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There are two common kinds of data formats to be adopted in data mining. One is horizontal, and the 
other is vertical. Approaches based on vertical data formats have the advantages of requiring a fewer 
number of database scans and computing itemset supports fast. One of the vertical data 
representations, bit vector, has recently been widely used for mining frequent item sets and has caused 
significant results. The sizes of bit vectors for item sets are, however, always the same, equal to the 
number of transactions in a database. In this paper, we propose the scheme of dynamic bit vectors to 
reduce the memory and the computational time for mining frequent item sets from transaction 
databases. A fast method for computing the intersection of two dynamic bit vectors and an algorithm 
for mining frequent item sets based on the scheme are presented. The proposed algorithm is also 
compared with some other approaches and experimental results show that it is quite efficient in both 
the mining time and the memory usage.  
 
Key words: Data mining, frequent item set, dynamic bit vector, vertical data format. 

 
 
INTRODUCTION 
 
Mining frequent item sets (FIs) is the most important task 
in mining association rules. A lot of algorithms for mining 
FIs have thus been proposed. Some of the famous ones 
are Apriori (Agrawal and Srikant, 1994), Eclat (Zaki et al., 
1997; Zaki and Hsiao, 2005), FP-Growth (Han et al. 
2000), FP-Growth* (Grahne and Zhu, 2005), BitTableFI 
(Dong and Han, 2007), Index-BitTableFI (Song et al., 
2008), and so on. They can be divided into two 
categories according to the database format: horizontal 
and vertical. The horizontal data format is the same as 
that presented in a database. The vertical data format is 
a conversion from the horizontal one, with the transaction 
identifiers (TIDs) grouped for each item. Most of the 
vertical-based approaches scan databases once for fast 
mining FIs. Two representative ways  are  Tidlist  (Zaki  et  
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al., 1997; Zaki and Hsiao, 2005) and BitTable (Dong and 
Han, 2007; Song et al., 2008). The Tidlist maintains a list 
of TIDs for each interesting item, and the BitTable uses a 
bit vector to represent the transactions with the item. 
  The vertical-based approaches above usually store the 
transformed database in main memory for mining. When 
the number of transactions is large, it is difficult to store 
all of them in main memory. Thus, secondary memory is 
used for helping mining in this situation, causing more 
execution time. Besides, the bit vectors occupy the same 
fixed size which depends on the number of transactions 
in a given database. Much memory and time are thus 
needed for computing the intersection among bit vectors. 
In practice, there are usually many bits of ‘0’ in a bit 
vector. The bit vector of an itemset with many bits of ‘0’ 
can thus be shortened to reduce space and time. 
   In this paper, the scheme of dynamic bit vectors (DBVs) 
is thus designed to solve the above problem. A dynamic 
bit vector represents the bit vector in bytes after removing  



 

 

 
 
 
 
the zero bytes at the front and at the tail. Different Item 
sets thus have different length of vectors. A method for 
fast computing the intersection of two DBVs is then 
presented. It uses a look-up table to speed up the 
counting process. An approach for mining frequent item 
sets based on the DBV scheme and the intersection 
method is also proposed. A tree structure called a DBV 
tree is used to help mine frequent item sets efficiently. 
Experimental results also show the good performance of 
the proposed approach in both the mining time and the 
total memory usage. 
 
 

RELATED WORK 
 

Mining frequent item sets 
 

Frequent item sets play an important role in the mining 
process. A frequent itemset can be formally defined as 
follows. Let D be a transaction database and I be the set 

of items in D. The support σ(X) of an itemset X, X ⊆ I, is 
the number of transactions in D containing X. Itemset X is 

called frequent if σ(X) ≥ minSup, where minSup is a 
predefined minimum support threshold. There are many 
methods proposed for mining FIs from databases. They 
could be divided into the following three categories: 
 
 

Generate-and-test approaches 
  
They are mainly based on the Apriori algorithm and use 
the level-wise approach to discover FIs. Apriori (Agrawal 
et al., 1994) and BitTableFI (Dong and Han, 2007) are 
some examples. 
 
