144 11.32562 –0.29091 –0.36306 11.01147 –0.28613
7 –0.29725 12.42242 –0.29661 –0.33262 12.04286 –0.29087 –0.36417 11.71753 –0.28611
9 –0.29791 12.82519 –0.29658 –0.33325 12.43874 –0.29085 –0.36476 12.10746 –0.2861

Table 3. Effects of Θr and Pr on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local Sherwood

number (Sh) .

Pr→ 0.5 0.75 1.5
Θr ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.38752 14.35384 –0.33577 –0.3918 19.69002 –0.32866 –0.39462 24.86341 –0.32371
5 –0.371 14.10388 –0.32299 –0.37706 19.40703 –0.31803 –0.38131 24.57536 –0.31454
7 –0.36457 14.00264 –0.31789 –0.37124 19.29067 –0.31373 –0.37602 24.45582 –0.31081
9 –0.36116 13.94785 –0.31514 –0.36813 19.22723 –0.3114 –0.37317 24.39038 –0.30879

Table 4. Effects of Θc and Pr on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local Sherwood

number (Sh) .

Pr→ 0.5 0.75 1.5
Θc ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.32088 7.376718 –0.29174 –0.32967 10.06401 –0.29092 –0.33715 12.8127 –0.29039
5 –0.32384 8.639446 –0.29154 –0.33277 11.84469 –0.29081 –0.34016 15.09175 –0.29039
7 –0.32498 9.172213 –0.29147 –0.33395 12.59642 –0.29078 –0.34129 16.05322 –0.29039
9 –0.32559 9.46623 –0.29143 –0.33458 13.01133 –0.29077 –0.34189 16.58377 –0.2904

Table 5. Effects of Θr and Ec on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local Sherwood

number (Sh) .

Ec→ 0.1 0.03 0.5
Θr ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.39117 18.7102 –0.32974 –0.3912 18.77769 –0.32969 –0.39123 18.84528 –0.32963
5 –0.37614 18.42556 –0.31878 –0.37618 18.49531 –0.31874 –0.37622 18.56517 –0.31871
7 –0.37022 18.30914 –0.31436 –0.37027 18.37964 –0.31433 –0.37032 18.45022 –0.3143
9 –0.36706 18.24584 –0.31196 –0.36711 18.31667 –0.31194 –0.36716 18.38761 –0.31191

Table 6. Effects of Θc and Ec on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local Sherwood

number (Sh) .

Ec→ 0.1 0.03 0.5
Θc ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.32826 9.563625 –0.29103 –0.32831 9.595186 –0.29103 –0.32835 9.626787 –0.29103
5 –0.33135 11.24658 –0.29091 –0.33139 11.28608 –0.29091 –0.33144 11.32563 –0.29091
7 –0.33253 11.95688 –0.29087 –0.33258 11.99984 –0.29087 –0.33262 12.04285 –0.29087
9 –0.33315 12.3489 –0.29085 –0.3332 12.39379 –0.29085 –0.33325 12.43874 –0.29085
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Table 7. Effects of Θr and N on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local Sherwood

number (Sh) .

N→ 1 2 3
Θr ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.39123 18.84528 –0.32963 –0.39344 21.98691 –0.32596 –0.39493 24.78926 –0.32336
5 –0.37622 18.56517 –0.31871 –0.37947 21.74391 –0.31607 –0.38175 24.57331 –0.31422
7 –0.37032 18.45022 –0.3143 –0.37395 21.64374 –0.31207 –0.37652 24.48393 –0.31051
9 –0.36716 18.38761 –0.31191 –0.37099 21.58905 –0.3099 –0.37372 24.4351 –0.3085

Table 8. Effects of Θc and N on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local Sherwood

number (Sh) .

N→ 1 2 3
Θc ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.32835 9.626787 –0.29103 –0.33447 11.60301 –0.29054 –0.3391 13.38001 –0.29026
5 –0.33144 11.32563 –0.29091 –0.33739 13.59309 –0.2905 –0.34184 15.6223 –0.29028
7 –0.33262 12.04285 –0.29087 –0.3385 14.42914 –0.29049 –0.34288 16.56118 –0.2903
9 –0.33325 12.43874 –0.29085 –0.33908 14.88963 –0.29049 –0.34342 17.07757 –0.29031

Table 9. Effects of Θr and β on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local Sherwood

number (Sh) .

β → 0.5 1 1.5
Θr ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.39123 18.84528 –0.32963 –0.38491 18.95267 –0.33043 –0.38034 19.03179 –0.33105
5 –0.37622 18.56517 –0.31871 –0.37037 18.67429 –0.31951 –0.36612 18.75484 –0.32012
7 –0.37032 18.45022 –0.3143 –0.36464 18.55994 –0.3151 –0.36051 18.641 –0.31571
9 –0.36716 18.38761 –0.31191 –0.36158 18.49763 –0.31271 –0.35751 18.57896 –0.31332

Table 10. Effects of Θc and β on the local skin friction coefficient (Cf ) , local Nusselt number (Nu) , and local

Sherwood number (Sh) .

