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We study the class of real-valued functions on convex subsets of R
n which are computed

by the maximum of finitely many affine functionals with integer slopes. We prove several
results to the effect that this property of a function can be detected by sampling on small
subsets of the domain. In so doing, we recover in a unified way some prior results of the
first author (some joint with Liang Xiao). We also prove that a function on R

2 is a
tropical polynomial if and only if its restriction to each translate of a generic tropical
line is a tropical polynomial.
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0. Introduction

One of the most fundamental classes of real-valued functions on Rn is the class
of convex polyhedral functions, i.e. those functions computed as the maximum of a
finite number of affine functionals

λ(x1, . . . , xn) = a1x1 + · · · + anxn + b.

For one, this class is fundamental in the theory of linear programming; on the other
hand, it also figures prominently in algebraic geometry via the study of tropical
polynomial functions.

The purpose of this paper is to study some subclasses of convex polyhedral
functions for which we impose some integrality conditions. The two classes we focus
on are the transintegral polyhedral functions, for which the coefficients a1, . . . , an

in the affine functionals λ must be integers, and the integral polyhedral functions,
for which both the coefficients a1, . . . , an and the constant term b must be integers.

What we prove are a number of results of the following form: a function on a
suitable convex subset of Rn is (trans)integral polyhedral if and only if the same
is true of its restrictions to some small subsets of the domain (usually certain
straight lines). In so doing, we recover in a unified way two earlier results along
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these lines, one (Theorem 8.2) from the solo paper [3] by the first author, the
other (Theorem 7.4) from the joint paper [6] by the first author and Liang Xiao.
(Those results were introduced to study p-adic differential equations; we include a
brief description of that application.) We also obtain a theorem (Theorem 9.1) that
asserts that a tropical Laurent polynomial may be identified from its restrictions
to the translates of a generic tropical line.

1. Convex Sets and Functions

Notation 1.1. Throughout this paper, let e1, . . . , en denote the standard basis
vectors of Rn.

Notation 1.2. For all definitions in this section and the next, fix a subfield F of
R. When one of these definitions is referenced with F omitted, one should take
F = R; the only other case we will be interested in is F = Q.

Definition 1.3. Let S be a subset of Fn for some non-negative integer n. We say
S is F -convex (resp. F -affine) if for any x, y ∈ S and t ∈ [0, 1]∩F (resp. t ∈ F ), we
have tx + (1 − t)y ∈ S. Any intersection of F -convex (resp. F -affine) sets is again
F -convex (resp. F -affine).

Definition 1.4. For any set T ⊆ Fn, the F -convex hull (resp. F -affine hull) of
T is the intersection of all F -convex (resp. F -affine) sets of Fn containing T . It is
equal to the set of all points of the form t1x1 + · · · + tmxm for some positive integer
m, some x1, . . . , xm ∈ S, and some t1, . . . , tm ∈ F ∩ [0, +∞) (resp. t1, . . . , tm ∈ F )
with t1 + · · · + tm = 1 [7, Corollary 1.4.1, Theorem 2.3].

Definition 1.5. For S ⊆ Rn convex, the (relative) interior of S, denoted int(S), is
defined to be the topological interior of S relative to its affine hull. This is nonempty
if S is nonempty [7, Theorem 6.2]. By the dimension of S, denoted dim(S), we will
mean the dimension of its affine hull.

Definition 1.6. Let S ⊆ Fn be an F -convex set. A function f : S → R is F -convex
if for any x, y ∈ S and t ∈ [0, 1] ∩ F , we have the Jensen inequality

tf(x) + (1 − t)f(y) ≥ f(tx + (1 − t)y). (1.6.1)

This implies that for any x1, . . . , xm ∈ S and t1, . . . , tm ∈ [0, 1] ∩ F with t1 + · · ·+
tm = 1, we have

m∑
i=1

tif(xi) ≥ f

(
m∑

i=1

tixi

)
. (1.6.2)

If f is convex, then f is continuous on int(S) [7, Theorem 10.1]; we will prove a
stronger result later (Theorem 5.1).

Remark 1.7. Note that f is convex if and only if the epigraph of f , defined by

epi(f) = {(x, y) ∈ S × R : y ≥ f(x)},
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is convex. Using this convention, we may extend the definition of convexity to
functions with range R ∪ {±∞} (but only when explicitly specified). In particular,
one can canonically extend any convex function on S to a convex function on Rn

taking the value +∞ everywhere on Rn\S; this is the convention used in [7].

2. Directional Derivatives

Definition 2.1. Let S ⊆ Fn be an F -convex subset. Pick x ∈ S and z ∈ Fn such
that x+tz ∈ S for some t ∈ (0, +∞)∩F . For f : S → R a function whose restriction
to {x + tz : t ∈ [0, ε] ∩ F} is F -convex for some ε > 0, define f ′(x, z) to be the
directional derivative of f at x in the direction of z, i.e.

f ′(x, z) = lim
t→0+

f(x + tz) − f(x)
t

.

Note that this is a limit taken over a decreasing sequence; for it to exist in all cases,
we must allow it to take the value −∞.

Lemma 2.2. Let S ⊆ Fn be an F -convex subset. Let U ⊆ S be an F -convex subset.
Suppose z ∈ Fn is such that for each x ∈ U, there exists t ∈ (0, +∞) ∩ F such that
x + tz ∈ S. Let f : S → R be a function satisfying the following conditions:

(a) The restriction of f to U is affine.
(b) For each x ∈ U, there exists ε > 0 such that the restriction of f to {x + tz : t ∈

[0, ε] ∩ F} is F -convex.
(c) For each line segment L with endpoints in U, there exists ε > 0 such that for

each t ∈ [0, ε] ∩ F, the restriction of f to (L ∩ Fn) + tz is F -convex.

Then the function x �→ f ′(x, z) is F -convex on U .

Proof. Take x1, x2 ∈ U . We assume first that f ′(x1, z), f ′(x2, z) > −∞. Pick
t ∈ [0, 1] ∩ F and put x3 = tx1 + (1 − t)x2. Choose ε > 0 satisfying (b) for each
of x = x1, x2, x3, and satisfying (c) for L the line segment from x1 to x2. Pick
u ∈ (0, ε] ∩ F such that

f(xi + uz)− f(xi)
u

≤ f ′(xi, z) + δ, i = 1, 2.

Then

tf ′(x1, z)+ (1 − t)f ′(x2, z) ≥ t
f(x1 + uz)− f(x1)

u
+ (1 − t)

f(x2 + uz) − f(x2)
u

− δ

=
tf(x1 + uz) + (1 − t)f(x2 + uz)− f(x3)

u
− δ

≥ f(x3 + uz)− f(x3)
u

− δ

≥ f ′(x3, z) − δ.
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Since δ was arbitrary, this proves the claim when both f ′(x1, z) and f ′(x2, z) are not
−∞. If one of them is −∞, the same argument would imply that f ′(x3, z) = −∞;
this completes the proof.

3. Affine Functionals

Notation 3.1. For all definitions in this section and the next, fix a subgroup G

of R.

