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In this article, a method that optimizes the information of an analyzed signal is described. This method 
is practicable for various analyses and in fact is an additional process that is used after the analysis. 
We tendered our idea in our previous article. In this method, we first analyzed the signal, after which the 
first frame and some other frames were put in a matrix, where each row was a frame. Then the likeness 
of this matrix was computed with itself. Subsequently, this process was done for the second frame and 
the other frames following it, after which it was done for all frames. 
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INTRODUCTION 
 
Speaker recognition usually consists of the three 
stages.First, Preemphasize the speech signal X[n] 
followed by frame blocking (usually at a frame size of 20 
ms and frame shift of 10 ms). A Hamming window is 
applied on each frame of the speech signal. 

Next, analyze the signal with an authentic analysis for 
speech and finally speaker models are constructed from 
the features extracted from the speech signal. Then a 
match score that is a measure of the similarity between 
the input feature vectors and some other model was 
computed. But sometimes an additional process 
combines with the main analysis that is called Information 
optimization. 

In this paper is described the speech production and is 
discovered that extraction of similarity between frames 
can optimize the information for speaker recognition. 
 
 
SPEECH PRODUCTION 
 
Modeling process is usually divided into two parts: the 
excitation source of vocal tract and the vocal tract. 
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The excitation source of vocal tract 
 
The airstreams from the lungs passes through the glottis 
to the vocal tract. The action of the vocal folds 
determines the phonation type, whose major types are 
voiceless, whisper and voicing. 

During whisper and voiceless phonation, the vocal folds 
are apart from each other, and the airstreams from the 
lungs will pass through the open glottis. The difference 
between whisper and voiceless phonation is determined 
by the degree of the glottal opening. In whisper, the 
glottal area is smaller. This results in a turbulent 
airstreams, generating the characteristic “hissing" sound 
of whispering. In voiceless phonation, the area of the 
glottis will be larger and the airstreams is only slightly 
turbulent when it enters the vocal tract. 

Voicing is a more complex mechanism than voiceless 
phonation and whisper. Voicing is a result of periodic 
repetitions of the vocal folds opening and closing. During 
the opening phase, the respiratory effort builds up the 
sub glottal pressure until it overcomes the muscular force 
which keeps the vocal folds together. The glottis opens, 
and the compressed airstreams bursts into pharynx with 
a speed of 2 to 5 m/s 

This relatively high speed causes a local drop of air 
pressure at the glottis, and as a consequence of this so- 
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Figure 1. Excitation signal for voicing. 

 
 
 

 
 
Figure 2. Vocal tract. 

 
 
 
called Bernoulli effect, the vocal folds start to close. The 
combined effort of the Bernoulli effect and muscular 
tension overcomes the force of respiratory pressure very 
quickly, and the vocal folds are pulled together. The 
coupling of the opening and closing phases continues, 
and the result is a periodic stream of air puffs which 
serves as the acoustic source signal for the voiced 
sounds. We refer to this signal as train of impulse (Figure 
1). 
 
 
The vocal tract 
 
Often the acoustic filter is modeled as a hard-walled tube 
resonator. In this so-called lossless tube model, the vocal 
tract is considered as a cascade of N lossless  tubes with  

varying cross-sectional areas (Figure 2). 
 For this kind of resonator, the resonances can be 

computed analytically. In the case of a single tube (N = 
1), the resonances of the tube (formant frequencies) are 
given by the following Equation 1: 
 

                                                     (1) 
 
Where Fn is the nth formant frequency [Hz], c is the 
speed of sound in air [m/s], and L is the total length of the 
tube [m]. 
 
As a result, the speech signal is formed with multiplying 
the excitation function in the vocal tract and with
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Figure 3. The matrix contains the first frame and its next 16 frames. 

 
 
 
reference to this signal; we can extract information from 
the vocal tract. 

So we can say the voicing phonemes signal is impulse 
response of vocal tract and the voiceless phonemes 
signal conveys the white noise and the vocal tract 
information together. As a result of this, the voicing 
phonemes are often used for speaker recognition. 