β → 0.5 1 1.5
Θc ↓ Cf Nu Sh Cf Nu Sh Cf Nu Sh
3 –0.32835 9.626787 –0.29103 –0.32345 9.710939 –0.29183 –0.3199 9.773203 –0.29243
5 –0.33144 11.32563 –0.29091 –0.32657 11.4169 –0.2917 –0.32301 11.48452 –0.2923
7 –0.33262 12.04285 –0.29087 –0.32775 12.13687 –0.29166 –0.3242 12.20654 –0.29225
9 –0.33325 12.43874 –0.29085 –0.32838 12.53421 –0.29164 –0.32482 12.60497 –0.29223

Furthermore, it is seen that the values of the Nusselt number (Nu) increase with increasing values of

the thermal conductivity parameter θc , Prandtl number Pr, Eckert number Ec, the number density parameter

N , and the fluid particle interaction parameter β , while it decreases with increases in the viscosity parameter

θr and magnetic parameter M .

From these tables we observed that the Sherwood number (Sh) increases with the increasing values of

the viscosity variation parameter θr , thermal conductivity variation parameter θc , magnetic parameter M ,

Prandtl number Pr, Eckert number Ec, and the number density parameter N . However, it decreases with

increasing values of the fluid particle interaction parameter β .
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Conclusion

Based on the results of the present study, the following observations were made:

(1) The motion of both the fluid and dust phase is retarded under the application of a transverse magnetic

field due to Lorentz force.

(2) The velocity of the fluid and dust phase decreases with increases in the viscosity variation parameter

(θr), Prandtl number (Pr), and the number density of the fluid particle (N). However, it increases with

increases in the thermal conductivity variation parameter (θc), fluid particle interaction parameter (β),

and heat generating parameter (Q).

(3) The temperature increases with increasing viscosity variation parameter (θr), heat generating parameter

(Q), and magnetic field, while it decreases as thermal conductivity , Pr, β , and N increase.

(4) Species concentration decreases with increasing values of the viscosity variation parameter (θc) and the

heat generating parameter for both the fluid and dust phases.

(5) The effect of increasing the thermal conductivity variation parameter (θc), the magnetic field, Pr and N

is to increase the species concentration.

(6) The velocity and temperature of the fluid phase are higher than those of the dust phase.

(7) The wall shear stress of fluid decreases with increases in the thermal conductivity, viscosity, magnetic

field, viscous dissipation, and the number density of dust particle.

(8) The rate of heat transfer increases with increasing viscous dissipation, thermal conductivity, and Pr.

However, it decreases with increasing values of viscosity and magnetic field.

(9) The rate of mass transfer at the plate is considerably increased due to increasing viscosity, thermal con-

ductivity, and magnetic field, while it decreases with increases in the fluid particle interaction parameter.

5. Nomenclature
(u, v) are the velocity components of the fluid,
(up, vp) are the velocity components of dust phase,
ρ is the density of the fluid,
µ is the coefficient of dynamic viscosity,
µ∞ is the coefficient of dynamic viscosity of the ambient fluid,
υ∞ is the kinematic viscosity of the fluid in the free stream,
ρp is the density of the particle phase,
N is the number density of the particle phase,
K is the Stokes’ resistance (drag coefficient),
m is the mass of the dust particle,
g is the acceleration due to gravity,
β∗ is the volumetric coefficient of thermal expansion,
β ∗ ∗ is the volumetric coefficient of concentration expansion,
T is the temperature of the fluid inside the boundary layer,
T∞ is the temperature of the fluid at free stream,
Tp is the temperature of the dust particles inside the boundary layer,
Tp∞ is the temperature of the dust particles in the free-stream,
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Cpw and Cp∞ are the species concentration of dust particles at the surface of the plate and sufficiently far
away from the flat surface respectively,

ω is the density ratio,
σ is the electrical conductivity,
c is the stretching rate,
l is the characteristic length,
cp is the specific heat of fluid at constant pressure,
cm is the specific heat of dust particles at constant pressure,
τT is the thermal equilibrium time and is the time required by the dust cloud to adjust its

temperature to the fluid,
τv is the relaxation time of the dust particle, i.e. the time required by a dust particle to adjust its

velocity relative to the fluid,
λ is the thermal conductivity of the fluid,
λ∞ is the thermal conductivity of the ambient fluid,
C is the species concentration of the fluid,
Cp is the concentration of the dust phase within the boundary layer,
D1 is the coefficient of mass diffusivity of the fluid,
D2 is the coefficient of mass diffusivity of dust phase,
θr is the viscosity variation parameter,
θc is the thermal conductivity variation parameter,
l∗ is the mass concentration,
τ is the relaxation time of particle phase,
β is the fluid particle interaction parameter,
Gr is the Grashof number,
M is the magnetic field parameter,
Da is the Darcy number,
Re is the Reynolds number,
Fs is the Forchhemier number,
Pr is the Prandtl number,
Ec is the Eckert number ,
Q is the heat generating parameter,
Q0 is the volumetric rate of heat generation,
Sc is the Schmidt number,
Cf is the skin friction coefficient,
Nu is the Nusselt number,
Sh is the Sherwood number.
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