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The surface quality of the machined parts is one of the most important product quality characteristics 
and one of the most frequent customer requirements. In this study the Taguchi robust parameter 
design for modeling and optimization of surface roughness in dry single-point turning of cold rolled 
alloy steel 42CrMo4/AISI 4140 using TiN-coated tungsten carbide inserts was presented. Three cutting 
parameters, the cutting speed (80, 110, 140 m/min), the feed rate (0.071, 0.196, 0.321 mm/rev), and the 
depth of cut (0.5, 1.25, 2 mm), were used in the experiment. Each of the other parameters was taken as 

constant. The average surface roughness ( aR ) was chosen as a measure of surface quality. The 

experiment was designed and carried out on the basis of standard L27 Taguchi orthogonal array. The 
data set from the experiment was employed for conducting the optimization procedures, according to 
the principles of the Taguchi method. The results of calculations were in good agreement with the 
experimental data. A certain discrepancy between the experimental results and calculations could be 
interpreted as the presence of measurement errors, many irregularities and deficiencies in the turning 
process, as well as environmental effects. The results presented in this work confirm the effectiveness 
of Taguchi’s technique in optimization of cutting processes. 
 
Key words: turning process, surface roughness, Taguchi method, ANOVA, regression analysis. 

 
 
INTRODUCTION 
 
The key change drivers in the case of cutting technology 
include: diminishing component size, enhanced surface 
quality, tighter tolerances and manufacturing accuracies, 
reduced costs, diminished component weight and 
reduced batch sizes (Byrne et al., 2003). 

Among various cutting processes, turning process is 
one of the most fundamental and most applied metal 
removal operations in a real manufacturing environment. 

The surface roughness of the machined parts is one of 
the most significant product quality characteristics. This 
characteristic refers to the deviation from the nominal 
surface of the third up to sixth order. The actual surface 
profile is the superposition of error of the form, waviness 
and roughness. The order of deviation is defined in 
international standards. 

The  surface  roughness  greatly  affects  the  functional  
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performance of mechanical parts such as wear 
resistance, fatigue strength, ability of distributing and 
holding a lubricant, heat generation and transmission, 
corrosion resistance, etc. 

The perfect surface quality in turning would not be 
achieved even in the absence of irregularities and 
deficiencies of the cutting process, as well as 
environmental effects. 

There are various parameters used to evaluate the 
surface roughness. In the present research, the average 
surface roughness ( aR ) was selected as a characteristic 
of surface finish in turning operations. It is the most used 
standard parameter of surface roughness. 

In a machining process, there are two sharp and often 
conflicting requirements. The first is high-quality surfaces 
and the second is high production rate. An extremely high 
quality surface can produce higher production costs and 
time consumption. 

Therefore, the machine tool operators would not push 
the machine tool and/or cutting tool to its limit, rather 
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Table 1. Cutting factors and their levels. 
 

Cutting factor 
 Factor levels 

Level 1
 

Level 2
 

Level 3
 

Cutting speed,  V (m/min) 80 110 140 
Feed rate,        f (mm/rev)  0.071 0.196 0.321 
Depth of cut,     a (mm) 0.5 1.25 2.0 

  
 
 
using less risky process factors for that reason, which 
neither guarantees the achievement of the desired 
surface quality nor attains maximum production rate or 
minimum production cost. 

Hence, it is of great importance to exactly quantify the 
relationship between surface roughness and cutting 
conditions. 

