

Scientific Research and Essays Vol. 6(25), pp. 5358-5368, 30 October, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.1101
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

Dynamic bit vectors: An efficient approach for mining
frequent itemsets

Bay Vo1*, Tzung-Pei Hong2,3 and Bac Le4

1
Department of Computer Science, Ho Chi Minh City University of Technology, Ho Chi Minh, Vietnam.

2
Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung,

Taiwan, R.O.C.
3
Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C.

4
Department of Computer Science, University of Science, Ho Chi Minh, Vietnam.

Accepted 20 September, 2011

There are two common kinds of data formats to be adopted in data mining. One is horizontal, and the
other is vertical. Approaches based on vertical data formats have the advantages of requiring a fewer
number of database scans and computing itemset supports fast. One of the vertical data
representations, bit vector, has recently been widely used for mining frequent item sets and has caused
significant results. The sizes of bit vectors for item sets are, however, always the same, equal to the
number of transactions in a database. In this paper, we propose the scheme of dynamic bit vectors to
reduce the memory and the computational time for mining frequent item sets from transaction
databases. A fast method for computing the intersection of two dynamic bit vectors and an algorithm
for mining frequent item sets based on the scheme are presented. The proposed algorithm is also
compared with some other approaches and experimental results show that it is quite efficient in both
the mining time and the memory usage.

Key words: Data mining, frequent item set, dynamic bit vector, vertical data format.

INTRODUCTION

Mining frequent item sets (FIs) is the most important task
in mining association rules. A lot of algorithms for mining
FIs have thus been proposed. Some of the famous ones
are Apriori (Agrawal and Srikant, 1994), Eclat (Zaki et al.,
1997; Zaki and Hsiao, 2005), FP-Growth (Han et al.
2000), FP-Growth* (Grahne and Zhu, 2005), BitTableFI
(Dong and Han, 2007), Index-BitTableFI (Song et al.,
2008), and so on. They can be divided into two
categories according to the database format: horizontal
and vertical. The horizontal data format is the same as
that presented in a database. The vertical data format is
a conversion from the horizontal one, with the transaction
identifiers (TIDs) grouped for each item. Most of the
vertical-based approaches scan databases once for fast
mining FIs. Two representative ways are Tidlist (Zaki et

*Corresponding author. E-mail: vdbay@hcmhutech.edu.vn.

al., 1997; Zaki and Hsiao, 2005) and BitTable (Dong and
Han, 2007; Song et al., 2008). The Tidlist maintains a list
of TIDs for each interesting item, and the BitTable uses a
bit vector to represent the transactions with the item.
 The vertical-based approaches above usually store the
transformed database in main memory for mining. When
the number of transactions is large, it is difficult to store
all of them in main memory. Thus, secondary memory is
used for helping mining in this situation, causing more
execution time. Besides, the bit vectors occupy the same
fixed size which depends on the number of transactions
in a given database. Much memory and time are thus
needed for computing the intersection among bit vectors.
In practice, there are usually many bits of ‘0’ in a bit
vector. The bit vector of an itemset with many bits of ‘0’
can thus be shortened to reduce space and time.
 In this paper, the scheme of dynamic bit vectors (DBVs)
is thus designed to solve the above problem. A dynamic
bit vector represents the bit vector in bytes after removing

the zero bytes at the front and at the tail. Different Item
sets thus have different length of vectors. A method for
fast computing the intersection of two DBVs is then
presented. It uses a look-up table to speed up the
counting process. An approach for mining frequent item
sets based on the DBV scheme and the intersection
method is also proposed. A tree structure called a DBV
tree is used to help mine frequent item sets efficiently.
Experimental results also show the good performance of
the proposed approach in both the mining time and the
total memory usage.

RELATED WORK

Mining frequent item sets

Frequent item sets play an important role in the mining
process. A frequent itemset can be formally defined as
follows. Let D be a transaction database and I be the set

of items in D. The support σ(X) of an itemset X, X ⊆ I, is
the number of transactions in D containing X. Itemset X is

called frequent if σ(X) ≥ minSup, where minSup is a
predefined minimum support threshold. There are many
methods proposed for mining FIs from databases. They
could be divided into the following three categories:

Generate-and-test approaches

They are mainly based on the Apriori algorithm and use
the level-wise approach to discover FIs. Apriori (Agrawal
et al., 1994) and BitTableFI (Dong and Han, 2007) are
some examples.