Definition 3.2. An affine functional is a map λ : Rn → R of the form
λ(x1, . . . , xn) = a1x1 + · · · + anxn + b for some a1, . . . , an, b ∈ R. The slope of
λ is the linear functional µ defined by µ(x1, . . . , xn) = a1x1 + · · · + anxn. We say
λ is G-integral if a1, . . . , an ∈ Z and b ∈ G. We use integral and transintegral as
synonyms for Z-integral and R-integral, respectively.

We can characterize convexity using affine functionals as follows.

Lemma 3.3. Let S ⊆ Rn be an open convex subset. Consider the following condi-
tions on a function f : S → R.

(a) f is convex.
(b) For each x ∈ S, there exists an affine functional λ : Rn → R such that

f(x) = λ(x)

f(y) ≥ λ(y) (y ∈ S).

(c) For each x ∈ S, there exist an affine functional λ and a quantity ε > 0 such that

f(x) = λ(x)

f(y) ≥ λ(y) (y ∈ S, |x − y| < ε).

Then (a) and (b) are equivalent. Moreover, if f is assumed to be upper
semicontinuous, then (a) and (b) are also equivalent to (c).

Proof. If (a) holds, then (b) holds because (x, f(x)) /∈ int(epi(f)), so by [7,
Corollary 11.6.2] there is a linear function on Rn+1 which is zero at (x, f(x)) and
non-negative on epi(f). If (b) holds, then (a) holds because epi(f) is the intersection
of the epigraphs of some affine functionals, and so is convex.

Clearly (b) implies (c). Conversely, suppose f is upper semicontinuous and
(c) holds. As noted in [8, Theorem 3], the convexity of f in this case follows from
the analogous statement with n = 1, which in turn follows at once from [1, §1.4,
Proposition 9, Corollaire 1].

Corollary 3.4. Let S ⊆ Rn be an open convex subset, let f : S → R be a convex
function, and let T be the set of affine functionals λ : Rn → R such that f(x) ≥ λ(x)
for all x ∈ S. Then for all x ∈ S,

f(x) = sup{λ(x) : λ ∈ T }. (3.4.1)

C
on

fl
ue

nt
es

 M
at

h.
 2

00
9.

01
:8

7-
10

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
@

 B
E

IJ
IN

G
 o

n 
12

/1
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



May 15, 2009 17:45 WSPC/251-CM 00003

Detecting Integral Polyhedral Functions 91

Proof. The inequality f(x) ≥ sup{λ(x) : λ ∈ T } is evident from the definition of
T . For the reverse inequality, note that for each x ∈ S, by Lemma 3.3, there exists
λ ∈ T with f(x) = λ(x).

Corollary 3.5. With notation as in Corollary 3.4, the formula (3.4.1) defines a
lower semicontinuous extension of f to a convex function f̃ : Rn → R ∪ {+∞}.

Definition 3.6. For S ⊆ Rn a convex subset and f : S → R a convex function, a
domain of affinity for f is a subset U ⊆ S with nonempty interior relative to the
affine hull of S, on which f agrees with an affine functional λ. We call λ an ambient
functional for U ; it is uniquely determined if S has affine hull Rn.

Lemma 3.7. Let S ⊆ Rn be a convex subset, let f : S → R be a convex function,

and let λ be an ambient functional for some domain of affinity U for f . Then
f(x) ≥ λ(x) for all x ∈ S.

Proof. Pick y in the topological interior of U relative to the affine hull of S; then
for t ∈ [0, 1] sufficiently close to 0, z = tx+(1− t)y will also belong to U . The claim
now follows from (1.6.1).

Corollary 3.8. With notation as in Lemma 3.7, the maximal domain of affinity
U with ambient functional λ is a convex set.

Proof. For x, y ∈ U and t ∈ [0, 1], for z = tx + (1 − t)y, we have

f(z) ≥ λ(z) = tλ(x) + (1 − t)λ(y) = tf(x) + (1 − t)f(y) ≥ f(z).

Hence z ∈ U .

We build domains of affinity using the following argument.

Lemma 3.9. Let T ⊆ Rn be a subset with convex hull U, and pick z ∈ int(U).
Let f : U → R be a convex function, let λ : Rn → R be an affine functional, and
suppose that f(x) = λ(x) for all x ∈ T ∪ {z}. Then f(x) = λ(x) for all x ∈ U .

Proof. Pick any x ∈ U . On one hand, by (1.6.2), f(x) ≤ λ(x). On the other hand,
since z ∈ int(U), there exist y ∈ U and t ∈ (0, 1] such that tx + (1 − t)y = z

(namely, pick y on the ray from z away from x). Since y is in the convex hull of T ,
we can find y1, . . . , ym ∈ T and t1, . . . , tm ∈ [0, 1] with t1 + · · · + tm = 1, such that
t1y1 + · · · + tmym = y. Then

tx + (1 − t)t1y1 + · · · + (1 − t)tmym = z,

so (1.6.2) implies f(x) ≥ λ(x).
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4. Polyhedral Sets and Functions

Definition 4.1. Let F be a subfield of R. An (F -rational) closed half-space is a
subset of Rn of the form

S = {x ∈ Rn : λ(x) ≥ 0},
for λ an (F -integral) affine functional with nonzero slope. A subset S ⊆ Rn is
(F -rational) polyhedral if it is the intersection of some finite number of (F -rational)
closed half-spaces. (This number may be zero, in which case S = Rn.) A polyhedral
subset of Rn is closed and convex, but not necessarily bounded. We use rational
and transrational as synonyms for Q-rational and R-rational, respectively.

Lemma 4.2. Let S ⊆ Rn be a polyhedral subset. Then any convex function f :
S → R is upper semicontinuous. Consequently, f is continuous if and only if it is
lower semicontinuous.

Proof. See [7, Theorem 10.2].

Definition 4.3. Let S ⊆ Rn be a polyhedral subset. Choose affine functionals
λ1, . . . , λm : Rn → R such that

S = {x ∈ Rn : λi(x) ≥ 0 (i = 1, . . . , m)}.
A facet of S is a nonempty subset of S of the form

B = {x ∈ S : λi(x) = 0 (i ∈ I)}
for some subset I of {1, . . . , m}; this definition does not depend on the choice of
λ1, . . . , λm. A facet is proper if it is not equal to S. Note that the union of the
proper facets of S equals S\ int(S). An element x ∈ S forming a facet by itself is
called a vertex of S.

Definition 4.4. For S ⊆ Rn, a function f : S → R is (G-integral) polyhedral if it
has the form

f(x) = max{λ1(x), . . . , λm(x)} (x ∈ S) (4.4.1)

for some (G-integral) affine functionals λ1, . . . , λm : Rn → R. This implies that f

is convex and continuous.

Lemma 4.5. Let S ⊆ Rn be a polyhedral subset. Let f : S → R be a function.
Then the following conditions are equivalent.