Different methodologies are employed for predicting the 
surface roughness in turning, such as machining theory, 
classical experimental design and response surface 
methodology (Choudhury and El-Baradie,1997; Davim, 
2001; Arbizu and Pérez, 2003; Thangavel and Selladurai, 
2008), artificial neural networks (Özel and Karpat, 2005; 
Lu, 2008; Karayel, 2009; Marinković and Tanikić, 2011), 
neuro-fuzzy systems (Jiao et al., 2004; Kirby and Chen, 
2007; Tanikić et al., 2010), genetic algorithm (Chen and 
Chen, 2003; Čuš and Balič, 2003), and soft computing 
techniques (Samanta et al., 2008). The Taguchi method 
is widely used for various product and process analysis 
and optimization because of its relative simplicity (Kopač 
et al., 2002; Hasçalik and Çaydaş, 2008; Tsao and 
Hocheng, 2008; Yusuf et al., 2010; Mustafa and Tanju, 
2011). A comprehensive review of optimization 
techniques in metal cutting processes is available 
(Mukherjee and Ray, 2006). 

Mathematical modeling of cutting processes is based 
on well-known scientific principles. However, many 
theoretical models involve simplifications and 
approximations in relation to the real cutting process and 
do not take into account any imperfections in the 
formation of chip and surface roughness. Therefore, 
analytical solutions are generally not accurate enough for 
practical usage (Davim, 2001).  

The above mentioned methods are powerful tools for 
systematic modeling, analysis and optimization of cutting 
processes. These approaches integrate experimental and 
mathematical (statistical) methods, thus providing 
sufficient accuracy of calculations for the real conditions 
in which the cutting process takes place. 

This paper demonstrates the application of the Taguchi 
method for identifying the optimal cutting parameters for 
surface roughness in dry turning of an alloy steel. 
 
 
MATERIALS AND METHODS 
 
Experimental procedure 
  
The cutting parameters (design factors) considered in the present  

paper were cutting speed ( V ), feed rate ( f ), and depth of cut 

( a ). Other parameters were kept constant for the scope of this 

research. The average surface roughness ( aR ) was chosen as the 

target function (response, output). 
Since it was obvious that the effects of factors on the selected 

function were nonlinear, the experiment was set up with factors at 
three levels (Table 1). 

The factor ranges were chosen with different criteria for each 
factor, in order to use the widest possible ranges of values. Also, 
the possibility of mechanical system and manufacturer's 
recommendation were taken into account. 

Based on the selected factors and factor levels, a design matrix 
was constructed (Table 2) in accordance with the standard L27(3

13) 
Taguchi orthogonal array (OA). The selected design matrix was a 
full factorial design consisting of 27 rows of coded factors, 
corresponding to the number of trials, and 13 columns at three 
levels. The three levels of each factor were denoted by 1, 2 and 3. 

This design provided uniform distribution of experimental points 
within the selected experimental hyper-space and the experiment 
with high resolution. Likewise, this OA was chosen due to its 
capability to check the interactions among factors. 

The cutting parameters in experiment were changed according to 
different cutting conditions for each trial. All of the trials were 
conducted on the same machine tool, with the same tool type and 
the same other cutting conditions. 

Longitudinal dry turning of steel bars was performed on a 
production type PA-C-30 (Potisje Ada) lathe. The cylindrical bars, 
with a diameter of 45 mm and length of 250 mm, were fixed in the 
lathe with a three-jaw chuck. 

The workpiece material used in the experiment was cold rolled 
alloy steel 42CrMo4 / AISI 4140 (1.40% C, 1,00% Cr, 0.20% Mo, 
0.90% Mn, 0.25% Si, 0.03% P, 0.10% S; ultimate tensile strength 
1050 N/mm2, hardness  205 BHN). TiN-coated tungsten carbide 
inserts, type CNMG 120408 (Sandvik Coromant) of 235 grade, 
were used for turning. The tool holder used for experimentation was 
PCLNR 32 25 P12 (Sandvik Coromant). 

The average surface roughness ( aR ) of machined workpieces 

was measured using Surfrest SJ-301 (Mitutoyo) profilometer 
(Figure 1). The average surface roughness values shown in Table 2 
are the arithmetical mean of three measurements. 

The experiment was described in more detail in the referential 
literature (Tanikić, 2010; Marinković and Tanikić, 2011). 

It should be noted that, throughout the entire text, the terms 
factors, variables, and parameters are synonymously used to refer 
to factors which influence the outcome of the process under 
research. 
 