Divide-and-conquer approaches

They adopt the divide-and-conquer strategy and use
compact data structures extended from the frequent-
pattern (FP) tree to mine FIs. Examples include FP-
Growth (Han et al., 2000), FP-Growth* (Grahne and Zhu,
2005).

Hybrid approaches

They integrate both the two strategies above to mine FIs.
They firstly transform the database into the vertical data
format (introduced later) and then use the divide-and-
conquer approach to mine FIs. Eclat (Zaki et al., 1997;
Zaki and Hsiao, 2005) and Index-BitTableFI (Song et al.,
2008) belong to them.

Vertical data format

When mining frequent itemsets, there are two common

Vo et al. 5359

kinds of data formats to be adopted. One is the horizontal
data format, and the other is the vertical data format. The
horizontal data format is the same as that presented in a
database. The vertical data format is a conversion from
the horizontal one, with the transaction identifiers
grouped for each item. Algorithms for mining frequent
item sets based on the vertical data format are usually
more efficient than those based on the horizontal (Dong
and Han, 2007; Song et al., 2008; Zaki et al., 1997; Zaki
and Hsiao, 2005), because the former often scan the
database only once and compute the supports of item
sets fast. The disadvantage is that it consumes more
memory for storing additional information, like Tidsets
(Zaki et al., 1997; Zaki and Hsiao, 2005) or BitTable
(Dong and Han, 2007; Song et al., 2008). Some typical
algorithms based on the vertical data format are briefly
reviewed as follows:

 Eclat (Zaki et al., 1997; Zaki and Hsiao, 2005)

 It was proposed by Zaki et al.(1997) for mining FIs. An
additional structure called Tidset was used, which stored
the transaction identifiers for each itemset. The support

σ(X) of an itemset X can be fast derived as the cardinality

of the Tidset of the itemset. Thus, σ(X) = |Tidset(X)|. They
also proposed the way of computing Tidset(XY) by the
intersection operator between Tidset(X) and Tidset(Y).

That is, Tidset(XY) = Tidset(X) ∩ Tidset(Y). Zaki and
Hsiao then proposed the Diffset approach to reduce the
storage space and the time needed for computing the
supports (Zaki and Hsiao, 2005).

BitTable (Dong and Han, 2007; Song et al., 2008)

It was another way of data compression. Each item
occupied |T| bits, called a bit vector, where |T| is the
number of transactions in D. The bit vector of a new
itemset XY from the two itemsets X and Y could be easily
derived by the AND operation on the two bit-vectors of X
and Y. Because the length of the two bit vectors was the
same, the result would be a bit vector with the same
length of |T| bits. Dong and Han used the BitTable to
mine frequent itemsets based on the level-wise concept
in the Apriori algorithm (Agrawal et al., 1994). Their
approach was named BitTableFI (Dong and Han, 2007).
Note that in the Apriori algorithm, the supports were
computed by re-scanning databases, while in the
BitTableFI approach, they were derived by the
intersection of bit-vectors. The support of an itemset
could be found by counting the number of ‘1’ bits in its
corresponding bit vector. Song et al. then extended
BitTableFI and proposed the Index-BitTableFI approach
to mine frequent Itemsets (Song et al., 2008). Index-
BitTableFI used the “subsumption” concept to save the

5360 Sci. Res. Essays

0 0 0 0 0 0 0 0 0 0 5 3 8 0 0 7 6 2 7 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1. An example of a bit vector with 40 bytes.

Figure 2. A representation of DBV for the bit vector in Figure 1.

checking time. Initially, items are sorted increasing
according to their supports. After that, each item is
examined with all the items following it by their bit vectors.
If the ‘1’ bits in the bit vector of an item were a subset of
those in another item, then the latter item was subsumed
by the former. Song et al. showed that Index-BitTableFI
had a better performance than BitTableFI.

 SCHEME OF DYNAMIC BIT VECTORS

As mentioned previousely, the bit vectors of itemsets
occupy the same fixed size which depends on the
number of transactions in a given database. Much
memory and time are thus needed for computing the
intersection among bit vectors. In practice, there are
usually many ‘0’ bits in a bit vector. The bit vector of an
itemset with many ‘0’ bits can thus be shortened to
reduce space and time. In this section, the scheme of
dynamic bit vectors (DBVs) is designed to solve the
above problem.