 
 

INTRODUCTION OF INFORMATION OPTIMIZATION 
USING EXTRACTION OF SIMILARITY BETWEEN 
FRAMES 

 
Here, our idea is described using a tentative example. 
Assume a speaker that you know his/her speech, if the 
speaker says "door" you will identify his/her speech and if 
the speaker says "pack" you will identify his/her speech 
again. 

Maybe this is usual for you, but if this topic is surveyed 
microscopically, you will discover that however the words 
(pack and door) have different phonemes but you identify 
the speaker. So we can say the speech convey two types 
of information, first the information of phonemes said by 
the speaker and secondly, the information of the speaker. 
The first type of information in various frames is different 
because the phoneme that is spoken in the various 
frames is different. But the second type of information in 

various frames is same because the speaker in the 
various frames is same. 

Therefore, extraction of similarity between frames only 
extracts the same information between frames, and 
because of this, the obtained information is only about 
the speaker and is very good for speaker recognition. 
 
 
INFORMATION OPTIMIZATION USING SIMILARITY 
EXTRACTION 
 
For information optimization in this article, first analyze 
the speech frames with the group delay function analysis 
that will be described later. Then make a matrix 
containing the first frame and its next 16 frames (Figure 
3). Then using the correlation function formula (2) 
computes the autocorrelation coefficients in various 
directions. 
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                 (2) 
 
The directions that are used in this article for computing 
the autocorrelation coefficients are selected tentatively.  

In many experiments, it is found that the horizontal 
autocorrelation   coefficients    will   get   best   results  for  
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Figure 4. The matrix contains the second frame and its next 16 frames. 

 
 
 
speaker recognition. For computing the horizontal 
autocorrelation coefficients, fix the "b" and vary the "a" 
from 0 to Nf in the autocorrelation formula that the Nf is 
the length of each frame (Negheng, 2005). 

Subsequently, some coefficients were obtained from 
the analyzed frame whose length is as long as the frame. 
The autocorrelation coefficients length is as long as the 
length of the analyzed signal. 

Then take the discrete cosine transform from obtained 
coefficient and extract the first coefficients as feature 
vectors. Then make another matrix with the second frame 
and its 16 next frames (figure 4). After this step, the 
discreet cosine transform is used to extract some 
coefficients. 

Thus, after the optimization process, we take a feature 
vector for each frame with some coefficients that is ready 
to apply to the neural networks. 
 
 
MODIFIED GROUP DELAY FUNCTION ANALYSIS 

 
Group delay is defined as the negative derivative of the Fourier 
transform phase. Mathematically, the group delay function is 
defined as: 
 

)()(
' ωω θ−=GDF

                                                                      (3) 
 
The Fourier transform phase and the Fourier transform magnitude  

are related. The group delay function can also be computed from 
the signal using: 
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Where the subscripts R and I, denote the real and imaginary parts 
of the Fourier transform. X(ω) and Y(ω) are the Fourier transforms 
of X[n] and nX[n] , respectively (Hegde et al., 2007). 

 
 
Properties of group delay functions 
 
The two main properties of the group delay functions of relevance 
to this work are as follows: 
 
(1) Additive property; 
(2) High-resolution property. 

 
 
Additive property 

 
The group delay function exhibits an additive property. Let 
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Figure 5. Comparison of the minimum phase group delay function with the magnitude and linear 
prediction (LP) spectrum. 

 
 
 

)().()( 21 ωωω HHH =
                                                      (7) 

 
Where H1 and H2 are the responses of the two resonators whose 
product gives the overall system response. Taking absolute value 
on both sides we have 
 

|)(|.|)(||)(| 21 ωωω HHH =
                                          (8) 

 
Using the additive property of the Fourier transform phase 
 

))(arg()).(arg())(arg( 21 ωωω HHH =
                      (9) 

 
Then, the group delay function is given by 
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)()()( 21 ωωω GDFGDFGDF +=
 

 
where τh1 and τh2 correspond to the group delay function of H1 and 
H2, respectively. It is clear that multiplication in the spectral domain 
becomes an addition in the group delay domain (Hegde et al., 
2007). 