 
Taguchi method (TM) - An overview 
 
The Taguchi experimental design method is a well-known, unique 
and powerful technique for product/process quality improvement. It 
is widely used for analysis of experiment and product or process 
optimization. The application of the TM is not limited to any specific 
problem. 
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Table 2. Experimental design and results. 
 

Trial 
Natural factor  Coded factor  

Response, Ra (µm) V f a  A B C 

1 80 0.071 0.50  1 1 1 3.60 
2 80 0.071 1.25  1 1 2 3.61 
3 80 0.071 2.0  1 1 3 3.96 
4 80 0.196 0.50  1 2 1 4.30 
5 80 0.196 1.25  1 2 2 4.955 
6 80 0.196 2.0  1 2 3 5.92 
7 80 0.321 0.50  1 3 1 5.13 
8 80 0.321 1.25  1 3 2 5.28 
9 80 0.321 2.0  1 3 3 5.98 
10 110 0.071 0.50  2 1 1 2.32 
11 110 0.071 1.25  2 1 2 2.745 
12 110 0.071 2.0  2 1 3 3.44 
13 110 0.196 0.50  2 2 1 2.55 
14 110 0.196 1.25  2 2 2 3.405 
15 110 0.196 2.0  2 2 3 3.33 
16 110 0.321 0.50  2 3 1 3.73 
17 110 0.321 1.25  2 3 2 4.005 
18 110 0.321 2.0  2 3 3 4.23 
19 140 0.071 0.50  3 1 1 1.13 
20 140 0.071 1.25  3 1 2 2.79 
21 140 0.071 2.0  3 1 3 3.08 
22 140 0.196 0.50  3 2 1 1.85 
23 140 0.196 1.25  3 2 2 2.835 
24 140 0.196 2.0  3 2 3 3.27 
25 140 0.321 0.50  3 3 1 3.52 
26 140 0.321 1.25  3 3 2 3.605 
27 140 0.321 2.0  3 3 3 3.66 

 
 
 

The TM is a more structured and efficient technique that differs 
from classical design of experiment (DoE), and in that sense, it is a 
relatively simple method. 

In engineering applications, among the various DoE (factorial, 
fractional factorial, central composite design, Placket-Burmann etc.) 
the TM is the most used one (Ilzarbe et al., 2008). 

Taguchi’s experimental procedure and analysis consist of several 
steps (Phadke et al., 1989; Taguchi et al., 2005; Zhang et al., 
2007). The order of these steps may be as given in Figure 2. 

The DoE is sometimes too complex, time consuming and not 
easy to use (Montgomery, 2001; Antony, 2003; Marinković, 1994). 
More trials have to be carried out when the number of process 
factors increases. The TM uses special, highly fractionated factorial 
designs and other types of fractional designs obtained from 
orthogonal (balanced) arrays to study the entire experimental 
region of interest for the experimenter, with the minimum number of 
trials as compared with the classical DoE, especially with a full 
factorial design. Fewer trials imply that time and cost are reduced. 
For example, for experiment with 4 factors at 3 levels, a full factorial 
design would require 34=81 trials. Using Taguchi’s experimental 
design, the standard OA denoted by the symbol L9 (34) requires 
only 9 trials. 

Taguchi in his off-line quality control strategy proposed that 
optimization of a process or product should be carried out in a 
three-step approach: system design, parameter (factors) design, 
and tolerance design. 

The parameter (factors) design is the key step in the TM for 
achieving high quality characteristics, without increasing cost. The 
objective of this step is to optimize the settings of the process factor 
values as close as possible to the target factor values, with 
minimum variation. Hence, the TM belongs to the so called robust 
design. 

The overall aim of high quality engineering is to make products 
and/or processes that are robust (insensitive) with respect to all 
various causes of variation (noise factors). Noise factors (external 
conditions, manufacturing imperfections, etc.) are unwanted 
sources of variation and can be uncontrollable or too expensive to 
control. These factors are usually ignored in the classical DoE 
approach. 