The data structure for dynamic bit vectors

In this section, the data structure used to represent a
dynamic bit vector is described. Each dynamic bit vector
consists of two elements: position (abbreviated as pos)
and bit vector. The first element, position, points out the
position of the first non-zero byte in the bit vector. Note
that for the convenience of programming, the first position
in a bit vector is set as position 0. The second element,
bit vector, is a list of bytes representing the bit vector in
bytes after removing the zero bytes at the front and at the
tail. For example, assume a bit vector for an itemset is
shown in Figure 1. It has the length of 40 bytes and is
represented in the decimal format. The first non-zero byte

appears in the tenth position (beginning from the zero
position). Figure 2 shows the DBV representation of it.
For the example above, BitTable needs 40 bytes to store,
while DBV only consumes 14 bytes (12 bytes for the bit
vector and two bytes for the position). The DBV scheme
thus needs less memory than the original BitTable
approach.

Computing the intersection of two DBVs

As mentioned above, finding the intersection of two bit
vectors is an important operation for getting the support
of an itemset. It can also be easily achieved as follows for
DBVs. Initially, the larger position value in the two DBVs
is determined, and the AND operations are performed on
the two DBVs from that position. If an initial resulting
value is 0, then the position value of the outcome DBV is
increased by 1 until the first non-zero resulting value is
reached. Next, from the position of non-zero byte, all the
resulting bytes by the AND operation are kept unless the
last continuous zero bytes. An example is given below to
illustrate the intersection operation on two DBVs. Assume
there are two DBVs: {10, {5, 3, 8, 0, 0, 7, 6, 3, 2, 7, 6, 5}}
and {13, {4, 3, 0, 1, 0, 4, 6, 0, 0, 5, 1, 3}} and their
intersection is to be found. Because the position value
(13) of the second DBV is larger than that (10) of the first,
the AND operation then begins from position 13, at which
the result of 0 and 4 is 0. The resulting position then
moves backward to 14. Again, the result is 0 and 3, which
is 0. The position then moves backward to 15. The same
process is done until the position is 19, at which the
resulting byte is 7 and 6, which is 6 and not equal to zero.
The rest bytes of the two DBVs are then performed by
the AND operator, and the results are all 0. The resulting
DBV is then {19, {6}}. The process is shown in Figure 3.
 The pseudo code for computing the intersection of two

Vo et al. 5361

5 3 8 0 0 7 6 3 2 7 6 5

pos=10

4 3 0 1 0 4 6 0 0 5 1 3

pos=13 6

pos=19

&

Figure 3. An example for computing the intersection of
two DBVs.

 2.

3.

Input: Two DBVs: {pos1, Bit-vector1} and {pos2, Bit-vector2}.

Output: The resulting DBV: {pos, Bit-vector}.

Method:
1. pos = Max(pos1, pos2); // Find the maximal position

2. i = pos1 < pos2 ? pos2 – pos1 : 0; //Find the initial byte of Bit-vector1 for intersection

3. j = pos1 < pos2 ? 0 : pos1 – pos2; // Find the initial byte of Bit-vector2 for intersection

4. count = |Bit-vector1| - i < |Bit-vector2| - j ? |Bit-vector1| - i : |Bit-vector2| - j; // Determine the number of

 // bytes for checking

5. while count > 0 AND Bit-vector1[i] & Bit-vector2[j] = 0 do // Find the first non-zero byte

6. { i = i + 1; j = j + 1;

7. pos = pos + 1; count = count – 1;}

8. i1 = i + count - 1; j1 = j + count - 1;

9. while count > 0 AND Bit-vector1[i1] & Bit-vector2[j1] = 0 do // Find the last non-zero byte

10. {i1 = i1 - 1; j1 = j1 - 1;

11. count = count – 1;}

12. for k = 0 to count -1 do // Find the intersection

13. {Bit-vector[k] = Bit-vector1[i] & Bit-vector2[j];

14. i = i + 1; j = j + 1;}

Figure 4. The pseudo code for computing the intersection of two DBVs.

