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Abstract

G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit
signal to regulate an array of fundamental biological processes. Viruses deploy diverse tac-
tics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses
encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular
GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitu-
tively activate downstream signaling cascades, including the nuclear factor of activated T
cells (NFAT) pathway. However, the roles of NFAT activation and mechanism thereof in
viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi’s
sarcoma-associated herpesvirus (kGPCR) and cytomegalovirus (US28) shortcut NFAT ac-
tivation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA), which is neces-
sary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological
inhibitors and protein purification, demonstrate that viral GPCRs target SERCAZ2 to increase
cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was ex-
ceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition up-
stream of ER calcium release. Gene expression profiling identified a signature of NFAT
activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent
genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employ-
ing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-
dependent gene expression in KSHYV lytic replication. Finally, cyclosporine A treatment di-
minished NFAT-dependent gene expression and tumor formation induced by viral GPCRs.
These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a
mechanism of “constitutive” NFAT activation by viral GPCRs.
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Author Summary

G protein-coupled receptors (GPCRs) constitute the largest family of proteins that trans-
mit signal across plasma membrane. Herpesviral GPCRs (VGPCRs) activate diverse signal-
ing cascades and are implicated in viral pathogenesis (e.g., tumor development). In
contrast to cellular GPCRs that are chiefly regulated via cognate ligand-association,
vGPCRs are constitutively active independent of ligand-binding. vGPCRs provide useful
tools to dissect signal transduction from plasma membrane receptors to nuclear transcrip-
tion factors. To probe the activation of nuclear factor of T cells (NFAT), we demonstrate
that vGPCRs target the ER calcium ATPase to increase cytosolic calcium concentration
and activate NFAT. Inhibition of NFAT activation impairs tumor formation induced by
vGPCRs, implying the antitumor therapeutic potential via disabling NFAT activation.

Introduction

Herpesviruses are ubiquitous pathogens and their infections contribute to a number of malig-
nancies in humans [1]. The lymphotropic gamma herpesviruses, including Kaposi’s sarcoma-
associated herpesvirus (KSHV, also known as HHV-8) and Epstein-Barr virus (EBV or HHV-
4), are large DNA tumorigenic viruses [2]. Remarkably, these viruses have pirated a number of
cellular genes to assist the completion of crucial steps of infection cycle consisting of lytic repli-
cation and latent infection. Under immuno-compromised conditions, uncontrolled replication
of these viral pathogens results in aberrant cell proliferation that is associated with and under-
pinned by inflammation [3,4]. Discovered by Yuan Chang, Patrick Moore and their coworkers
in 1994, KSHYV is the etiological agent of Kaposi’s sarcoma (KS), primary effusion lymphoma
(PEL) and multicentric Castleman’s disease (MCD) [5,6]. It is believed that KS is of endothelial
origin, whereas PEL and MCD are malignancies of lymphoid cells.

Among genes pirated by human herpesviruses, G protein-coupled receptor (GPCR) is a
common target and implicated in viral pathogenesis [7]. All gamma herpesviruses express one
GPCR homologue, while genomes of beta-herpesviruses contain up to four copies of GPCR
[8,9]. Herpesviral GPCRs activate multiple cellular signaling cascades that collectively contrib-
ute to viral infection and pathogenesis[10]. The GPCR homologue of KSHV (designated
kGPCR) is capable of activating diverse signaling pathways [11,12]. Prominent examples are
the PI3K-AKT axis for cell proliferation [13,14] and pertinent signal pathways leading to the
activation of key transcription factors, including NF-kB, NFAT and AP-1 [15,16]. When ex-
pressed in transgenic mouse, kGPCR is sufficient to induce KS-like tumors, implying its contri-
bution to the development of human KS [17]. Importantly, kGPCR activates downstream
signaling events independent of association with its cognate ligands, which is known as consti-
tutive activity [12]. Previous structural studies pointed to the conformation adopted by the
transmembrane helices that enable the constitutive signaling capacity of kGPCR [18]. Howev-
er, the molecular detail of viral GPCRs in activating specific signaling cascade remains unclear,
one of which is the NFAT signaling cascade.