The key principle of Taguchi technique lies in the fact that the 
reduction in variation is obtained without removing its causes. 

In general, the experimental plan (matrix) in Taguchi’s design 
consists of the inner array (control factors) and the outer array 
(noise factors). This type of design is also called the crossed array 
design. The outer array is, as a rule, much smaller than the inner 
array. 

Although the noise factors are not controllable in the real 
environment, they have to be controlled during the experiment. The 
noise factors that cannot be controlled at all should have equal 
effect throughout the experiment. This is to avoid biasing the results 
that could lead to their misinterpretation. 

The robust design containing both control and noise factors in the  
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Figure 1. Equipment for surface roughness measurement. 

  
 
 
same experimental matrix is called the combined array design 
(Montgomery, 2001). 

There are three types of the OAs, those that deal with two-level 
factors, those that deal with three-level factors, and those that deal 
with mixed-level factors. The TM is usable when the control and 
noise factors are all quantitative (continuous), all qualitative 
(discrete), or mixed. Moreover, this method may include qualitative 
(discrete) quality characteristics. 

For the selection of an appropriate OA (matrix), the number of 
factors and levels, and their possible interactions must be taken into 
consideration. It should be noted that the same OA may be 
selected for different number of factors. 

The orthogonality of a design matrix is not lost by keeping one or 
more columns of an OA empty. Thus, the design matrix formed by 
remaining columns is also an OA. There are different techniques for 
modifying OAs such as dummy-level technique, compound factor 
method, column merging method, branching design, etc (Phadke, 
1989; Roy, 1990). 

Each row of an OA represents one trial with the levels of different 
factors in that trial. The number of rows must be at least equal to 
the total degrees of freedom required for the experiment. Each 
column of an OA represents one factor and its setting levels in each 
trial. Some of the columns represent the interactions among the 
control factors. Columns for all of the OAs interactions are 

designated in the original design matrix, triangular interaction 
tables, and linear graphs. Each linear graph must be consistent with 
the triangular interaction table of an OA. The different linear graphs 
are useful for design of experiments having various requirements 
(Phadke, 1989; Taguchi et al., 2005; Roy, 1990). 

Taguchi suggested a summary statistic that combines 
information about the mean and variance into a single performance 
measure, known as the signal-to-noise (S/N) ratio. Taguchi found 
out empirically that S/N ratios give the (near) optimal combination of 
the factor levels, where the variance is minimum, while keeping the 
mean close to the target value, without using any kind of model. 

For that purpose, the experimental results should be transformed 
into the S/N ratios. There are three categories of the S/N ratio 
(Phadke, 1989; Taguchi et al., 2005): 
 
(a) Smaller-the-better, 
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(b)  Larger-the-better,  
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Figure 2. Steps in the Taguchi method. 
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(c) Nominal-the-best, 
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Where iy  is the i-th observed value of the response (quality 

characteristic), n  is the number of observations in a trial, y  is the 

average of observed values (response) and s  is the variance. 
The appropriate categories of the S/N ratio are chosen 

depending on the nature of the quality characteristic. For example, 
the S/N ratio for smaller-the-better criterion is employed when the 
aim is to make the response as small as possible. Ideally, the 
response would be equal to zero. 

Regardless of the category of the quality characteristics, a 
greater S/N ratio corresponds to better quality characteristics, that 
is, to the smaller variance of the output characteristic around the 
desired (target) value. 

The analysis of variance (ANOVA) may be used to investigate 
which design factors and their interactions affect the response 
significantly. Taguchi recommends analyzing the mean and S/N 
ratio using two-dimensional response graphs, instead of ANOVA. 

The analysis of means (ANOM) is a statistical approach that is 
based on determining the mean S/N ratios for each design factor 
and each of its levels. For example, the mean S/N ratio of factor 
Q at level k can be calculated as: 
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Where  Qkn  is the number of appearances of factor Q at level k  

in Taguchi’s matrix, and QkNS )/(  is the S/N ratio related to 

factor Q at level k . 