High-Resolution property 
 
The group delay function has a higher resolving power when 
compared to the magnitude spectrum. The ability of the group delay 
function to resolve closely spaced formants in the speech spectrum 
has been investigated in an illustration given in Figure 5 to highlight 
the high-resolution property of the group delay function over both 
the magnitude and linear prediction spectrum. Figure 5(a) shows 
the z–plane plot of the system consisting of three complex 
conjugate pole pairs. Figure 5(b) is the corresponding magnitude 
spectrum, while Figure 5(c) illustrates the spectrum derived using 
LPC analysis, and Figure 5(d) is the corresponding group delay 
spectrum. It can be clearly observed that the three formats are 
resolved better in the group delay spectrum when compared to the 
magnitude or linear prediction spectrum. From these results, it is 
also evident that the system information in the speech signal is 
captured relatively better by the group delay spectrum when 
compared to the magnitude or linear prediction spectrum (Hegde et 
al., 2007). 
 
 
Basis for modifying the group delay function 

 
It has been shown in Yegnanarayana et al. (1984) that group delay 
functions can be used to accurately represent signal information as 
long as the roots of the z-transform of the signal are not too close to 
the unit circle in the  z-plane.  It  is  also  true  that  the  vocal  tract  
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Figure 6. Significance of proximity of zeros to the unit circle. 

 
 
 
system and the excitation contribute to the envelope and the fine 
structure respectively of the speech spectrum. When the Fourier 
transform magnitude spectrum is used to extract speech features, 
the focus is on capturing the spectral envelope of the spectrum and 
not the fine structure. 

Similarly, the fine structure has to be de-emphasized when 
extracting the vocal tract characteristics from the group delay 
function. The zeros that are close to the unit circle manifest as 
spikes in the group delay function and the strength of these spikes 
is proportional to the proximity of these zeros to the unit circle. To 
illustrate this, a four formant system with four poles and their 
complex conjugates is simulated. The pole-zero plot of the four 
formant system is shown in Figure 6(a) while the corresponding 
group delay spectrum is shown in 6(b). Figure 6(c) shows the pole-
zero plot of the same system with zeros added uniformly in very 
close proximity to the unit circle. It is evident from Figure 6(d) that 
the group delay spectrum for such a system becomes very spiky 
and ill defined primarily due to zeros that are added in very close 
proximity to the unit circle in the z-plane. In Figure 6(e), we 
manually move all the zeros radially into the unit circle and re-
compute the group delay function of such a system. The group 
delay spectrum of such a system is shown in Figure 6(f). It is clear 
that this technique of pushing the zeros into the unit circle radially 
restores the group delay spectrum without any distortions in the 

original formant locations. The spikes introduced by zeros close to 
the unit circle form a significant part of the fine structure and cannot 
be eliminated by normal smoothing techniques. Hence, the group 
delay function has to be modified to eliminate the effects of these 
spikes. Here, the considerations discussed so far form the basis for 
modifying the group delay function (Hegde et al., 2007). 
 
 
Modified group delay function 

 
As mentioned, for the group delay function to be a meaningful 
representation, it is only necessary that the roots of the transfer 
function are not too close to the unit circle in the plane. Normally, in 
the context of speech, the poles of the transfer function are well 
within the unit circle. The zeros of the slowly varying envelope of 
speech correspond to that of nasals. 

The zeros in speech are either within or outside the unit circle 
since the zeros also have nonzero bandwidth. Here, we modify the 
computation of the group delay function to suppress these effects. 

Let us reconsider the group delay function derived directly from 
the speech signal. It is important to note that the denominator term 
|X(ω)| in (6) becomes zero, at zeros that are located close to the 
unit circle. The spiky nature of the group delay spectrum can be 
overcome by replacing the term |X (ω)|  in  the  denominator  of  the  
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group delay function as in (6) with its cepstrally smoothed version, 
|S(ω)| (Hegde et al., 2007). 
 