 

Divide-and-conquer approaches  
 
They adopt the divide-and-conquer strategy and use 
compact data structures extended from the frequent-
pattern (FP) tree to mine FIs. Examples include FP-
Growth (Han et al., 2000), FP-Growth* (Grahne and Zhu, 
2005). 
 
 

Hybrid approaches  
 
They integrate both the two strategies above to mine FIs. 
They firstly transform the database into the vertical data 
format (introduced later) and then use the divide-and-
conquer approach to mine FIs. Eclat (Zaki et al., 1997; 
Zaki and Hsiao, 2005) and Index-BitTableFI (Song et al., 
2008) belong to them. 
 
 
Vertical data format 
 
When mining frequent itemsets, there are two common  

Vo et al.          5359 
 
 
 
kinds of data formats to be adopted. One is the horizontal 
data format, and the other is the vertical data format. The 
horizontal data format is the same as that presented in a 
database. The vertical data format is a conversion from 
the horizontal one, with the transaction identifiers 
grouped for each item. Algorithms for mining frequent 
item sets based on the vertical data format are usually 
more efficient than those based on the horizontal (Dong 
and Han, 2007; Song et al., 2008; Zaki et al., 1997; Zaki 
and Hsiao, 2005), because the former often scan the 
database only once and compute the supports of item 
sets fast. The disadvantage is that it consumes more 
memory for storing additional information, like Tidsets 
(Zaki et al., 1997; Zaki and Hsiao, 2005) or BitTable 
(Dong and Han, 2007; Song et al., 2008). Some typical 
algorithms based on the vertical data format are briefly 
reviewed as follows: 
 
 
 Eclat (Zaki et al., 1997; Zaki and Hsiao, 2005) 
 
 It was proposed by Zaki et al.(1997) for mining FIs. An 
additional structure called Tidset was used, which stored 
the transaction identifiers for each itemset. The support 

σ(X) of an itemset X can be fast derived as the cardinality 

of the Tidset of the itemset. Thus, σ(X) = |Tidset(X)|. They 
also proposed the way of computing Tidset(XY) by the 
intersection operator between Tidset(X) and Tidset(Y). 

That is, Tidset(XY) = Tidset(X) ∩ Tidset(Y). Zaki and 
Hsiao then proposed the Diffset approach to reduce the 
storage space and the time needed for computing the 
supports (Zaki and Hsiao, 2005). 
 
 
BitTable (Dong and Han, 2007; Song et al., 2008) 
 
It was another way of data compression. Each item 
occupied |T| bits, called a bit vector, where |T| is the 
number of transactions in D. The bit vector of a new 
itemset XY from the two itemsets X and Y could be easily 
derived by the AND operation on the two bit-vectors of X 
and Y. Because the length of the two bit vectors was the 
same, the result would be a bit vector with the same 
length of |T| bits. Dong and Han used the BitTable to 
mine frequent itemsets based on the level-wise concept 
in the Apriori algorithm (Agrawal et al., 1994). Their 
approach was named BitTableFI (Dong and Han, 2007). 
Note that in the Apriori algorithm, the supports were 
computed by re-scanning databases, while in the 
BitTableFI approach, they were derived by the 
intersection of bit-vectors. The support of an itemset 
could be found by counting the number of ‘1’ bits in its 
corresponding bit vector. Song et al. then extended 
BitTableFI and proposed the Index-BitTableFI approach 
to mine frequent Itemsets (Song et al., 2008). Index-
BitTableFI used the “subsumption” concept to save the 
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Figure 1. An example of a bit vector with 40 bytes. 

 
 
 

 

 
Figure 2. A representation of DBV for the bit vector in Figure 1. 

 
 
 
checking time. Initially, items are sorted increasing 
according to their supports. After that, each item is 
examined with all the items following it by their bit vectors. 
If the ‘1’ bits in the bit vector of an item were a subset of 
those in another item, then the latter item was subsumed 
by the former. Song et al. showed that Index-BitTableFI 
had a better performance than BitTableFI. 
 