(a) f is polyhedral.
(b) f is convex and S is covered by finitely many domains of affinity for f .
(c) f is convex and S is covered by domains of affinity for f whose ambient func-

tionals have only finitely many different slopes.
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Proof. If f(x) = supi{λi(x)} with each λi affine, then it is clear that f is convex
and that the domains of affinity for f corresponding to the λi(x) cover S. Hence
(a) implies (b). Conversely, if f is convex and S is covered by domains of affinity
for f with ambient functionals λ1, . . . , λm, then f(x) = supi{λi(x)} by Lemma 3.7.
Hence (b) implies (a).

It is trivial that (b) implies (c). The reverse implication holds by Lemma 3.7,
which implies that no domains of affinity for f can have distinct ambient functionals
with the same slope.

Definition 4.6. Let S ⊆ Rn be a convex subset. A function f : S → R is locally
(G-integral) polyhedral if for each x ∈ S, there exists a neighborhood U of x in Rn

such that the restriction of f to U ∩ S is (G-integral) polyhedral. If f is locally
polyhedral, then f is evidently continuous; by replacing Rn with the affine hull of
S and applying Lemma 3.3 on int(S), we see that f is also convex.

Lemma 4.7. Let S ⊆ Rn be a compact convex subset. Then f : S → R is locally
polyhedral if and only if f is polyhedral.

Proof. Suppose f is locally polyhedral. Then each x ∈ S admits a neighborhood
U in Rn such that the restriction of f to U ∩S is polyhedral. Since S is compact, it
is covered by finitely many of these neighborhoods. Hence S is covered by finitely
many domains of affinity for f ; by Lemma 4.5, f is polyhedral.

5. Extending Convex Functions

It is useful to note that the notions of F -convexity and ordinary convexity are
essentially equivalent; this refines the usual assertion that a convex function on an
open convex set is continuous [7, Theorem 10.1].

Theorem 5.1. Let F be a subfield of R. Let S ⊆ Rn be an open convex subset. Let
f : S ∩ Fn → R be a function such that for each x ∈ Fn and each i ∈ {1, . . . , n},
the restriction of f to S ∩ Fn ∩ (x + Rei) is F -convex.

(a) The function f extends uniquely to a continuous function f̃ on S such that for
each x ∈ Rn and each i ∈ {1, . . . , n}, the restriction of f̃ to S ∩ (x + Rei) is
convex.

(b) If f is F -convex, then f̃ is convex.
(c) For any closed intervals I1, . . . , In such that I1 × · · · × In ⊂ S, the directional

derivatives f ′(x,±ei) for x ∈ I1 × · · · × In and i ∈ {1, . . . , n} are bounded.

Proof. We proceed by induction on n, with trivial base case n = 0. Pick x =
(x1, . . . , xn) ∈ S (not necessarily in S ∩ Fn). For i = 1, . . . , n, pick closed intervals
Ii,0, Ii,1 with endpoints in F , such that xi is contained in the interior of Ii,0, Ii,0 is
contained in the interior of Ii,1, and I1,1 × · · · × In,1 ⊂ S.
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Put Bj = I1,j × · · · × In,j for j = 0, 1. By the induction hypothesis, f extends
uniquely to a continuous function on each face of each box Bj . In particular, f

achieves maximum and minimum values on the boundary ∂(Bj) of each Bj .
We now argue that f is Lipschitz continuous on B0. Pick any y, z ∈ B0 ∩ Fn

whose difference is a nonzero multiple of some ei. Then there exist a unique affine
function g : R → Rn and values a1 < 0 ≤ a0 < b0 ≤ 1 < b1, all contained in F ,
such that

g(a0) = y,

g(b0) = z,

{t ∈ R : g(t) ∈ B0} = [0, 1],

{t ∈ R : g(t) ∈ B1} = [a1, b1].

We have g(a1), g(0), g(y), g(z), g(1), g(b1) ∈ Fn, so the F -convexity of the restriction
of f to the image of g implies

g(0) − g(a1)
−a1

≤ g(z) − g(y)
b0 − a0

≤ g(b1) − g(1)
b1 − 1

.

In this expression, the quantities g(a1), g(0), g(1), g(b1) are bounded because f is
bounded on ∂(B0) ∪ ∂(B1). The quantities −a1 and b1 − 1 depend only on i, so
they are bounded above and bounded below away from 0.

It now follows that for some c > 0, for all y = (y1, . . . , yn), z = (z1, . . . , zn) ∈
B0 ∩ Fn, we have

|f(y) − f(z)| ≤ c(|y1 − z1| + · · · + |yn − zn|).
This implies that f is Lipschitz continuous on B0, so f extends uniquely to a
continuous function on B0.

Since B0 was chosen to contain an arbitrary x ∈ S in its interior, we conclude
that f extends uniquely to a continuous function on all of S, proving (a). We deduce
(b) as an immediate corollary because the terms of (1.6.1) vary continuously with
the arguments. We deduce (c) from the Lipschitz property established above.

6. Detecting Locally Polyhedral Functions

We now give a criterion for local F -integral polyhedrality.

Theorem 6.1. Let F be a subfield of R. Let S ⊆ Rn be an open convex subset.
Let f : S ∩ Fn → R be a continuous function. Suppose that the restriction of f to
every F -rational line segment contained in S and parallel to one of the coordinate
axes is F -integral polyhedral. Then the continuous extension of f to S given by
Theorem 5.1 is locally F -integral polyhedral.

The proof will be by induction on n, with trivial base case n = 1. In order to break
the proof up into a sequence of lemmas, we must assert a hypothesis that will be
available during the induction step.
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Hypothesis 6.2. Fix a value of n, and set notation as in Theorem 6.1. By The-
orem 5.1, f extends uniquely to a continuous function whose restriction to each
line parallel to a coordinate axis is convex; we will also call this extended function
f . Also assume that the conclusion of Theorem 6.1 holds in all cases where n is
replaced by any smaller positive integer.

Lemma 6.3. Let I ⊆ R be an open subinterval. Let f : I → R be a convex function
such that f ′(x, 1) ∈ Z for all x ∈ Q. Then f is locally transintegral polyhedral.

Proof. For any two x1, x2 ∈ I for which f ′(x1, 1) = f ′(x2, 1) and any x3 ∈ (x1, x2),
we have

f ′(x1, 1) ≤ f(x3) − f(x1)
x3 − x1

≤ f(x2) − f(x3)
x2 − x3

≤ f ′(x2, 1) = f ′(x1, 1).

Hence f is affine with integral slope on [x1, x2].
Let J = [a, b] be any closed subinterval of int(I). The values f ′(x, 1) for x ∈ I

are integral and lie in the finite interval [f ′(a, 1), f ′(b, 1)], so they are restricted to
a finite set. Since f ′(x, 1) is nondecreasing, the set of x for which f ′(x, 1) takes
any particular value is connected. On such a set, by the previous paragraph f is
affine with integral slope. The closures of these sets cover J , so f is transintegral
polyhedral on J . This proves that f is locally transintegral polyhedral on I.

Lemma 6.4. Under Hypothesis 6.2, for any x ∈ S and any i ∈ {1, . . . , n}, the
restriction of f to x + Rei is locally transintegral polyhedral.