DBVs is presented in Figure 4.
In Figure 4, the maximal position of the two given DBVs

is first obtained at Line 1. Then the number of bytes for
checking is determined from Lines 2 to 4. The position for
the first non-zero byte in the resulting DBV is found from
lines 5 to 7. At Line 8, the two variables i1 and j1 are the
last positions that have to be checked for two given bit
vectors. The position for the last non-zero byte in the
resulting DBV is found from Lines 9 to 11. The
intersection results are actually done at Lines 12 to 14.

Fast computing the support of an itemset from a DBV

The BitTable-based approach may consume more time

for computing the intersection among bit vectors and for
counting the number of ‘1’ bits in the resulting bit vector
than the proposed DBV approach. For example, assume
the support of the itemset X = {x1, x2, …, xk} is to be
calculated. The calculation for Bit-vector(X) = Bit-

vector(x1) ∩ Bit-vector(x2) ∩ … ∩ Bit-vector(xk) is done
first. After that, Bit-vector(X) is scanned to count the
number of ‘1’ bits. The complexity of the counting in the
BitTable-based approach is thus O(nk), where n is the
number of transactions and k is the length of itemset X.
The process can be fast performed on the proposed
scheme of DBVs because the length to be checked is
shorter.
 Additionally, we may use a look-up table with 256
elements to speed up the counting. The table maps each

5362 Sci. Res. Essays

Table 1. The look-up table used to speed up the counting of ‘1’ bits.

Value 0 1 2 3 4 5 … … 255
Binary value 00000000 00000001 00000010 00000011 00000100 00000101 11111111
#bit 1 0 1 1 2 1 2 … … 8

Table 2. An example database.

Transactions Items

1 A, B, D, E

2 B, C, E

3 A, B, D, E

4 A, B, C, E

5 A, B, C, D, E

6 B, C, D

Table 3. The BV and DBV representation of the items in Table 2.

Items Transactions Bit-vector DBV

A 1, 3, 4, 5 011101 {0, {29}}

B 1, 2, 3, 4, 5, 6 111111 {0, {63}}

C 2, 4, 5, 6 111010 {0, {58}}

D 1, 3, 5, 6 110101 {0, {53}}

E 1, 2, 3, 4, 5 011111 {0, {31}}

number which can be represented by a byte to the
number of ‘1’ bits in the byte. It is shown in Table 1.
 With the aid of the look-up table, the number of ‘1’ bits
in each byte of a resulting bit vector is known immediately.
Therefore, the complexity for the counting of an itemset is
O(m), where m is the number of bits in its DBV. The
proposed approach is more efficient than the previous
BitTable-based approach.

MINING FREQUENT ITEMSETS BASED ON THE DBV
SCHEME

In the section, the approach for mining frequent itemsets
based on the DBV scheme is proposed. A tree structure
called the DBV tree is used to help mine frequent
itemsets efficiently. It is described as follows.

DBV tree

The DBV tree is an extension of a prefix tree with the
DBVs stored. In a DBV tree, each node includes two

elements, X and DBV(X), where X is an itemset and
DBV(X) is the dynamic bit vector of X. An arc connects
node X to node Y if X has the same (|Y| - 1) prefix items
as Y. For example, consider the database as in Table 2.
It consists of six transactions.
 The bit-vector and the dynamic bit-vector
representation of the items in Table 2 is shown in Table 3.
Note that the positions are from right to left in the bit-
vector representation. The DBV tree constructed from the
database in Table 3 is shown in Figure 5.
 The first level of the DBV tree in Figure 5 contains
single items and their DBVs. Each node X at a certain
level is combined with the other items to create nodes at
higher levels. For example, consider node A at the first
level. It will be combined with the other items as follows.

(i) A joins B to create a new node AB. Since DBV(A) =

{0,{29}} and DBV(B) = {0,{63}}, DBV(AB) = DBV(A) ∩

DBV(B) = {0,{29}} ∩ {0,{63}} = {0,{29and63}} = {0,{29}};
(ii) A joins C to create a new node AC with DBV(AC) = {0,
{24}};
(iii) A joins D to create a new node AD with DBV(AD) =
{0,{21}};
(iv) A joins E to create a new node AE with DBV(AE) =
{0,{29}}.

After that, each child node of A will be further processed
to create the grandchildren of A. This process is repeated
recursively until the whole DBV tree is built. Note that
only frequent itemsets are stored in a DBV tree.