Response graphs provide a simple visual identification of the 
quantitative and qualitative influence of main factors, within their 
given range. The analysis of interactions among two or more factors 
with two or more levels is more complicated. For example, 
interactions among two 2-level factors may be presented by two 
lines. If these lines are non-parallel, it is considered that the 
interaction among the two factors exists. 

As it is well-known, the TM limits the optimization to the specific 
levels of factor values. However, some intermediate combination of 
factor values may exist, which would yield better results. In most 
cases, the optimal factor settings obtained by the TM is not the 
exact optimal solution, but the near optimal solution (Milani et al., 
2004). 

The final step in analyzing the experimental results is the 
verification of the improvement of the quality characteristic. For that 
purpose, a confirmation experiment should be carried out implying 
the (near) optimal levels of the design factors. 

The predicted S/N ratio using the optimal levels of the design 

factors ( optη̂ ) can be calculated as (Phadke, 1989; Taguchi et al., 

2005; Roy, 1990): 
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Table 3. Experimental design, response and S/N ratio. 
 

 

Trial 

Coded factor Response 
ηηηη=S/N ratio        (dB) 

A B C Ra (µm) 

1 1 1 1 3.60 -11.126 
2 1 1 2 3.61 -11.150 
3 1 1 3 3.96 -11.954 
4 1 2 1 4.30 -12.669 
5 1 2 2 4.955 -13.901 
6 1 2 3 5.92 -15.446 
7 1 3 1 5.13 -14.202 
8 1 3 2 5.28 -14.453 
9 1 3 3 5.98 -15.534 

10 2 1 1 2.32 -7.310 
11 2 1 2 2.745 -8.771 
12 2 1 3 3.44 -10.731 
13 2 2 1 2.55 -8.131 
14 2 2 2 3.405 -10.642 
15 2 2 3 3.33 -10.449 
16 2 3 1 3.73 -11.434 
17 2 3 2 4.005 -12.052 
18 2 3 3 4.23 -12.527 
19 3 1 1 1.13 -1.062 
20 3 1 2 2.79 -8.912 
21 3 1 3 3.08 -9.771 
22 3 2 1 1.85 -5.343 
23 3 2 2 2.835 -9.051 
24 3 2 3 3.27 -10.291 
25 3 3 1 3.52 -10.931 
26 3 3 2 3.605 -11.138 
27 3 3 3 3.66 -11.270 
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Where η is the total mean S/N ratio, opti,η  is the mean S/N ratio 

for i-th design factor at the optimal level, and p  is the number of 

design factors that significantly affect the quality characteristic. 
The total mean S/N ratio for an experiment is calculated by 

equation: 
 

∑
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η
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Where tn  is the total number of trials, and iη is the S/N ratio in i-th 

trial in the OA. 
The insignificant design factors can be set to any level without 

affecting the product/process, i.e. they can be eliminated from 
consideration in any future studies. 

It should be noted that TM belongs to the technique of single-
criterion optimization. There are different approaches in multiple-
criteria optimization using TM (Milani et al., 2004; Nian et al., 1999; 
Tong et al., 1997). 

RESULTS AND DISCUSSION 
 
The design matrix in Table 3 is equivalent to a segment 
of the standard OA denoted by the symbol L27 (3

3). Each 
row of the matrix represents one trial. 

In the original design matrix, the first column was 
assigned to the cutting speed (Factor A), the second to 
the feed rate (Factor B), and the fifth to the depth of cut 
(Factor C). The empty Columns 3, 6, and 8 were 
assigned to the factor interactions (Taguchi et al., 2005). 
The S/N ratio given in Table 3 was calculated using 
Equation 1a. 

Since the design matrix is orthogonal, it is possible to 
analyze the influence of each cutting factors at different 
levels. 

On the basis of data given in Table 4, the effects of 
main cutting factors on mean S/N ratio are presented in 
graphical form (Figure 3). 