Proof. It suffices to treat the case i = n. Write x = (x1, . . . , xn). By Lemma 6.3,
it suffices to check that if xn ∈ F , then f ′(x, en) ∈ Z.

Let H denote the hyperplane spanned by e1, . . . , en−1. Since xn ∈ F , the hyper-
plane x+H is F -rational. By Hypothesis 6.2, the restriction of f to x+H is locally
F -integral polyhedral. Consequently, there exists an F -rational polyhedral subset
U of x + H such that x ∈ int(U) and f is affine on U . The set int(U)∩Fn is dense
in U because U is F -rational polyhedral. By Lemma 2.2, the function f ′(y, en) is
F -convex for y ∈ int(U) ∩ Fn; on the other hand, for y ∈ int(U) ∩ Fn, we have
f ′(y, en) ∈ Z by Hypothesis 6.2. Hence f ′(y, en) is equal to a constant integer value
on all of int(U). In particular, f ′(x, en) ∈ Z, completing the proof.

Lemma 6.5. Under Hypothesis 6.2, f is convex and each x ∈ S belongs to a
domain of affinity for f whose ambient functional is transintegral.

Proof. By Lemma 6.4, we may reduce to the case F = R. We will use the criterion
of Lemma 3.3 to prove convexity; it suffices to show that for each x ∈ S, we can find
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a neighborhood U of x in S and a convex function g : U → R such that f(x) = g(x)
and f(y) ≥ g(y) for y ∈ U . In the process, we will exhibit a domain of affinity for
f containing x.

Let H denote the hyperplane spanned by e1, . . . , en−1. By Hypothesis 6.2, the
restriction of f to x + H is locally transintegral polyhedral. In particular, of the
domains of affinity for f on S ∩ (x + H), only finitely many contain x. Call these
V1, . . . , Vm, and let λ1, . . . , λm : x + H → R be the corresponding ambient func-
tionals; then by Lemma 3.7,

f(y) ≥ sup{λ1(y), . . . , λm(y)} (y ∈ S ∩ (x + H))

with equality at y = x.
For j = 1, . . . , m, extend λj to an affine functional on Rn which is constant on

Ren. Pick any zj ∈ int(Vj), and define a function µj : (S ∩ (x + H)) + Ren → R by
setting

µj(y + ten) =

{
λj(y) + tf ′(zj, en) (t ≥ 0)

λj(y) − tf ′(zj,−en) (t ≤ 0)
(y ∈ S ∩ (x + H)).

This definition does not depend on the choice of zj , by an argument as in the proof
of Lemma 6.4: f ′(zj,±en) takes integer values but is convex in zj by Lemma 2.2, so
must be constant on int(Vj). Moreover, for ε > 0 sufficiently small, we may choose
zj,1, . . . , zj,n+1 ∈ int(Vj) with zj,n+1 in the interior of the simplex with vertices
zj,1, . . . , zj,n, such that for k = 1, . . . , n+1, f(zj,k + ten) is affine for t ∈ [0, ε]. Then
the convexity of f on S ∩ (x + H + ten) (given by Hypothesis 6.2) and Lemma 3.9
imply that for t ∈ [0, ε], the restriction of f to x + H + ten admits a domain of
affinity with ambient functional λj(y) + tf ′(zj, en). By Lemma 3.7, f(y) ≥ µj(y)
for y ∈ S ∩ (x + H + ten). By arguing similarly for negative t, we conclude that for
some ε > 0,

f(y) ≥ sup{µ1(y), . . . , µm(y)} (y ∈ S ∩ ((x + H) + [−ε, ε]en)), (6.5.1)

with equality at y = x.
By Hypothesis 6.2, the restriction of f to S∩(zj +Ren) is convex, so f ′(zj , en) ≥

−f ′(zj,−en). Hence µj is convex, so (6.5.1) implies that the criterion of Lemma 3.3
is satisfied at x. Since x ∈ S was arbitrary, we deduce that f is convex. Moreover,
for each j,

(y1, . . . , yn) �→ λj(y1, . . . , yn−1) + f ′(zj , en)yn

is a transintegral affine functional which agrees with f both at x and on an open
subset of S, so its corresponding domain of affinity contains x.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We induct on n with trivial base case n = 1. Under
the induction hypothesis, f extends continuously to S by Theorem 5.1, and this
extended function is convex by Lemma 6.5.
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We first check that f is polyhedral on any closed box B contained in S. By
Lemma 6.5, B is covered by domains of affinity for f whose ambient functionals are
transintegral; by Theorem 5.1, the slopes of these functionals are bounded. Hence
there can be only finitely many slopes; by Lemma 4.5, f is polyhedral.

It now follows that f is locally polyhedral. To check that each ambient func-
tional is F -integral polyhedral, we simply restrict to some F -rational line segments
of positive length parallel to e1, . . . , en contained in the corresponding domain of
affinity.

7. Detecting Polyhedral Functions on Polyhedra

One can ask also for criteria for detecting F -integral polyhedrality of a function. To
articulate results as strong as possible in this direction, we assume that the function
is already known to be locally F -integral polyhedral; then by Lemma 4.5, it suffices
to check that there are only finitely many ambient functionals.

Lemma 7.1. Let S ⊆ Rn be a convex subset. Let U ⊆ S be a convex subset.
Suppose z ∈ Rn is such that for any x ∈ U, there exists t > 0 for which x + tz ∈ S.
Let f : S → R be a locally polyhedral function whose restriction to U is affine. Then
f ′(x, z) is constant for x ∈ int(U).

Proof. The function f ′(x, z) is convex on int(U) by Lemma 2.2. On the other
hand, since f is locally polyhedral, f ′(x, z) is locally limited to a finite set. Hence
f ′(x, z) must be constant on int(U). (Compare the proof of Lemma 6.4.)

Definition 7.2. An affine orthant in Rn is a subset of Rn of the form

{x ∈ Rn : λi(x) ≥ 0 (i = 1, . . . , n)},
for some affine functionals λ1, . . . , λn whose slopes are linearly independent.

Lemma 7.3. Let S ⊆ Rn be a polyhedral subset with affine hull Rn, for some n ≥ 2.
Assume that S is contained in an affine orthant. Let f : S → Rn be a continuous
convex function. Suppose that the restriction of f to int(S) is locally transintegral
polyhedral, and that the restriction of f to each proper facet of S is polyhedral. Then
f is transintegral polyhedral.

Proof. Since the restriction of f to each proper facet of S is polyhedral, we can
partition S\ int(S) into finitely many subsets P1, . . . , Pk, such that each Pi is the
interior of a polyhedral subset contained in some proper facet, and f is affine on
each Pi.

Suppose S is contained in the affine orthant defined by the affine functionals
λ1, . . . , λn with slopes µ1, . . . , µn. Let z1, . . . , zn be a basis of Rn such that for each
i ∈ {1, . . . , n}, the quantities µ1(zi), . . . , µn(zi) are all nonzero and not all of the
same sign.
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Suppose i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, x1, x2 ∈ Pj are such that for some i,
f ′(x1, zi) and f ′(x2, zi) are both defined. Then there is an open convex set U ⊆ Pj

containing both x1 and x2, such that f ′(x, zi) is defined for all x ∈ U . By Lemma 7.1,
f ′(x1, zi) = f ′(x2, zi).