The DBV-FI algorithm

In the section, the proposed algorithm for constructing a
DBV tree and mining FIs from a database is described. It
is shown in Figure 6 that presents the algorithm for
mining FIs using a DBV tree. It first creates a set nodes L
of all frequent items and their DBVs, and sorts the nodes
in L in the increasing supports. The procedure DBV-
EXTEND then extends the nodes in L to one more level
by combining the nodes following them. With each pair (X,
Y), this procedure will compute the intersection of DBV(X)
and DBV(Y) using the algorithm in Figure 4. If the number
of ‘1’ bits in the resulting DBV is greater than or equal to
minSup, then a new node XY with DBV(XY) is frequent
and is added to Li. After Li is created, the algorithm will be
called recursively to create all child nodes of the nodes in
Li.

Vo et al. 5363

 {}

 A B C D E
 0,29 0,63 0,58 0,53 0,31

 AB AC AD AE BC BD BE CD CE DE

 0,29 0,24 0,21 0,29 0,58 0,53 0,31 0,48 0,26 0,21

 ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

 0,24 0,21 0,29 0,16 0,24 0,21 0,48 0,26 0,21 0,16

 ABCD ABCE ABDE ACDE BCDE

 0,16 0,24 0,21 0,16 0,16

ABCDE

0,16

Figure 5. The DBV tree constructed from the database in Table 3.

Figure 6. The proposed algorithm for constructing a DBV tree and mining FIs.

An example

An example is given in this section to illustrate the
algorithm above. Consider the previous database in
Table 3 and assume the minSup value is set at 30%. The
DBV tree constructed is shown in Figure 7. The single
items are first sorted according to their support
increasingly as L = {A0,29, C0,58, D0,53, E0,31, B0,63}. After
that, the procedure DBV-EXTEND(L, minSup) is called.

Take the processing for node A0,29 as an example. It

proceeds as follows: (i) Li = ∅; (ii) A0,29 joins C0,58 into a

new node AC0,24 with σ(AC) = 2 ≥ minSup, so AC0,24 is
added into Li ({AC0,24}), which keeps the list of child nodes
to be processed later. (iii) A0,29 joins D0,53 into a new node

AD0,21 with σ(AD) = 3 ≥ minSup, so AD0,21 is added into Li

({AC0,24, AD0,21}); (iv) A0,29 joins E0,31 into a new node

AE0,29 with σ(AE) = 4 ≥ minSup, so AE0,29 is added into Li

({AC0,24, AD0,21, AE0,29}); (v) A0,29 joins B0,63 into a new

5364 Sci. Res. Essays

 {}

 A C D E B
 0,29 0,58 0,53 0,31 0,63

 AC AD AE AB CD CE CB DE DB EB

 0,24 0,21 0,29 0,29 0,48 0,26 0,58 0,20 0,21 0,31

ACE ACB ADE ADB AEB CDB CEB DEB
 0,24 0,24 0,21 0,21 0,29 0,48 0,26 0,21

 ACEB ADEB

 0,24 0,24

Figure 7. The DBV tree constructed by the DBV-FI algorithm.

Table 4. Features of the databases adopted.

Database #Trans #Items

Chess 3196 76

Mushroom 8124 120

Pumsb_star 49046 7117

Connect 67557 130

Accidents 340183 468

node AB0,29 with σ(AB) = 4 ≥ minSup, so AB0,29 is added
into Li ({AC0,24, AD0,21, AE0,29, AB0,29}).
 After considering node A with all the nodes following it,
DBV-EXTEND(Li, minSup) will be called again to
recursively consider the four nodes {AC0,24, AD0,21, AE0,29,
AB0,29} in Li. Take the processing for node AC0,24 as an
example. It proceeds as follows.

(i) Li = ∅;
(ii) AC0,24 joins AD0,21 into a new node ACD0,16 with

σ(ACD) = 1 < minSup, so ACD0,16 is skipped;
AC0,24 joins with AE0,29 into a new node ACE0,24

with σ(ACE) = 2 ≥ minSup, so ACE0,24 is added to
Li ({ACE0,24});
AC0,24 joins with AB0,29 into a new node ACB0,24

with σ(ACB) = 2, so ACB0,24 is added into Li
({ACE0,24, ACB0,24});

The same procedure is then done with the other nodes.

The final DBV tree is shown in Figure 7. From the DBV
tree, there are 25 frequent itemsets found.