The response graphs show the change in the response 
when a given factor goes from lower level to higher level. 
The slope of the line determines the power of the control 
factors influence on surface roughness. Graphs from 
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Table 4. Response table for mean S/N ratios. 
 

Cutting parameter 
Mean S/N ratio (dB)   

Level 1 Level 2 Level 3 ∆∆∆∆max-min Rank 

Cutting speed: A -13.382 -10.227 -8.641 4.741 1 
Feed rate: B -8.976 -10.658 -12.616 3.640 2 
Depth of cut: C -9.134 -11.119 -11.997 2.863 3 
Interaction: A×B  -10.548 -11.352 -10.351 1.001 6 
Interaction: B×C -10.370 -10.479 -11.402 1.032 4 
Interaction: A×C -11.201 -10.857 -10.193 1.008 5 
 

The total mean S/N ratio= -10.75  
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Figure 3. Main effects plot for S/N ratios. 

 
 
 
Figure 3 clearly suggest a dominant influence, in a 
quantitative sense, of cutting speed on surface 
roughness. 

Since the category smaller-the-better is adopted, it is 
evident from Figure 3 that the optimal combination of 
factor levels, which gives the lowest value of the average 
surface roughness, is A3B1C1. 

The interpretation of effects of factor interactions may 
be much more complex. In this case, certain influence of 

factor interactions on surface roughness exists, but in a 
much smaller amount. 

The results from Table 4 suggest that the best 
combination of factor interactions, in terms of minimizing 
surface roughness, is (A×B)3 (A×C)3 (B×C)1. 

Since Factor A is the dominant factor in relation to 
Factors B and C, it can be concluded, on the basis of the 
above mentioned interactions, that the optimal level for 
this  factor  is  A3. The  interaction  of  Factors  B  and  C  
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Table 5. Analysis of variance for S/N ratio. 
 

Source DF Seq sum of square Adj sum of square Adj mean square F p ρρρρ (%) 

Cutting speed: A 2 104.820 104.820 52.410 28.81 0.000 42.79 
Feed rate: B 2 59.715 59.715 29.858 16.41 0.001 24.38 
Depth of cut: C 2 38.716 38.716 19.358 10.64 0.006 15.81 
Interaction: A×B 4 5.307 5.307 1.327 0.73 0.597 2.17 
Interaction: A×C 4 11.335 11.335 2.834 1.56 0.275 4.63 
Interaction: B×C 4 10.497 10.497 2.624 1.44 0.305 4.29 
Error 8 14.553 14.553 1.819   5.93 
Total 26 244.943      

 

The standard tabulated value of F-ratio: 65.88,2,01.0 =F  ;  01.78,4,01.0 =F . 

 
 
 

Table 6. Confirmation experiment. 
 

 Natural factors  Coded factors   

Trial v f a  A B C aR
 (µm) S/N (dB) 

1 140 0.085 0.5  3 1.112 1 1.14 -1.138 

2 140 0.150 0.5  3 1.633 1 1.57 -3.918 

3 130 0.071 1.0  2.666 1 1.666 2.18 -6.769 
 

The mean S/N ratio = -3.942.  
 
 
 
confirms the above mentioned statement that the optimal 
levels of these factors are B1 and C1. 

Therefore, it is not necessary to perform the revision of 
the original solution to the optimal arrangement of factor 
levels. 

The statistical analysis was also performed by using 
ANOVA. This analysis was prepared using software 
MINITAB. The ANOVA results for S/N ratio are shown in 
Table 5. These results fully support the conclusions 
derived earlier. Namely, Factors A, B, and C are 
identified as the significant control factors at the 99% 
confidence level. 

The percentage contribution of source to the total 
variation defines parameter sensitivity. It can be proven 
from Table 5 that changing the factor levels of A, B, and 
C contributes to nearly 83 % of the total variation. 