The NFAT family consists of five closely-related members, known as NFAT1-NFATS5. In
contrast to NFATS5 that is regulated by osmotic stress [19,20], the other four NFAT proteins
are activated by elevated cytosolic calcium concentration [21,22]. Structurally, NFAT proteins
contain an amino-terminal transactivation domain, a regulatory domain, a DNA-binding do-
main and a carboxyl-terminal domain [22]. The DNA-binding domain belongs to the large
family of Rel-homology domain (RHD) that was originally characterized in NF-xB members.
The regulatory domain consists of multiple serine-rich sequences that are phosphorylated by
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several kinases, including casein kinase 1 (CK1), glycogen synthase kinase 3 (GSK3) and dual-
specificity tyrosine-phosphorylation-regulated kinase (DYRK) in resting cells [23-26]. When
cells are activated by surface receptors that are coupled to calcium influxes, cytosolic calcium
increase enables the activation of calmodulin and diverse calmodulin-dependent enzymes. Cal-
cineurin, a phosphatase of the calmodulin-dependent enzymes, binds to its docking site within
the amino-terminal region of NFAT and dephosphorylates serine/threonine residues of the
NFAT regulatory domain, resulting in the nuclear translocation and activation of NFAT
[21,27]. Nuclear dephosphorylated NFAT up-regulated the expression of diverse genes, includ-
ing COX-2, RCANI, IL-8 and ANGPT2 [28-34]. The sarco/endoplasmic reticulum calcium
ATPase (SERCA) pumps calcium back to the SR/ER compartment, thereby restoring calcium
gradient and cellular resting state [35]. Although viral GPCRs, e.g., KSHV kGPCR and human
cytomegalovirus (HCMV) US28, are known to potently activate NFAT [15,16,36], the mecha-
nism of NFAT activation and the contribution thereof to the tumorigenesis of these viral
GPCRs remain unclear. Moreover, it is not well understood how NFAT activation impacts
KSHYV infection and pathogenesis in particular and herpesvirus in general.

We report here that viral GPCRs target the SERCA ATPase to elevate cytosolic calcium and
promote NFAT activation. KGPCR expression in endothelial cells installed a gene expression
profile of NFAT signature and NFAT-dependent genes were up-regulated in kGPCR-induced
mouse lesions and human KS tumors. Uncoupling NFAT activation from kGPCR diminished
tumor formation in a xenograft mouse model, indicating the critical roles of NFAT in kGPCR
tumorigenesis. Similarly, HCMV US28 interacted with SERCAZ2 to activate NFAT and NFAT
activation is necessary for US28-induced tumor formation. These results unveil a molecular
mechanism by which viral GPCRs activate signaling events independent of ligand binding, un-
derpinning the constitutive activity of viral GPCRs in signaling and tumorigenesis.

Results
kGPCR Induces NFAT Activation

We and others have shown that herpesviral GPCRs induce NFAT activation [16,37,38], despite
the roles and mechanism of NFAT activation by these viral GPCRs are not well understood.
Using a luciferase reporter, we found that kGPCR expression potently activated NFAT signal-
ing cascades in a dose-dependent manner (Fig. 1A). Moreover, kGPCR expression induced ro-
bust nuclear translocation and dephosphorylation of NFAT (S1A-S1C Fig), comparable to
ionomycin treatment, while demonstrated no effect on the expression of the catalytic subunit
of calcineurin (CnA) (S1D Fig). To examine signaling events downstream of kGPCR in endo-
thelial cell, we performed a genome-wide microarray analysis with human umbilical vein endo-
thelial cells (HUVEC) expressing kGPCR and searched for NFAT-related genes. This analysis
uncovered a list of top candidate genes that centered on NFAT signal transduction (Fig. 1B).
With a top-down view, we classified these factors according to their link to GPCR, intracellular
calcium, NFAT or genes of NFAT-dependent expression (Fig. 1B). Specifically, these included
GPCR ligands [CxCL12, CCL2, IL-8 and KIT ligand (KITLG)] [39-42], calcium-dependent ef-
fectors [phospholipase A2 (PLA2G4A) and S100 calcium-binding protein] [43,44], NFAT co-
activators (EGR) [45], and finally a number of proteins whose expression is up-regulated by
NFAT activation [COX-2 (also known as PTGS2), RCAN1, CCL2, IL-8 and angiopoietin 2
(ANGPT2)] [33,46]. Among them, microarray analysis indicated that the expression of COX-2
and RCAN1 were up-regulated by ~24 and 13-fold, respectively (Fig. 1C). These proteins con-
stitute a signaling network that is meshed by key components of the NFAT pathway.