 
Significance of cepstral smoothing 
 
Assuming a source system model of speech production, the z-
transform of the system generating the speech signal is given by 
 

                                                                       (11) 
 
Where the polynomial N(z) is the contribution due to zeros and the 
polynomial D(z) is the contribution due to the poles of the vocal 
tract system. The frequency response of H(z) is given by 
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Where N(ω) and D(ω) are obtained by evaluating the polynomials 
on the unit circle in z-domain. By using the additive property of the 
group delay function, the group delay function of the system 
characterized by H(ω) is given by 
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where τ N (ω) and τ D (ω) are the group delay functions of N (ω) 
and D (ω), respectively. Spikes of large amplitude are introduced 
into τ N (ω) primarily due to zeros of N (z) close to the unit circle. As 
already discussed, the group delay function can be directly 
computed from the speech signal as 
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The group delay function for τ N (ω) in (13) can be written as 
 

                                                (15) 
 
where α N (ω) is the numerator term of (14) for τ N (ω). As |N (ω) |² 
tends to zero (for zeros on the unit circle), τ N (ω) has large 
amplitude spikes. Similarly, the group delay function for τ D (ω) in 
(13) can be written as 
 

                                              (16) 

 
where α D (ω) is the numerator term of (14) for τ D (ω). The term | 
D (ω) |² does not take values very close to zero since D(z) has all 
roots well within the unit circle. Therefore, the term τ D (ω) contains 
the information about the poles of the system and has no spikes of 
large amplitude. Substituting (13) and (15) in (16), we have: 
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where α N (ω) and α D (ω) are the numerator terms of (14) for τ N 
(ω) and τ D (ω), respectively. Assuming that the envelope of | N (ω) 
|² is nearly flat (zero spectrum), multiplying τ x (ω) with | N (ω) |² will 
emphasize the resonant peaks of the second term. This leads to 
the initial form of the modified group delay function which is given 
by 
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Substituting (17) in (18) 
 

2

2
|)(|.

)(

)(
)( ω

ω

ωα
ωα N

D

D

N −=

                                        (19) 
 
In (19), an approximation to |N(ω)|²  is required, which is a nearly 
flat spectrum (ideally a zero spectrum). An approximation E (ω) to 
|N (ω) |² can be computed as 
 

                                                                            (20) 
 
Where S (ω) is the squared magnitude (|N (ω) |²) of the signal X[n] 
and Sc (ω) is the cepstrally smoothed spectrum of S (ω) (Hegde et 
al., 2007). Alternately, the modified group delay function can be 
defined as 
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Therefore, the modified group delay function is capable of pushing 
zeros on the unit circle, radially into the unit circle, and thus 
emphasizing τ D (ω) which corresponds to the contribution from the 
poles of the vocal tract system (Yegnanarayana et al., 1984). 
 
 
Definition of the modified group delay function 

 
Since the peaks at the formant locations are very spiky in nature, 
two new parameters α and γ are introduced to reduce the amplitude 
of these spikes and to restore the dynamic range of the speech 
spectrum. The new modified group delay function is defined as: 
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where S (ω) is the smoothed version of | X (ω) |. The parameters α 
and γ introduced vary from 0 to 1. 
 
 
Robustness to convolutional and white noise 

 
Assuming a source system model of speech production, the clean 
speech X c (n), its Fourier transform and the corresponding group 
delay function (Hegde et al., 2007) is given by 



 
 
 
 

                                   (24) 
 

                                                                    (25) 
 
Similarly, the noisy speech signal and its Fourier transform are 
given by 
 

                                     (26) 
 

                                     (27) 
 
where h (n) is the time invariant channel response and w (n) is the 
additive white noise. Taking the Fourier transform of (24) and 
substituting in (27), X n (ω) and the corresponding group delay 
function τ N (ω) is given by 
 

                    (28) 
 

                               (29) 
 
where τ numerator (ω) is the group delay function corresponding to 
that of GE(ω)H(ω)+A(ω)W(ω) , and τ a (ω) is the group delay 
function corresponding to A(ω). 
 
Further, the term GE(ω)H(ω) in τ numerator (ω) dominates in high 
signal-to-noise ratio (SNR) regions and the term A(ω)W(ω) in τ 
numerator (ω) dominates in low SNR regions. Since α is chosen 
such that (0<α<1), the question of noise being emphasized does 
not arise. In the high SNR case, it is the excitation, and in the 
second case, it is white noise that makes the group delay spectrum 
spiky and distorted primarily due to zeros that are very close to the 
unit circle in the z-domain. 