EXPERIMENTAL RESULTS

Experiments were conducted to show the performance of
the proposed algorithm. The all algorithms were
implemented on a Centrino Core 2 Duo (2×2.53 GHz),
with 4GBs RAM of memory and running Windows 7. The
Eclat (Tidset-based) (Zaki and Hsiao, 2005) and the
Index-BitTableFI (Bit-vector-based, Song et al., 2008)
approaches were also executed for comparison. All the
algorithms were coded in C# 2008. Five databases from
http://fimi.cs.helsinki.fi/data/ (download on April 2005)
were used for the experiments, with their features
displayed in Table 4. Table 5 shows the number of
frequent itemsets from the five databases under different
minimum support values.
 Experiments were then made to compare the mining
time of the proposed approach with Eclat and Index-
BitTableFI for different minSup values. BitTableFI was
not compared because Index-BitTableFI was always
faster than BitTableFI (Song et al., 2008). The results for
the five databases were shown in Figures 8 to 12.
 It could be observed that the DBV-FI algorithm was
always faster than the other two in all the results. For
example, Figure 8 shows the mining time of Eclat, Index-

Vo et al. 5365

Table 5. Number of FIs from the five databases under
different minSup values.

Database minSup (%) #FIs

Chess

80 8227

75 20993

70 48731

65 111239

Mushroom

40 565

30 2735

20 53583

10 574431

Pumb_star

55 305

50 679

45 1913

40 27354

Connect

98 180

94 4223

90 27127

Accidents

80 149

70 529

60 2074

50 8057

Chess

0

50

100

150

200

250

300

350

400

450

80 75 70 65
minSup(%)

T
im

e
(s

)

Eclat

Index-BitTableFI

DBV-FI

Figure 8. Execution time of the three algorithms for Chess under different
minSup values.

BitTableFI and DBV-FI for the Chess database. With
minSup = 65%, the mining time of Eclat is 42.1(s), of
Index-BitTableFI is 417.75(s), and of DBV-FI is only
6.63(s). Besides, Index-BitTableFI was faster than Eclat
in the two databases of Pumsb_star and Connect, and

slower in the rest databases (Chess, Mushroom,
Accidents).
 Next, experiments were conducted to compare the total
memory usage (in MBs) of the three algorithms. The
results for the five databases under different minSup

5366 Sci. Res. Essays

Table 6. Memory usage of the three algorithms for the five databases.

Database minSup (%)
Memory usage (in MBs)

Eclat Index-BitTableFI DBV-FI

Chess

80 42.19 3.87 3.11

75 102.21 9.89 7.93

70 224.25 22.90 18.40

65 480.17 53.69 41.98

Mushroom

40 4.30 0.82 0.53

30 15.63 3.51 2.45

20 188.44 56.76 33.32

10 1102.80 483.91 318.30

Pumb_star

55 17.57 2.81 1.78

50 36.02 7.33 3.97

45 90.05 23.82 11.19

40 656.32 196.89 159.94

Connect

98 45.72 1.68 1.45

94 1038.19 37.70 34.99

90 6439.86 41.26 37.22

Accidents

80 83.11 12.82 6.04

70 266.41 49.35 21.45

60 909.51 188.29 84.11

50 2915.39 714.86 326.74

Mushroom

0

50

100

150

200

250

40 30 20 10
minSup(%)

T
im

e
(s

)

Eclat

Index-BitTableFI

DBV-FI

Figure 9. Execution time of the three algorithms for Mushroom under

different minSup values.

values are shown in Table 6.
It could be seen from Table 6 that Eclat always

consumed more memory than the other two and DBV-FI
always consumed the smallest memory among the three.
For example, consider the Chess database with minSup
= 65%. The total memory usage for Eclat was 480.17
MBs, for Index-BitTableFI was 53.69 MBs, and for DBV-
FI was 41.98 MBs.

Conclusions

In this paper, we have proposed a new method for mining
FIs from transaction databases based on the scheme of
dynamic bit vectors. The contributions could be divided
into the following three parts. Firstly, dynamic bit vectors
are used to compress a database in one scan and with
shorter length. Secondly, an algorithm for fast computing

Vo et al. 5367

Pumsb_star

0

20

40

60

80

100

120

140

160

180

55 50 45 40
minSup(%)

T
im

e
(s

)

Eclat

Index-BitTableFI

DBV-FI

Figure 10. Execution time of the three algorithms for Pumsb_star under
different minSup values.