 
 SCHEME OF DYNAMIC BIT VECTORS 
 
As mentioned previousely, the bit vectors of itemsets 
occupy the same fixed size which depends on the 
number of transactions in a given database. Much 
memory and time are thus needed for computing the 
intersection among bit vectors. In practice, there are 
usually many ‘0’ bits in a bit vector. The bit vector of an 
itemset with many ‘0’ bits can thus be shortened to 
reduce space and time. In this section, the scheme of 
dynamic bit vectors (DBVs) is designed to solve the 
above problem. 
 
 
The data structure for dynamic bit vectors 
 
In this section, the data structure used to represent a 
dynamic bit vector is described. Each dynamic bit vector 
consists of two elements: position (abbreviated as pos) 
and bit vector. The first element, position, points out the 
position of the first non-zero byte in the bit vector. Note 
that for the convenience of programming, the first position 
in a bit vector is set as position 0. The second element, 
bit vector, is a list of bytes representing the bit vector in 
bytes after removing the zero bytes at the front and at the 
tail. For example, assume a bit vector for an itemset is 
shown in Figure 1. It has the length of 40 bytes and is 
represented in the decimal format. The first non-zero byte 

appears in the tenth position (beginning from the zero 
position). Figure 2 shows the DBV representation of it. 
For the example above, BitTable needs 40 bytes to store, 
while DBV only consumes 14 bytes (12 bytes for the bit 
vector and two bytes for the position). The DBV scheme 
thus needs less memory than the original BitTable 
approach.  
 
 
Computing the intersection of two DBVs 
 
As mentioned above, finding the intersection of two bit 
vectors is an important operation for getting the support 
of an itemset. It can also be easily achieved as follows for 
DBVs. Initially, the larger position value in the two DBVs 
is determined, and the AND operations are performed on 
the two DBVs from that position. If an initial resulting 
value is 0, then the position value of the outcome DBV is 
increased by 1 until the first non-zero resulting value is 
reached. Next, from the position of non-zero byte, all the 
resulting bytes by the AND operation are kept unless the 
last continuous zero bytes. An example is given below to 
illustrate the intersection operation on two DBVs. Assume 
there are two DBVs: {10, {5, 3, 8, 0, 0, 7, 6, 3, 2, 7, 6, 5}} 
and {13, {4, 3, 0, 1, 0, 4, 6, 0, 0, 5, 1, 3}} and their 
intersection is to be found. Because the position value 
(13) of the second DBV is larger than that (10) of the first, 
the AND operation then begins from position 13, at which 
the result of 0 and 4 is 0. The resulting position then 
moves backward to 14. Again, the result is 0 and 3, which 
is 0. The position then moves backward to 15. The same 
process is done until the position is 19, at which the 
resulting byte is 7 and 6, which is 6 and not equal to zero. 
The rest bytes of the two DBVs are then performed by 
the AND operator, and the results are all 0. The resulting 
DBV is then {19, {6}}. The process is shown in Figure 3.  
   The pseudo code for computing the intersection of two 
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Figure 3. An example for computing the intersection of 
two DBVs. 

 
 
 2.  

 
3.  

Input: Two DBVs: {pos1, Bit-vector1} and {pos2, Bit-vector2}. 

Output: The resulting DBV: {pos, Bit-vector}. 

Method: 
1. pos = Max(pos1, pos2);         // Find the maximal position  

2. i = pos1 < pos2 ? pos2 – pos1 : 0;  //Find the initial byte of Bit-vector1 for intersection 

3. j = pos1 < pos2 ? 0 : pos1 – pos2;  // Find the initial byte of Bit-vector2 for intersection 

4. count = |Bit-vector1| - i < |Bit-vector2| - j ? |Bit-vector1| - i : |Bit-vector2| - j;  // Determine the number of  

     // bytes for checking 

5. while count > 0 AND Bit-vector1[i] & Bit-vector2[j] = 0 do  // Find the first non-zero byte  

6.    { i = i + 1; j = j + 1; 