Now pick any x ∈ S and put Ii = {t ∈ R : x + tzi ∈ S}. By the choice of
zi, the interval Ii is always bounded, so we can write it as [a, b]. By the previous
paragraph, f ′(x + azi, zi) and f ′(x + bzi,−zi) are both limited to finite sets. By
convexity, this limits f ′(x, zi) to a bounded interval.

Applying this for i = 1, . . . , n, we deduce that for any ambient functional λ for f

with slope µ, µ(z1), . . . , µ(zn) are limited to bounded intervals. Since µ is integral,
this limits µ to a finite set. By Lemma 4.5, f is polyhedral, as desired.

At this point, we can already recover a result of the first author and Liang
Xiao [6, Theorem 3.2.4], by specializing the following theorem to the case F = R.

Theorem 7.4. Let F be a subfield of R. Let S be an F -rational polyhedral subset.
Let f : S ∩ Fn → R be a function whose restriction to any F -rational line is
F -integral polyhedral. Then f is F -integral polyhedral.

Proof. By Theorem 5.1, the restriction of f to int(S) extends uniquely to a con-
tinuous convex function g : int(S) → R. By Theorem 6.1, g is locally F -integral
polyhedral on int(S). Use the formula (3.4.1) to extend g to a lower semicontinuous
convex function g : S → R; then g is continuous on S by Lemma 4.2. For each
F -rational line L meeting int(S), f and g agree on int(S) ∩ Fn ∩ L. In particular,
both functions are F -integral polyhedral on int(S) ∩ Fn ∩ L = int(S ∩ L) ∩ Fn.
Since f is also F -integral polyhedral on S ∩ Fn ∩ L while g is continuous on that
same domain, we conclude that f and g agree on S ∩Fn ∩L. Since each element of
S ∩ Fn lies on an F -rational line meeting int(S), we conclude that f and g agree
on all of S ∩ Fn.

To prove that f is F -integral polyhedral, it now suffices to prove that
g is F -integral polyhedral. It suffices to check this with S replaced by S ∩
([0, +∞)c1e1 + · · · + [0, +∞)cnen) for each (c1, . . . , cn) ∈ {±1}n. In each of these
cases, we may deduce the claim by induction on dim(S), using Theorem 7.3.

We next prove a much stronger form of Theorem 7.4.

Lemma 7.5. Assume one of the following sets of hypotheses.

(a) Let x1, x2, x3 ∈ R2 be distinct points such that the segment x2x3 is transrational.
Let �1, �2 denote the segments x1x2, x2x3.

(b) Let x1, x2 ∈ R2 be distinct points. Let �1, �2 be parallel closed transrational rays
emanating from x1, x2.

Let S be the convex hull of x1x2 ∪ �1 ∪ �2. Suppose that f : S → R ∪ {+∞} is a
lower semicontinuous convex function such that the restriction of f to int(S) (takes
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finite values and) is locally transintegral polyhedral, and the restrictions of f to
x1x2 and �1 (take finite values and) are polyhedral. Then f takes finite values and
is polyhedral.

Proof. Let z ∈ Q2 be a nonzero vector parallel to �2 in the direction emanating
from x2. We check that for x ∈ S\�2, f ′(x, z) is limited to a bounded set indepen-
dent of x.

(a) In this case, we may argue just as in Lemma 7.3: there exist a ≤ b ∈ R with
x + az ∈ x1x2 and x + bz ∈ �1, f ′(x, z) is trapped between f ′(x + az, z) and
−f ′(x + bz,−z) by convexity, and each of those is limited to a finite set.

(b) As in (a), we see that f ′(x, z) is bounded below. Put

P = {(a, b) ∈ R2 : 0 ≤ a, 0 ≤ b, a + b ≤ 1}.
Define the bijection h : P\{(1, 0)} → S by

h(a, b) = x1 +
a

2 − 2a− b
z +

b

2 − 2a − b
(x2 − x1).

Then for any affine functional λ on R2, (2− 2a− b)λ ◦h is again an affine func-
tional on R2 (although transintegrality may not be preserved). Consequently,
F = (2 − 2a − b)f ◦ h is locally polyhedral on int(P ) and polyhedral on the
horizontal and vertical proper facets of P . Using the formula (3.4.1), we may
extend F to a lower semicontinuous convex function F : P → R ∪ {+∞}.
Since F is bounded on a subset (the union of the horizontal and vertical facets)
with convex hull P , F takes finite values everywhere. Hence F is continuous by
Lemma 4.2.

For any c, d ≥ 0 not both zero with d < c, we have

F (1, 0) = lim
s→0+

F (1 − sc, sd)

= lim
s→0+

(2sc − sd)f
(

x1 +
1 − sc

2sc − sd
z +

sd

2sc − sd
(x2 − x1)

)
.

If λ is an ambient functional for f with slope µ, by Lemma 3.7 we have

F (1, 0) ≥ lim
s→0+

(2sc − sd)λ
(

x1 +
1 − sc

2sc − sd
z +

sd

2sc − sd
(x2 − x1)

)

= lim
s→0+

µ((1 − sc)z + sd(x2 − x1))

= µ(z).

Hence µ(z) is bounded above, as then is f ′(x, z) for any x ∈ S\�2.

Since f is locally transintegral polyhedral and z ∈ Q2, f ′(x, z) is in fact limited to
a finite set T . For m ∈ T and t ∈ [0, 1), define

gm(t) = inf
u
{f(x1 + t(x2 − x1) + uz)− mu}.
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A straightforward calculation shows that gm(t) is convex, as follows. Given t1, t2 ∈
[0, 1) and w ∈ [0, 1], put t3 = wt1+(1−w)t2. For any δ > 0, we may find u1, u2 with

f(x1 + ti(x2 − x1) + uiz) − mui ≤ gm(ti) + δ (i = 1, 2);

then for u3 = wu1 + (1 − w)u2, we have

wgm(t1) + (1 − w)gm(t2) ≥ w(f(x1 + t1(x2 − x1) + u1z) − mu1)

+ (1 − w)(f(x1 + t2(x2 − x1) + u2z) − mu2) − δ

≥ f(x1 + t3(x2 − x1) + u3z) − mu3 − δ

≥ gm(t3) − δ.

Since δ > 0 was arbitrary, gm(t) must be convex.
We may extend gm(t) to a lower semicontinuous convex function gm : [0, 1] →

R∪{+∞} using (3.4.1). Note that gm(t) ≤ f(x1 + t(x2−x1)) ≤ max{f(x1), f(x2)}
for all t ∈ [0, 1), so gm(1) < +∞. By Lemma 4.2, gm : [0, 1] → R is continuous.