.

Connect

0

50

100

150

200

250

98 94 90
minSup(%)

T
im

e
(s

)

Eclat

Index-BitTableFI

DBV-FI

Figure 11. Execution time of the three algorithms for Connect under different
minSup values.

the intersection between two DBVs and for counting the
number of ‘1’ bits is designed. Finally, an algorithm for
mining FIs based on a DBV tree is developed.
Experimental results also show the efficiency of the
proposed approach in both the mining time and the total
memory usage. The proposed approach has the following
weak point. When the first and the last bytes in a bit
vector are non zero, the DBV scheme will not reduce any

memory. However, the proposed approach will, in
average, be able to save some memory. In the future, we
will attempt to use multiple positions to remove zero
bytes existing in the middle of bit-vectors. Besides,
mining frequent itemsets in incremental databases has
been developed in recent years (Bailey and Loekito, 2010;
Hong and Wang, 2010; Hong et al., 2009; Li et al., 2006;
Lin et al., 2010; Thomas et al., 1997; Valtchev et al.,

5368 Sci. Res. Essays

Accidents

0

50

100

150

200

250

300

350

80 70 60 50
minSup(%)

T
im

e
(s

)

Eclat

Index-BitTableFI

DBV-FI

Figure 12. Execution time of the three algorithms for Accidents under different
minSup values.

2008; Zhang et al., 2009). We will also study to apply the
DBV scheme for fast mining frequent itemsets and
frequent closed itemsets from this kind of databases.

ACKNOWLEDGEMENT

This work was supported by Vietnam's National
Foundation for Science and Technology Development
(NAFOSTED), project ID: 102.01-2010.02.

REFERENCES

Agrawal R, Srikant R (1994). Fast algorithms for mining association

rules. VLDB'94, pp. 487-499.
Bailey J, Loekito E (2010). Efficient incremental mining of contrast

patterns in changing data. Inf. Process. Lett., 110(3): 88-92.
Dong J, Han M (2007). BitTableFI: An efficient mining frequent itemsets

algorithm. Knowl.-Based Syst., 20(4): 329 – 335.
Grahne G, Zhu J (2005). Fast algorithms for frequent itemset mining

using FP-trees. IEEE Trans. Knowl. Data Eng., 17(10): 1347-1362.
Han J, Pei J, Yin Y (2000). Mining frequent patterns without candidate

generation. SIGMODKDD’00, pp 1 – 12.
Hong TP, Wang, CJ (2010). An efficient and effective association-rule

maintenance algorithm for record modification. Expert Syst. Appl.,
37(1): 618-626

Hong TP, Lin CW, Wu YL (2009). Maintenance of fast updated frequent
pattern trees for record deletion. Comput. Stat. Data Anal., 53(7):
2485-2499.

Li X, Deng JH, Tang S (2006). A fast algorithm for maintenance of
association rules in incremental databases. ADMA, pp. 56-63.

Lin CW, Hong TP, Lu WH (2010). Efficient modification of fast updated
FP-trees based on pre-large concepts. Int. J. Innov. Comput. Inf.
Control., 6(11): 5163-5177.

Song W, Yang B, Xu Z (2008). Index-BitTableFI: An improved algorithm
for mining frequent itemsets. Knowl.-Based Syst., 21(6): 507-513.

Thomas S, Bodagala S, Alsabti K, Ranka S (1997). An efficient
algorithm for the incremental updation of association rules in large
databases. SIGKDD’97, pp. 263-266.

Valtchev P, Missaoui R, Godin R (2008). A framework for incremental
generation of closed itemsets. Discrete Appl. Math., 156(6): 924-949.

Zhang S, Zhang J, Jin Z (2009). A decremental algorithm of frequent
itemset maintenance for mining updated databases. Expert Syst.
Appl., 36(8): 10890-10895.

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997). New algorithms for
fast discovery of association rules. 3rd Int. Conf. Knowl. Disc. Data
Min. (KDD), pp. 283-286.

Zaki MJ, Hsiao CJ (2005). Efficient algorithms for mining closed
itemsets and their lattice structure. IEEE Trans. Knowl. Data Eng.,
17(4): 462-478.