7.     pos = pos + 1; count = count – 1;} 

8. i1 = i + count - 1; j1 = j + count - 1; 

9. while count > 0 AND Bit-vector1[i1] & Bit-vector2[j1] = 0 do  // Find the last non-zero byte 

10.    {i1 = i1 - 1; j1 = j1 - 1; 

11.     count = count – 1;} 

12. for k = 0 to count -1 do    // Find the intersection  

13.    {Bit-vector[k] = Bit-vector1[i] & Bit-vector2[j]; 

14.     i = i + 1; j = j + 1;} 

  
 
Figure 4. The pseudo code for computing the intersection of two DBVs. 

 
 
 

DBVs is presented in Figure 4. 
In Figure 4, the maximal position of the two given DBVs 

is first obtained at Line 1. Then the number of bytes for 
checking is determined from Lines 2 to 4. The position for 
the first non-zero byte in the resulting DBV is found from 
lines 5 to 7. At Line 8, the two variables i1 and j1 are the 
last positions that have to be checked for two given bit 
vectors. The position for the last non-zero byte in the 
resulting DBV is found from Lines 9 to 11. The 
intersection results are actually done at Lines 12 to 14. 
 
 
Fast computing the support of an itemset from a DBV 
 
The BitTable-based approach  may  consume  more  time  

for computing the intersection among bit vectors and for 
counting the number of ‘1’ bits in the resulting bit vector 
than the proposed DBV approach. For example, assume 
the support of the itemset X = {x1, x2, …, xk} is to be 
calculated. The calculation for Bit-vector(X) = Bit-

vector(x1) ∩ Bit-vector(x2) ∩ … ∩ Bit-vector(xk) is done 
first. After that, Bit-vector(X) is scanned to count the 
number of ‘1’ bits. The complexity of the counting in the 
BitTable-based approach is thus O(nk), where n is the 
number of transactions and k is the length of itemset X. 
The process can be fast performed on the proposed 
scheme of DBVs because the length to be checked is 
shorter.  
   Additionally, we may use a look-up table with 256 
elements to speed up the counting. The table maps each 
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Table 1. The look-up table used to speed up the counting of ‘1’ bits. 
 

Value 0 1 2 3 4 5 … … 255 
Binary value 00000000 00000001 00000010 00000011 00000100 00000101   11111111 
#bit 1 0 1 1 2 1 2 … … 8 

 
 
 

Table 2. An example database. 

 

Transactions Items 

1 A, B, D, E 

2 B, C, E 

3 A, B, D, E 

4 A, B, C, E 

5 A, B, C, D, E 

6 B, C, D 

 
 
 
Table 3. The BV and DBV representation of the items in Table 2. 
 

Items Transactions Bit-vector DBV 

A 1, 3, 4, 5 011101 {0, {29}} 

B 1, 2, 3, 4, 5, 6 111111 {0, {63}} 

C 2, 4, 5, 6 111010 {0, {58}} 

D 1, 3, 5, 6 110101 {0, {53}} 

E 1, 2, 3, 4, 5 011111 {0, {31}} 

 
 
 
number which can be represented by a byte to the 
number of ‘1’ bits in the byte. It is shown in Table 1. 
   With the aid of the look-up table, the number of ‘1’ bits 
in each byte of a resulting bit vector is known immediately. 
Therefore, the complexity for the counting of an itemset is 
O(m), where m is the number of bits in its DBV. The 
proposed approach is more efficient than the previous 
BitTable-based approach. 

 
 
MINING FREQUENT ITEMSETS BASED ON THE DBV 
SCHEME 

 
In the section, the approach for mining frequent itemsets 
based on the DBV scheme is proposed. A tree structure 
called the DBV tree is used to help mine frequent 
itemsets efficiently. It is described as follows. 