White noise has a flat spectral envelope, and hence, contributes 
zeros very close to the unit circle. Further, the locations and 
amplitudes of these spikes are also not known. To suppress these 
spikes, the behavior of the spectrum where the noise zeros 
contribute to sharp nulls is utilized. A spectrum with a near flat 
spectral envelope containing the spectral shape contributed by the 
zeros is derived using cepstral smoothing as discussed and 
multiplied with the group delay function to get the modified group 
delay function as in (22) and (23). The effects due to the excitation 
can be dealt with by pushing all zeros very close to the unit circle in 
the z-domain, well inside the unit circle by appropriately selecting 
values for the two parameters α and γ as defined in (22) and (23). 

In Hegde et al. (2007), the log and root compression approaches 
are compared with the MODGDF in the presence of white noise at 
different values of SNR and is picked 20 complete sentences from 
different dialect regions, consisting of both female and male 
speakers, from the TIMIT database. These sentences are added 
with white noise scaled by a factor η. 

The average error distributions between the clean and the noisy 
speech across all frames corresponding to the 20 sentences are 
then calculated for four different values of SNR 0, 3, 6, and 10 dB 
and is illustrated in Figure 7. 

It is clear from Figure 4 that average deviation of the noisy 
speech cepstra from the clean speech cepstra is the least for the 
MODGDF when compared to either the spectral root, the energy 
root, or the log compressed cepstra (Hegde et al., 2007). 
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COMPUTATION OF VARIOUS FEATURES 
 
Here, the computation of the MODGDF and optimized MODGDF 
are discussed. 
 
 
Algorithm for computing the modified group delay cepstra 

 
The following is the algorithm for computing the modified group 
delay cepstra: 
 
(1) Preemphasize the speech signal x(n) followed by frame blocking 
at a frame size of 20 ms and frame shift of 10 ms. A hamming 
window is applied on each frame of the speech signal (IMPEDOVO 
et al., 2008). 
(2) Compute the DFT of the framed and windowed speech signal x 
(n) as X (k) and the time scaled speech signal nx(n) as Y(k). 
(3) Compute the cepstrally smoothed spectra of |X (k)|. Let this be 
S (k). A low-order cepstral window (lifterw) that essentially captures 
the dynamic range of |X (k)| should be chosen. In Hegde et al. 
(2007), it is discussed that the best value for this window is 6. 
(4) Compute the modified group delay function by (22) and (23). 
And in this step we will obtain a spectrum as long as the original 
frame and because of the spectrum is bilateral we get the first half 
of the spectrum.  
(5) The parameters α and γ introduced vary from 0 to 1. In Hegde et 
al. (2007), it is discussed that the best value for α is 0.4 and the 
best value for γ is 0.9. 
(6) Compute the modified group delay cepstra as 
 

∑
=

+=
Nf

k

Nfknkfnc
0

)/)12(cos()()( π
                             (30) 

 
Where τ m (k) is the modified group delay spectra and Nf is the 
length of τ m (k). 

 
 
Algorithm for computing the optimized modified group delay 
cepstra 
 
The following is the algorithm for computing the optimized modified 
group delay cepstra: 
 
(1) Preemphasize the speech signal x(n) followed by frame blocking 
at a frame size of 20 ms and frame shift of 10 ms. A hamming 
window is applied on each frame of the speech signal figure 8 
(IMPEDOVO et al., 2008). 
(2) Compute the DFT of the framed and windowed speech signal x 
(n) as X (k) and the time scaled speech signal nx(n) as Y(k). 
(3) Compute the cepstrally smoothed spectra of |X (k)|. Let this be 
S (k). A low-order cepstral window (lifterw) that essentially captures 
the dynamic range of |X (k)| should be chosen. In Hegde et al. 
(2007), it is discussed that the best value for this window is 6. 
(4) Compute the modified group delay function by (22) and (23). 
And in this step we will obtain a spectrum as long as the original 
frame and because the spectrum is bilateral, we get the first half of 
the spectrum.  
(5) The parameters α and γ introduced vary from 0 to 1. In Hegde et 
al. (2007), it is discussed that the best value for α is 0.4 and the 
best value for γ is 0.9. 
(6) Make a matrix contains the first frame and its next 16 frames 
(Figure 3). Then compute the horizontal autocorrelation coefficients 
as discussed in information optimization using similarity extraction 
(R[0,0],R[0,1],R[0,2],R[0,3],...,R[0,Nf]) and do the same for all 
frames. 