For t ∈ [0, 1) and u such that x1 + t(x2 − x1) + uz ∈ S, we have

f(x1 + t(x2 − x1) + uz) = sup
m∈T

{gm(t) + mu}. (7.5.1)

The right side of (7.5.1) extends to a continuous convex function of x1 + t(x2 −
x1) + uz on all of S with finite values. Since the left side of (7.5.1) is convex and
lower semicontinuous, it must also take finite values; hence both sides of (7.5.1) are
continuous by Lemma 4.2, and thus must coincide.

The right side of (7.5.1), when restricted to t = 1, is polyhedral. Hence f is
polyhedral on �2, so Lemma 7.3 implies that f is polyhedral on S.

Theorem 7.6. Let F be a subfield of R. Let S ⊆ Rn be an F -rational polyhedral
subset contained in an affine orthant. Let f : int(S) → R be a locally F -integral
polyhedral function. Suppose that there exist �1, . . . , �m with the following properties.

(a) For i = 1, . . . , m, �i is a convex subset of a line (not necessarily F -rational)
and int(�i) ⊆ int(S).

(b) For i = 1, . . . , m, f is polyhedral on int(�i).
(c) For each vertex Q of S, there is some i such that Q ∈ �i.
(d) For each unbounded one-dimensional facet B of S, there is some i such that �i

is a translate of B.

Then f is polyhedral.

Proof. We immediately reduce to the case where dim(S) = n. If n = 1, then the �i

must cover S and so f is automatically polyhedral. We thus assume n ≥ 2 hereafter.
Extend f to a lower semicontinuous function f : S → R ∪ {+∞} using (3.4.1).

Let y be any vertex of S. By hypothesis, one of the �i has endpoint y. Pick x ∈
int(�i); then x ∈ int(S). Then for any z ∈ int(S) such that yz is F -rational, we may
apply Lemma 7.5 to deduce that f is polyhedral on yz.
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Let B be a one-dimensional facet of S. Since S is contained in an affine orthant,
B has at least one endpoint y.

(a) If B is bounded, let z be its other endpoint. Choose a two-dimensional F -
rational plane containing B and passing through int(S). We can find a point x

on this plane so that x ∈ int(S), and xy and xz are both F -rational. We have
from above that f is polyhedral on xy and xz; it is thus polyhedral on B by
Lemma 7.5.

(b) If B is unbounded, pick any x ∈ int(S) such that xy is F -rational. By hypothesis,
one of the �i is a translate of B. Let R be the ray from x parallel to B; then by
Lemma 7.5 (applied to x and �i), f is polyhedral on R. We have from above that
f is polyhedral on xy; thus by Lemma 7.5 again, f is polyhedral on B.

In either case, f is polyhedral on each one-dimensional facet of S. By Lemma 7.3
and induction on dimension, f is polyhedral on all of S, as desired.

As an immediate corollary, we now obtain a much stronger form of Theorem 7.4.

Corollary 7.7. Let F be a subfield of R. Let S be an F -rational polyhedral subset.
Let f : int(S) ∩ Fn → R be a function whose restriction to any F -rational line is
F -integral polyhedral. Then f is F -integral polyhedral.

The difference between this result and Theorem 7.4 is that we do not assume
anything about lines contained in the boundary of S.

Proof. Extend f to a continuous convex function on int(S) using Theorem 5.1. By
Theorem 6.1, f is locally F -integral polyhedral; by Theorem 7.6, f is polyhedral.

It should also be possible to formulate Theorem 7.6 without assuming that S

lies in an affine orthant. We leave the following as an exercise.

Exercise 7.8. Let F be a subfield of R. Let S ⊆ Rn be an F -rational polyhedral
subset. Let f : int(S) → R be a locally F -integral polyhedral function. Suppose
that there exist �1, . . . , �m with the following properties.

(a) For i = 1, . . . , m, �i is a convex subset of a line (not necessarily F -rational) and
int(�i) ⊆ int(S).

(b) For i = 1, . . . , m, f is polyhedral on int(�i).
(c) The convex hull of �1 ∪ · · · ∪ �m is equal to S.

Then f is polyhedral.

8. Integral Polyhedrality from Values

If we restrict attention to integral polyhedral functions, we can do better than
characterizing them by their restrictions to one-dimensional rational polyhedra.
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We can in fact identify them in terms of their restrictions to zero-dimensional
rational polyhedra, i.e. to rational points, as long as we appropriately supplement
with continuity and convexity hypotheses.

Lemma 8.1. Let a ≤ b be rational numbers. Let f : [a, b] → R be a continuous
convex function such that

f(x) ∈ Z + Zx (x ∈ (a, b) ∩ Q).

Then f is integral polyhedral.

Proof. (Compare [3, Lemmas 2.3.1 and 2.4.1]) We first check that the restriction
of f to (a, b) is locally integral polyhedral. Given x ∈ (a, b) ∩ Q, write x = r/s in
lowest terms. For N any sufficiently large positive integer, we have

f(x + 1/(sN)) − f(x)
1/(sN)

∈ sN(Z + Zx + Z(sN)−1) = Z.

As N → ∞, this difference quotient runs through a sequence of integers which is
nonincreasing (because f is convex) and bounded below by −f ′(x,−1) (because
x ∈ (a, b)). Thus the quotient stabilizes for N large. By convexity, the function f

must be affine with integral slope in a one-sided neighborhood of x. By Lemma 6.3,
f is locally transintegral polyhedral; by comparing values (e.g. for one irrational x

in each domain of affinity), we see that the constant terms must be in Z. Hence f

is locally integral polyhedral.
We next check that f is integral polyhedral. Suppose that the graph of f has

slopes which are unbounded below. The supporting lines of these slopes intersect
the vertical line x = a in points whose y-coordinates form a strictly increasing
sequence within the discrete group Z + Za. This sequence is bounded above by
f(a), contradiction.

That contradiction shows that the slopes of f are bounded below; similarly, the
slopes of f are bounded above. Hence f has only finitely many slopes on (a, b),
hence is integral polyhedral.

We now obtain the following result, which is a slight strengthening of [3,
Theorem 2.4.2].

Theorem 8.2. Let S ⊂ Rn be a bounded rational polyhedral subset. Let f : S ∩
Qn → R be a Q-convex function whose restriction to each rational line segment is
continuous, such that

f(x1, . . . , xn) ∈ Z + Zx1 + · · · + Zxn ((x1, . . . , xn) ∈ S ∩ Qn).

Then f is integral polyhedral.

Proof. By Lemma 8.1, for each rational line L, the restriction of f to S ∩ Qn ∩ L

is integral polyhedral. By Theorem 7.4, f is Q-integral polyhedral.
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To check that f is integral polyhedral, we may reduce to the case dim(S) = n.
Extend f to a Q-integral polyhedral function on S. Let U be a maximal domain
of affinity for f ; since f is Q-integral polyhedral, U is rational polyhedral. Let
λ(x) = a1x1 + · · · + anxn + b be the ambient functional for U ; since f is
Q-integral polyhedral, a1, . . . , an ∈ Z and b ∈ Q. Write b = r/s in lowest terms.
Pick (x1, . . . , xn) ∈ U ∩Qn such that s′x1, . . . , s

′xn ∈ Z for some integer s′ coprime
to s (such points are dense in U). Then on one hand f(x1, . . . , xn) ∈ (s′)−1Z, while
on the other hand λ(x) ∈ (s′)−1Z + b. We thus have b ∈ s−1Z ∩ (s′)−1Z = Z, so f

is integral polyhedral.