 
 
DBV tree 

 
The DBV tree is an extension of a prefix tree with the 
DBVs stored. In a DBV tree, each node includes two 

elements, X and DBV(X), where X is an itemset and 
DBV(X) is the dynamic bit vector of X. An arc connects 
node X to node Y if X has the same (|Y| - 1) prefix items 
as Y. For example, consider the database as in Table 2. 
It consists of six transactions. 
   The bit-vector and the dynamic bit-vector 
representation of the items in Table 2 is shown in Table 3. 
Note that the positions are from right to left in the bit-
vector representation. The DBV tree constructed from the 
database in Table 3 is shown in Figure 5. 
   The first level of the DBV tree in Figure 5 contains 
single items and their DBVs. Each node X at a certain 
level is combined with the other items to create nodes at 
higher levels. For example, consider node A at the first 
level. It will be combined with the other items as follows. 
 
(i)  A joins B to create a new node AB. Since DBV(A) = 

{0,{29}} and DBV(B) = {0,{63}}, DBV(AB) = DBV(A) ∩ 

DBV(B) = {0,{29}} ∩ {0,{63}} = {0,{29and63}} = {0,{29}}; 
(ii)  A joins C to create a new node AC with DBV(AC) = {0, 
{24}}; 
(iii) A joins D to create a new node AD with DBV(AD) = 
{0,{21}}; 
(iv) A joins E to create a new node AE with DBV(AE) = 
{0,{29}}. 
 
After that, each child node of A will be further processed 
to create the grandchildren of A. This process is repeated 
recursively until the whole DBV tree is built. Note that 
only frequent itemsets are stored in a DBV tree. 
 
 
The DBV-FI algorithm 

 
In the section, the proposed algorithm for constructing a 
DBV tree and mining FIs from a database is described. It 
is shown in Figure 6 that presents the algorithm for 
mining FIs using a DBV tree. It first creates a set nodes L 
of all frequent items and their DBVs, and sorts the nodes 
in L in the increasing supports. The procedure DBV-
EXTEND then extends the nodes in L to one more level 
by combining the nodes following them. With each pair (X, 
Y), this procedure will compute the intersection of DBV(X) 
and DBV(Y) using the algorithm in Figure 4. If the number 
of ‘1’ bits in the resulting DBV is greater than or equal to 
minSup, then a new node XY with DBV(XY) is frequent 
and is added to Li. After Li is created, the algorithm will be 
called recursively to create all child nodes of the nodes in 
Li. 
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                            {} 
 

 

                                  A                                      B                      C                        D       E 
                                0,29                                  0,63                  0,58                    0,53   0,31 
 

              AB         AC       AD   AE      BC       BD    BE     CD      CE             DE 

             0,29        0,24      0,21  0,29    0,58      0,53  0,31    0,48    0,26            0,21 

 

  ABC ABD ABE ACD ACE  ADE  BCD  BCE  BDE    CDE 

   0,24  0,21  0,29   0,16  0,24    0,21   0,48    0,26   0,21     0,16 

 

 ABCD  ABCE ABDE   ACDE       BCDE 

   0,16      0,24     0,21        0,16           0,16 

 

ABCDE 

0,16 
 

 
Figure 5. The DBV tree constructed from the database in Table 3. 

 
 
 

 
 
Figure 6. The proposed algorithm for constructing a DBV tree and mining FIs. 

 
 
 
An example 

 
An example is given in this section to illustrate the 
algorithm above. Consider the previous database in 
Table 3 and assume the minSup value is set at 30%. The 
DBV tree constructed is shown in Figure 7. The single 
items are first sorted according to their support 
increasingly as L = {A0,29, C0,58, D0,53, E0,31, B0,63}. After 
that, the procedure DBV-EXTEND(L, minSup) is called. 