Furthermore, based on Equation (3) 251.5η̂ −=opt  was 

obtained, while the optimum value of the average surface 

roughness m3.1ˆ
| µ=optaR  was obtained using Equation 

1a. 
Therefore, for the purpose of confirmation, three new 

trials were conducted, with factor levels close to the 
optimal point. Table 6 gives the chosen factor levels used 
for the confirmation experiment. 

On the basis of the calculated mean S/N ratio (Table 
6), using Equation 1a, a correspondent value of surface 
roughness )m(574.1 µ=aR  is determined. The 

comparison of the predicted optaR |
ˆ  with the actual aR  

from the confirmation experiment showed good 
agreement. 

The surface roughness was most affected by cutting 
speed. The impact of feed rate was somewhat smaller, 
while the influence of depth of cut was least pronounced. 
On the other side, in qualitative terms, the influence of 
feed rate and depth of cut on the surface quality was 
opposite in relation to cutting speed. In fact, while the 
increase of cutting speed caused better surface quality, 
the increase of feed rate and depth of cut led to the 
decrease of surface quality. Similar conclusions can be 
found in the literature (Aslan et al., 2007; Davim, 2001; 
Jiao et al., 2004; Thangavel and Selladurai, 2008). 

The influence of cutting parameters on the surface 
quality should be analyzed considering cutting 
parameter(s) ranges. The analysis developed by Jiao et 
al. (2004) shows that, in a narrower range of feed rate, 
the influence of this cutting parameter can be neglected. 

In some cases, for technical-technological and/or other 
reasons, it is not possible to use the optimal values of 
cutting parameters, for the chosen optimization criteria. 

The selected quality characteristic may be determined 
in an indirect way from the multiple regression equation, 
which establishes the dependency between the 
corresponding category of S/N ratio and cutting 
parameters. 

In  this  case,  from  the  data  in  Tables  2  and  3,  the  
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Figure 4. Comparison of measured and predicted values :(a) for S/N ratio ;(b) 
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following equation was obtained: 

 

afVafaVfV

afVNS

0868.04894.0058.01893.0

8491.206.51581.06772.20/η

+−−−

−+−+−=≡
     (5a) 

In the present study, the parameters of equation (5a) 
were estimated by the method of least-squares. 

The average surface roughness was then determined 
from the simple relation: 

20

η

10
−

=aR               (5b) 
 
Figure 4a shows good agreement of the results obtained 
by using Equation 5a and the results given in Table 3. 
Also, Figure 4b shows a satisfactory accuracy of 
calculation by applying Equation 5b, compared with the 
experimental values of average surface roughness, which  



 
 
 
 
are given in Table 2. In addition, the absolute percentage 
errors were found to be δmax = 25.65%, δmin = 0.24%, δ = 
8.69%. 

Thus, Equations 5 can be used to determine average 
surface roughness for arbitrarily chosen values of cutting 
parameters. 

It should also be noted that the non-linear (quadratic) 
mathematical model does not guarantee a better 
prediction than the above-mentioned quasi-linear 
regression Equation 5a. 
 
 
Conclusion 
 
This study presents the Taguchi method for optimization 
of surface roughness in dry single-point turning of an 
alloy steel using coated tungsten carbide inserts. 

On the basis of the experimental results and derived 
analysis, one can conclude that cutting speed has the 
most dominant effect on the observed surface roughness, 
followed by feed rate and depth of cut, whose influences 
on surface roughness are smaller. The surface 
roughness is continuously improved with the increase in 
cutting speed, but increase in feed rate and depth of cut 
causes a significant deterioration of surface roughness. 

The results obtained using the Taguchi optimization 
method revealed that cutting speed should be kept at the 
highest level, while both feed rate and depth of cut should 
be kept at the lowest level. 

The response graphs and ANOVA results show that the 
effects of two-way interactions of these cutting 
parameters are statistically insignificant, that is, can be 
neglected. 

As shown in this study, the Taguchi method provides a 
systematic, efficient and easy-to-use approach for the 
cutting process optimization. 
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