9. Tropical Polynomials

The subject of tropical algebraic geometry has become quite active lately. In that
subject, one works not with an ordinary ring but with the tropical semiring, in
which the underlying set is R, the “addition” operation is the maximum, and the
“multiplication” is ordinary addition. (It is more customary to take the minimum
instead of the maximum, for better correspondence with valuation theory, but it is
more consistent with the notation in this paper to use the opposite sign convention.)

One is led to ask what a “tropical polynomial” is. If we imagine a polynomial
in the variable x1, . . . , xn to be a “sum” of terms each of which is the “product”
of a constant with some of the xi (possibly repeated), we see our answer at once:
a tropical polynomial is merely a transintegral polyhedral function in which the
slopes have non-negative coefficients. Similarly, a tropical Laurent polynomial, in
which we allow “dividing” by x1, . . . , xn as well, is none other than an arbitrary
transintegral polyhedral function.

It is then reasonable to ask for statements identifying tropical (Laurent) polyno-
mials from their restrictions to certain “tropical lines”. Here is a sample statement.

Theorem 9.1. Let f : R2 → R be a function. Then the following are equivalent.

(a) The function f is transintegral polyhedral.
(b) The restriction of f to each horizontal and vertical line is transintegral

polyhedral.
(c) The restriction of f to each translate of the set

L = {(x, y) ∈ R2 : x = 0, y ≤ 0} ∪ {(x, y) ∈ R2 : x ≤ 0, y = 0}
∪ {(x, y) ∈ R2 : x = y ≥ 0}

is transintegral polyhedral.

The set L is a typical tropical line; it is the locus where two of the quantities x, y, 0
are equal and the third is less. That is, −x,−y could be the valuations of elements
a, b of a nonarchimedean ring for which a + b has valuation 0.

Proof. It is clear that (a) implies (b) and (c). To see that (b) or (c) implies (a),
first apply Theorem 6.1 to deduce that f is locally transintegral polyhedral. Then
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apply Lemma 7.3 to each of the four quadrants (in case (b)) or to the closures of
each of the three connected components of R2\L (in case (c)) to deduce that f is
transintegral polyhedral.

Many results in tropical algebraic geometry are analogues of statements in ordi-
nary algebraic geometry. For example, one might expect Theorem 9.1 to be the
tropical analogue of a statement to the effect that a function of two variables is a
polynomial if and only if no matter how we pick one of the variables and a value
for that variable, the result is a polynomial function of the other variable. This
statement is correct under suitable hypotheses, but not in general. (There is also
an analogue for Laurent polynomials, which we leave as an exercise.)

Theorem 9.2. Let F be an infinite field. Let f : F 2 → F be a function for that all
z1, z2 ∈ F, the restrictions of f to {z1}×F and F ×{z1} are polynomial functions.

(a) If F is uncountable, then f itself must be a polynomial function.
(b) If F is countable, then f need not be a polynomial function.

We insist that F be infinite so that the evaluation map F [x] → FF taking a
polynomial to the corresponding function on F is injective. By contrast, if F is
finite, then any function from F to itself can be expressed as a polynomial function
in infinitely many ways.

Proof. Suppose that for any positive integer n, we can find z1,0, . . . , z0,n ∈ F such
that the functions f(z1,i, ·) : F → F for i = 0, . . . , n are linearly independent over
F . Then the function g : F → F defined by

g(·) = det




1 · · · 1
z1,0 · · · z1,n

...
...

zn−1
1,0 · · · zn−1

1,n

f(z1,0, ·) · · · f(z1,n, ·)




cannot be the zero function. However, it is a polynomial in its argument, so it has
only finitely many roots.

If z2 ∈ F is such that f(·, z2) is a polynomial of degree at most n − 1, then
g(z2) = 0 because we can write the last row of the matrix as a linear combi-
nation of the others. By the previous paragraph, there are only finitely many
such z2. Since this holds for any n, there can only be countably many z2 such
that f(·, z2) is a polynomial of any degree. Since F is uncountable, this gives a
contradiction.

We conclude that the polynomial functions f(z1, ·) span a finite dimensional
vector space over F . In particular, they all represent polynomials of degree bounded
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by some non-negative integer n. Choose z2,0, . . . , z2,n ∈ F distinct; for any z1, z2 ∈
F , we now have

0 = det




1 · · · 1 1
z2,0 · · · z2,n z2

...
...

...
zn
2,0 · · · zn

2,n zn
2

f(z1, z2,0) · · · f(z1, z2,n) f(z1, z2)




.

By expanding in minors along the right column, we express f(z1, z2) as a polynomial
in z2 whose coefficients are themselves polynomials in z1. This proves (a).

To prove (b), choose an ordering t1, t2, . . . of the set

T = {{z1} × F : z1 ∈ F} ∪ {F × {z2} : z2 ∈ F}.
(That is, T is the set of horizontal and vertical lines, not their union.) By induction,
we may define functions fn : t1∪· · ·∪tn → F such that fn restricts to a polynomial of
degree i on ti for each i ∈ {1, . . . , n}. These combine to give a function f : F×F → F

whose restriction to each t ∈ T is a polynomial, but these restrictions do not have
bounded degree. Hence f cannot itself be a polynomial.

One might also like to view the fact that a function f : R2 → R is locally
transintegral polyhedral if and only if the same is true of its restriction to every
horizontal line and every vertical line (Theorem 6.1) as the tropical analogue of
a statement about polynomials. For this, we might view a locally transintegral
polyhedral function as the analogue of something like a Laurent polynomial, but
with infinitely many terms. This suggests formulating a statement about entire
functions, such as the following.

Theorem 9.3. Let f : C2 → C be a continuous function such that for all z1, z2 ∈ C,

the restrictions of f to {z1} × C and C × {z2} are entire analytic functions. Then
f is an entire analytic function.

Proof. Let Ci be any circle in the zi-plane containing the origin. For any zi in the
interior of Ci, by the Cauchy integral formula applied twice, we have∫

C1

∫
C2

f(w1, w2)
(w1 − z1)(w2 − z2)

dw2 dw1 =
∫

C1

f(w1, z2)
w1 − z1

dw1 = f(z1, z2).

The left side is infinitely differentiable (the continuity of f makes it valid to differ-
entiate under the integral signs), so f must be as well. Hence f is entire analytic.

Question 9.4. Is there an analogue of Theorem 9.3 in which the restrictions of f

are only assumed to be meromorphic?
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10. Application to p-Adic Differential Equations

We have cited the papers [3, 6] for instances of theorems of the sort we have been
discussing. To illustrate how these theorems may be applied in practice, we recall
just enough of the theory of p-adic differential equations to articulate one of these
applications.