Take the processing for node A0,29 as an example. It 

proceeds as follows: (i) Li = ∅; (ii) A0,29 joins C0,58 into a 

new node AC0,24 with σ(AC) = 2 ≥ minSup, so AC0,24 is 
added into Li ({AC0,24}), which keeps the list of child nodes 
to be processed later. (iii) A0,29 joins D0,53 into a new node 

AD0,21 with σ(AD) = 3 ≥ minSup, so AD0,21 is added into Li                  

({AC0,24, AD0,21}); (iv) A0,29 joins E0,31 into a new node 

AE0,29 with σ(AE) = 4 ≥ minSup, so AE0,29 is added into Li 

({AC0,24, AD0,21, AE0,29}); (v) A0,29 joins B0,63 into a new 
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          {} 
 

 

                 

                     A                                C                         D                  E           B    
                   0,29                           0,58                      0,53              0,31      0,63  

 
 

 

      AC    AD   AE   AB    CD     CE      CB         DE   DB         EB 

      0,24   0,21 0,29  0,29  0,48    0,26     0,58       0,20  0,21       0,31 
 

 

ACE ACB ADE  ADB AEB CDB  CEB            DEB  
 0,24  0,24   0,21   0,21   0,29  0,48   0,26              0,21 
 

 
 

 ACEB    ADEB 

   0,24        0,24    
  

 
Figure 7. The DBV tree constructed by the DBV-FI algorithm. 

 
 
 

Table 4. Features of the databases adopted. 
 

Database #Trans #Items 

Chess 3196 76 

Mushroom 8124 120 

Pumsb_star 49046 7117 

Connect 67557 130 

Accidents 340183 468 

 
 
 

node AB0,29 with σ(AB) = 4 ≥ minSup, so AB0,29 is added 
into Li ({AC0,24, AD0,21, AE0,29, AB0,29}). 
    After considering node A with all the nodes following it, 
DBV-EXTEND(Li, minSup) will be called again to 
recursively consider the four nodes {AC0,24, AD0,21, AE0,29, 
AB0,29} in Li. Take the processing for node AC0,24 as an 
example. It proceeds as follows. 

(i) Li = ∅; 
(ii) AC0,24 joins AD0,21 into a new node ACD0,16 with 

σ(ACD) = 1 < minSup, so ACD0,16 is skipped; 
AC0,24 joins with AE0,29 into a new node ACE0,24 

with σ(ACE) = 2 ≥ minSup, so ACE0,24 is added to 
Li ({ACE0,24}); 
AC0,24 joins with AB0,29 into a new node ACB0,24 

with σ(ACB) = 2, so ACB0,24 is added into Li 
({ACE0,24, ACB0,24}); 

The same procedure is then done with the other nodes.  

The final DBV tree is shown in Figure  7.  From  the  DBV  
tree, there are 25 frequent itemsets found.  

 
 
EXPERIMENTAL RESULTS 
 
Experiments were conducted to show the performance of 
the proposed algorithm. The all algorithms were 
implemented on a Centrino Core 2 Duo (2×2.53 GHz), 
with 4GBs RAM of memory and running Windows 7. The 
Eclat (Tidset-based) (Zaki and Hsiao, 2005) and the 
Index-BitTableFI (Bit-vector-based, Song et al., 2008) 
approaches were also executed for comparison. All the 
algorithms were coded in C# 2008. Five databases from 
http://fimi.cs.helsinki.fi/data/ (download on April 2005) 
were used for the experiments, with their features 
displayed in Table 4. Table 5 shows the number of 
frequent itemsets from the five databases under different 
minimum support values.  
   Experiments were then made to compare the mining 
time of the proposed approach with Eclat and Index-
BitTableFI for different minSup values. BitTableFI was 
not compared because Index-BitTableFI was always 
faster than BitTableFI (Song et al., 2008). The results for 
the five databases were shown in Figures 8 to 12. 
   It could be observed that the DBV-FI algorithm was 
always faster than the other two in all the results. For 
example, Figure 8 shows the mining time of Eclat,  Index- 
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Table 5. Number of FIs from the five databases under 
different minSup values. 
 

Database minSup (%) #FIs 

Chess 

80 8227 

75 20993 

70 48731 

65 111239 
   

Mushroom 

40 565 

30 2735 

20 53583 

10 574431 
   

Pumb_star 

55 305 

50 679 

45 1913 

40 27354 
   

Connect 

98 180 

94 4223 

90 27127 
   

Accidents 

80 149 

70 529 

60 2074 

50 8057 
 
 
 

Chess

0

50

100

150

200

250

300

350

400

450

80 75 70 65
minSup(%)

T
im

e
(s

)

Eclat

Index-BitTableFI

DBV-FI

 
 
Figure 8. Execution time of the three algorithms for Chess under different 
minSup values. 