Note that the Nf is the analyzed frame length. 
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Figure 7. Comparison of the average error distributions of the MODGDF, MFCC, and root compressed cepstra in noise. (a) 
Error distribution of the MODGDF (α = 0:4, γ = 0:9) at 0-dB SNR. (b) Error distribution of the MODGDF (α = 0:4, γ = 0:9) at 
3-dB SNR. (c) Error distribution of the MODGDF (α = 0:4, γ = 0:9) at 6-dB SNR. (d) Error distribution of the MODGDF (α = 
0:4, γ = 0:9) at 10-dB SNR. (e) Error distribution of the spectrally root compressed cepstra (root = 2/3) at 0-dB SNR. (f) Error 
distribution of the spectrally root compressed cepstra (root = 2/3) at 3-dB SNR. (g) Error distribution of the spectrally root 
compressed cepstra (root = 2/3) at 6-dB SNR. (h) Error distribution of the spectrally root compressed cepstra (root = 2/3) at 
10-dB SNR. (i) Error distribution of the energy root compressed cepstra (root = 0.08) at 0-dB SNR. (j) Error distribution of the 
energy root compressed cepstra (root = 0.08) at 3-dB SNR. (k) Error distribution of the energy root compressed cepstra (root 
= 0.08) at 6-dB SNR. (l) Error distribution of the energy root compressed cepstra (root = 0.08) at 10-dB SNR. (m) Error 
distribution of the MFCC at 0-dB SNR. (n) Error distribution of the MFCC at 3-dB SNR. (o) Error distribution of the MFCC at 
6-dB SNR. (p) Error distribution of the MFCC at 10-dB SNR. 

 
 
 
(7) Compute the optimized modified group delay cepstra as (30) 
where τ m (k) is the modified group delay spectra and Nf is the 
length of τ m (k). 
 
 
EXPERIMENTAL SETUP 
 
Data base 

 
The data base in this project contained from 10 sentences from 20 
various speakers from TIMIT that 7 sentences are used for training 
and 3 sentences are used for testing the network. 
 
 
The neural network 

 
The used neural network in this project is a three layer back 
propagation network, that is, the first layer has 8 neurons, the 
hidden layer has 19 neurons and the output layer has 20 neurons 
which are equal to the number of speakers and this network has 20 
inputs (Muzhir et al., 2007). 

The used function in first layer and hidden layer is tansig that is 
between -1 and 1, and the used function in output layer is logsig 
that is between 0 and 1 Figure 9. 

Apply each frame to input of network and get a number between  
0 and 1 in each  rows  of  output  of  network  that  each  number  is  

probability of each speaker figure 10.  

 
 
RESULTS 
 
The simulation results for clean signal in timit database 
that is described in previously sections are illustrated in 
Table 1. The simulation results for noisy signal with 
SNR3 in Timit database are illustrated in Table 2. 

The recognition percent in these tables is low because 
the simulation is text independent. In text independent, 
the network training and data base testing varies (Gish et 
al., 1994). Usually, in the text independent simulation, the 
recognition percent is lower than text dependent 
simulation. Finally, we can see in the tables that the 
recognition percent of the Optimized GDF is better. 

 
 
CONCLUSION 

 
In this article, we describe a method for optimization of 
analyzed frames using extraction similarity  between  one
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Figure 8. The windowing process. 

 
 
 

 
 
Figure 9. Tansig and logsig functions. 

 
 
 

 
 
Figure 10. Back propagation neural network. 
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Table 1. The results of recognition percent for clean signal. 
  

Number of speakers Feature Recognition (%) 

20 GDF 90 

20 Optimized GDF 96.66 

 

 
 

Table 2. The results. 

 

Number of speakers Feature Recognition (%) 

20 GDF 83.33 

20 Optimized GDF 90 

 
 
 
frame and next frames. We used from correlation function 
and extracted the correlation coefficient in various 
direction. 

Note that this method can be used for every analysis 
and not only in extracting the information of speaker and 
removing the information of phonemes. The used 
analysis in this text is group delay function and the results 
of simulations, describes that the correlation method is 
better than other. 
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