We then selected a few NFAT-dependent genes for quantitative real-time PCR (qQRT-PCR)
analysis. This analysis showed that, in comparison to control HUVEC, the expression of COX-
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Fig 1. kKGPCR activates the NFAT signaling cascade. (A) 293T cells were transfected with the NFAT reporter plasmid cocktail and increasing amount of a
plasmid containing KGPCR. NFAT activation was determined by luciferase reporter assays. (B) Top candidates in relation to the NFAT signaling cascades
were identified by microarray analysis. (C) Relative mMRNA abundance of COX-2 and RCAN1, in relation to B-actin, was calculated from multiple probes of
two independent microarray analyses. (D and E) HUVEC cells were mock-treated or treated with cyclosporine A (CsA, 0.5 uM) for 12 h (D). Total RNA was
extracted and analyzed by quantitative real-time PCR with primers specific for COX-2, RCAN1, Angiopoietin 2 (ANGPT2), IL-8 and ICAM1. Fold induction of
these transcripts in HUVEC/kGPCR cells was calculated in relation to those in control HUVEC cells (D). Whole cell lysates were analyzed by immunoblotting
with antibodies against indicated proteins (E) and numbers indicate the relative intensity of COX-2 protein measured in top panel. (F) HUVEC cells were
loaded with Fluoro 4-AM and recorded (left panels), and fluorescent intensity was quantified with ImagedJ (right panel).

doi:10.1371/journal.ppat.1004768.9001

PLOS Pathogens | DOI:10.1371/journal.ppat.1004768 March 26, 2015 4/26



@'PLOS ‘ PATHOGENS

NFAT Activation by Herpesviral G Protein-Coupled Receptors

2 and RCANI were up-regulated by ~18 and ~30-fold in kGPCR-expressing HUVEC, respec-
tively (Fig. 1D). The expression of IL-8, ANGPT2 and ICAM1 was also increased by kGPCR
(Fig. 1D). Notably, we purposefully selected the NF-kB-dependent ICAM1 transcript for speci-
ficity comparison. To further validate the NFAT-dependent expression of these genes, we treat-
ed HUVEC/kGPCR cells with cyclosporine A (CsA), a specific pharmacological inhibitor of
calcineurin, and determined their expression by qRT-PCR. We found that CsA reduced COX-
2 expression by ~50% (Fig. 1D), whereas completely abolished the expression of RCANT1, IL-8
and ANGPT?2 (Fig. 1D). The expression of ICAM1 induced by kGPCR was not affected by CsA
treatment, consistent with its NF-kB-dependent expression. Immunoblot analysis further con-
firmed the elevated protein levels of COX-2 and RCANT1 that were reduced or abolished by
CsA treatment, respectively (Fig. 1E). One key step of NFAT activation is the elevation of intra-
cellular calcium concentration. Thus, we assessed cytosolic calcium with a fluorescent probe in
kGPCR-expressing HUVEC cells. This analysis showed that kGPCR expression increased cyto-
solic calcium by more than four-fold, compared to control HUVECs (Fig. 1F). Together, these
results show that kGPCR activates NFAT to influence host gene expression.

kGPCR-Induced NFAT Activation Is Resistant to Inhibitors That Targets
Steps Upstream of ER Calcium Release

To dissect the regulation of NFAT activation by kGPCR, we used pharmacological inhibitors
that target key components of the GPCR-NFAT pathway (Fig. 2A). These include inhibitors of
phospolipase C [edelfosine] and IP3 receptor [2-aminoethoxydiphenyl borate (2-APB)], chela-
tors to deplete extracellular (EGTA) or intracellular (BAPTA-AM) calcium, and CsA to block
calcineurin. Reporter assays indicate that kGPCR-induced NFAT activation was not impacted
by edelfosine and 2-APB, inhibitors of PLC and IP3R, respectively (Fig. 2B and C). By contrast,
calcium chelators (EGTA and BAPTA-AM) and CsA significantly inhibited NFAT activation
induced by kGPCR (Fig. 2D-F). Under the same conditions, edelfosine and 2-APB impaired
NFAT activation induced by K15 that did so in a PLC-dependent manner [47](Fig. 2B and C).
Importantly, the treatment with these pharmacological inhibitors did not impact cell viability
(S2A-S2E Fig). These results, together with the increased cytosolic calcium by kGPCR, suggest
that kGPCR increases intracellular calcium independent of PLC, pointing to the step of
calcium release.

kGPCR Interacts with SERCA2 and Inhibits SERCA2 ATPase Activity

To identify cellular target(s) that interacts with kGPCR, we performed one-step affinity purifi-
cation and analyzed kGPCR-binding proteins by mass spectrometry. This approach identified
SERCA2 as a major kGPCR-interacting partner (Fig. 3A). Mammalian cells express three iso-
forms of SERCA, among which SERCA?2 is ubiquitously expressed in many tissues. Indeed,
SERCA2b and kGPCR were precipitated together from extract of transfected 293T cells