 
 
 

BitTableFI and DBV-FI for the Chess database. With 
minSup = 65%, the mining time of Eclat is 42.1(s), of 
Index-BitTableFI is 417.75(s), and of DBV-FI is only 
6.63(s). Besides, Index-BitTableFI was faster than Eclat 
in the two databases  of  Pumsb_star  and  Connect,  and  

slower in the rest databases (Chess, Mushroom, 
Accidents). 
   Next, experiments were conducted to compare the total 
memory usage (in MBs) of the three algorithms. The 
results for the five databases under different minSup 
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Table 6. Memory usage of the three algorithms for the five databases. 
 

Database minSup (%) 
Memory usage (in MBs) 

Eclat Index-BitTableFI DBV-FI 

Chess 

80 42.19 3.87 3.11 

75 102.21 9.89 7.93 

70 224.25 22.90 18.40 

65 480.17 53.69 41.98 
     

Mushroom 

40 4.30 0.82 0.53 

30 15.63 3.51 2.45 

20 188.44 56.76 33.32 

10 1102.80 483.91 318.30 
     

Pumb_star 

55 17.57 2.81 1.78 

50 36.02 7.33 3.97 

45 90.05 23.82 11.19 

40 656.32 196.89 159.94 
     

Connect 

98 45.72 1.68 1.45 

94 1038.19 37.70 34.99 

90 6439.86 41.26 37.22 
     

Accidents 

80 83.11 12.82 6.04 

70 266.41 49.35 21.45 

60 909.51 188.29 84.11 

50 2915.39 714.86 326.74 
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Figure 9. Execution time of the three algorithms for Mushroom under 

different minSup values. 
 
 
 

values are shown in Table 6. 
It could be seen from Table 6 that Eclat always 

consumed more memory than the other two and DBV-FI 
always consumed the smallest memory among the three. 
For example, consider the Chess database with minSup 
= 65%. The total memory usage for Eclat was 480.17 
MBs, for Index-BitTableFI was 53.69 MBs, and for DBV- 
FI was 41.98 MBs. 

Conclusions  
 
In this paper, we have proposed a new method for mining 
FIs from transaction databases based on the scheme of 
dynamic bit vectors. The contributions could be divided 
into the following three parts. Firstly, dynamic bit vectors 
are used to compress a database in one scan and with 
shorter length. Secondly, an algorithm for fast computing 
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Figure 10. Execution time of the three algorithms for Pumsb_star under 
different minSup values. 
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Figure 11. Execution time of the three algorithms for Connect under different 
minSup values. 

 
 
 
the intersection between two DBVs and for counting the 
number of ‘1’ bits is designed. Finally, an algorithm for 
mining FIs based on a DBV tree is developed. 
Experimental results also show the efficiency of the 
proposed approach in both the mining time and the total 
memory usage. The proposed approach has the following 
weak point. When the first and the last bytes in a bit 
vector are non zero, the DBV scheme will not reduce any 

memory. However, the proposed approach will, in 
average, be able to save some memory. In the future, we 
will attempt to use multiple positions to remove zero 
bytes existing in the middle of bit-vectors. Besides, 
mining frequent itemsets in incremental databases has 
been developed in recent years (Bailey and Loekito, 2010; 
Hong and Wang, 2010; Hong et al., 2009; Li et al., 2006; 
Lin et  al.,  2010;  Thomas  et  al.,  1997;  Valtchev  et  al.,  
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Figure 12. Execution time of the three algorithms for Accidents under different 
minSup values. 

 
 
 
2008; Zhang et al., 2009). We will also study to apply the 
DBV scheme for fast mining frequent itemsets and 
frequent closed itemsets from this kind of databases. 
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