Definition 10.1. Let F be a field of characteristic zero complete for a nonar-
chimedean absolute value | · |. (We do not require F to be discretely valued; for
instance, we might take F to be Cp, a completed algebraic closure of the field of
p-adic numbers.) Let S ⊆ Rn be a bounded transrational polyhedral set. Let RF (S)
be the ring whose elements are formal Laurent series∑

i1,...,in∈Z

ci1,...,inti11 · · · tin
n , ci1,...,in ∈ F

such that for each r = (r1, . . . , rn) ∈ S,

lim
i1,...,in→±∞

|ci1,...,in |e−i1r1−···−inrn = 0.

(This limit should be interpreted as follows: for any ε > 0, there are only finitely
many n-tuples (i1, . . . , in) for which the quantity inside the limit is greater than
ε.) This ring can be interpreted as the global sections of the structure sheaf of a
certain nonarchimedean analytic space, namely the subset of the affine n-space with
coordinates t1, . . . , tn defined by the condition

(− log |t1|, . . . ,− log |tn|) ∈ S.

Definition 10.2. Let Ω be the RF (S)-module freely generated by symbols
dt1, . . . , dtn. For j = 1, . . . , n, define the formal partial derivative ∂

∂tj
: RF (S) →

RF (S) by the formula

∂

∂tj


 ∑

i1,...,in∈Z

ci1,...,inti11 · · · tin
n


 =

∑
i1,...,in∈Z

ijt
−1
j ci1,...,inti11 · · · tin

n .

Define the formal exterior derivative d : RF (S) → Ω by the formula

d(f) =
n∑

j=1

∂

∂tj
(f) dtj .

Let M be a finite free RF (S)-module. A connection on M is an additive map
∇ : M → M ⊗RF (S) Ω satisfying the Leibniz rule: for f ∈ RF (S) and m ∈ M ,

∇(fm) = f∇(m) + m ⊗ d(f).

Given a connection ∇, define the maps D1, . . . , Dn : M → M by the formula

∇(m) = D1(m) ⊗ dt1 + · · · + Dn(m) ⊗ dtn;

note that Dj satisfies the Leibniz rule using the derivation ∂
∂tj

on RF (S). We say
that ∇ is integrable if D1, . . . , Dn commute with each other.

C
on

fl
ue

nt
es

 M
at

h.
 2

00
9.

01
:8

7-
10

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
@

 B
E

IJ
IN

G
 o

n 
12

/1
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



May 15, 2009 17:45 WSPC/251-CM 00003

Detecting Integral Polyhedral Functions 107

For instance, if M = RF (S), then ∇ = d is an integrable connection. We next
give a numerical measure of the failure of a given integrable connection to have this
special form.

Definition 10.3. For r ∈ S, define the norm | · |r on RF (S) by the formula∣∣∣∣∣∣
∑

i1,...,in∈Z

ci1,...,inti11 · · · tin
n

∣∣∣∣∣∣
r

= sup{|ci1,...,in |e−i1r1−···−inrn : i1, . . . , in ∈ Z};

the definition of RF (S) makes this quantity finite, and in fact ensures that the
supremum is achieved for at least one tuple (i1, . . . , in) ∈ Zn. Let Er be the com-
pletion of FracRF (S) for this norm; then each ∂

∂tj
extends continuously to a map

∂
∂tj

: Er → Er , while d extends continuously to a map d : Er → Ω ⊗RF (S) Er .

Definition 10.4. Let M be a finite free RF (S)-module equipped with an integrable
connection ∇. For r ∈ S, we extend ∇ to a map ∇ : M ⊗RF (S) Er → M ⊗RF (S)

Ω⊗RF (S) Er; we correspondingly extend D1, . . . , Dn to maps from M ⊗RF (S) Er to
itself. Let N be a subquotient of M ⊗RF (S) Er in the category of Er-modules on
which D1, . . . , Dn act. Pick a basis of N , and use it to define a supremum norm on
N compatible with the norm | · |r on Er. Let |Dj |spect,N denote the spectral norm
of Dj on N , that is,

|Dj |spect,N = lim sup
s→∞

|Ds
j |1/s

N ,

where |Ds
j |N denotes the operator norm of Ds

j on N for the chosen norm. This
quantity does not depend on the choice of the norm. Define the intrinsic generic
radius of convergence of N to be

min
{ |Dj |spect,Er

|Dj |spect,N
: j ∈ {1, . . . , n}

}
.

(This indeed has something to do with the radius of convergence of certain hori-
zontal sections of a certain differential module. See [6, Proposition 1.2.14] for a bit
more explanation, and [4, §9.7] for much more discussion.)

Let N1, . . . , Nh be the Jordan–Hölder constituents of M ⊗RF (S) Er , i.e. the
successive quotients in a maximal filtration by Er-submodules preserved by
D1, . . . , Dn. Define the multiset of subsidiary radii of M at r to consist of, for
j = 1, . . . , h, the intrinsic generic radius of convergence of Nj with multiplicity
dimEr (Nj).

Remark 10.5. In the case of residual characteristic zero, the subsidiary radii are
related to the classical notion of irregularity for a meromorphic connection on a
complex analytic variety. See [5] for discussion of that case. In the case of residual
characteristic p > 0, the subsidiary radii are related to wild ramification of maps
between varieties over a field of positive characteristic; see [2].
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We can now state part of [6, Theorem 3.3.9], which governs the variation of the
subsidiary radii, and then explain how a polyhedrality theorem intervenes in the
proof.

Theorem 10.6. Let M be a finite free RF (S)-module of rank m, equipped with
an integrable connection ∇. For r ∈ S, let f1(M, r) ≥ · · · ≥ fm(M, r) be the
non-negative real numbers such that the subsidiary radii of M at r are equal to
e−f1(M,r), . . . , e−fm(M,r). Define Fi(M, r) = f1(M, r) + · · · + fi(M, r). Then for
i = 1, . . . , m, the function r �→ m!Fi(M, r) is transintegral polyhedral; for i = m,

the function r �→ Fm(M, r) is also transintegral polyhedral.

It turns out to be difficult to analyze the Fi(M, r) on all of S directly. Instead,
the proof goes by checking transintegral polyhedrality on each transrational line,
then invoking Theorem 7.4. The point is that by a change of coordinates (replacing
t1, . . . , tn by certain monomials) we can reduce the study of any transrational line
to the study of a line parallel to one of the coordinate axes, say the first one. In
that case, there is no harm in burying t2, . . . , tn in the base field (i.e. replacing F by
the completion of the rational function field F (t2, . . . , tn) for an appropriate Gauss
norm) as long as we keep track of the derivations with respect to t2, . . . , tn. Although
the remaining calculation is still quite intricate, it would have been immeasurably
more so without the reduction to the one-dimensional case.

11. Other Questions

We conclude by mentioning a question for which our ignorance of the answer
remains somewhat frustrating. This should illustrate the extent to which the restric-
tion to integral slopes is crucial for the arguments of this paper.

Question 11.1. Let f : R2 → R be a function whose restriction to each line is
polyhedral. Is f necessarily polyhedral? The example f(x, y) = xy shows that it is
insufficient to require the restriction to each line parallel to one of the coordinate
axes to be polyhedral.
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