(Fig. 3B). Considering that kGPCR and SERCA?2 are multi-transmembrane proteins and are
not amenable for deletion or truncation analysis, we employed proximity ligation assay (PLA)
to assess protein interaction in situ. PLA is devised to detect and localize interacting proteins
with single molecule resolution and to be objectively quantified in unmodified cells or tissues
[48]. In principle, each single spot of PLA is amplified from one pair of interacting molecules,
providing quantitative measurement of physiological protein-protein interactions. As shown
in Fig. 3C, fluorescence was barely detected in control HUVEC cells. However, bright fluores-
cent spots were readily detected in HUVEC cells stably expressing kGPCR. Fluorescent spots
were scattered surrounding the nucleus, reminiscent of the intracellular distribution of ER/
TGN organelles. Counting more than 100 cells of each group, we found that HUVEC/kGPCR
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showing key components and their corresponding inhibitors of the GPCR-NFAT pathway. (B-F) HEK293T cells were transfected with an NFAT reporter
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doi:10.1371/journal.ppat.1004768.9002
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and migrated slowly. (B) 293T cells were transfected with plasmids containing SERCA2 or kGPCR. Centrifuged cell extract was precipitated with anti-HA
(kGPCR). Precipitated proteins and whole cell lysates were analyzed by immunoblot with indicated antibodies. (C and D) HUVEC endothelial stable cells
were analyzed by proximity ligation assay (red) and stained with DAPI. Cells were analyzed by confocal microscopy (C). The intensity of proximity ligation
was semi-quantitatively determined by counting more than 100 cells (D). (E) 293T cells were transfected with a plasmid containing Flag-tagged SERCA2
without or with a plasmid containing kGPCR. SERCA2 was precipitated with anti-Flag agarose and analyzed by ATPase activity in vitro. Precipitated
SERCA2 and whole cell lysates were analyzed by immunoblot (insert). (F) 293T cells were transfected with an NFAT reporter cocktail, a plasmid containing
kGPCR and increasing amount of a plasmid containing SERCA2. NFAT activation was determined by luciferase reporter assays.

doi:10.1371/journal.ppat.1004768.9003

cells yielded >10-fold fluorescent spots than control HUVEC cells (Fig. 3D). These results in-
dicate that kGPCR interacts with SERCA2.

SERCA2 transports calcium from the cytosol into the ER lumen, restoring a calcium gradi-
ent between the cytosol and the ER compartment. This active transfer of calcium against gradi-
ent by SERCA is powered by and coupled to ATP hydrolysis. To examine the effect of kGPCR
on SERCA?2, we precipitated SERCA2 from transfected cells and determined the ATPase activi-
ty of SERCA2 without or with kGPCR. This assay showed that kGPCR expression reduced the
ATP hydrolysis of SERCA2 by more than 60%, indicating that kGPCR inhibits the ATPase ac-
tivity of SERCA2 (Fig. 3E). Given the opposing activity of kGPCR and SERCA in regulating cy-
tosolic calcium concentration, we then assessed the effect of SERCA2 over-expression on
kGPCR-induced NFAT activation. As shown in Fig. 3F, we found that SERCA?2 expression re-
duced kGPCR-induced NFAT activation in a dose-dependent manner, indicating that these
two molecules antagonize each other in regulating NFAT activation. Thapsigargin is a pharma-
cological agent that specifically inhibits SERCA and elevates cytosolic calcium, thereby pro-
moting NFAT activation. We exploited thapsigargin to probe the interaction between kGPCR
and SERCA2, given that both kGPCR and thapsigargin inhibit SERCAZ2 to increase cytosolic
calcium. We first examined the effect of thapsigargin on kGPCR-induced NFAT activation. Re-
porter assays showed that treatment with thapsigargin had no enhancing effect on NFAT acti-
vation induced by kGPCR (S3A Fig). Similar result was observed for ionomycin, an ionophore
that raises intracellular calcium. These results suggest that kGPCR functions redundantly with
thapsigargin and ionomycin in elevating cytosolic calcium and activating NFAT. We next ex-
amined kGPCR interaction with SERCA2 with and without thapsigargin. Remarkably, thapsi-
gargin completely abolished kGPCR interaction with SERCA2 (S3B Fig), suggesting that
kGPCR and thapsigargin disrupt SERCA?2 activity in a similar manner. These findings collec-
tively support the conclusion that kGPCR inhibits SERCA to increase cytosolic calcium and en-
able NFAT activation.

HCMV US28, but Not EBV BILF1, Interacts with SERCA2 and Activates
NFAT

All gamma herpesviruses encode at least one GPCR, while beta herpesviruses express up to
four GPCR homologues. We then examined NFAT activation by GPCR homologues of human
EBV (BILF1) and CMV (US28). Reporter assay indicated that, similar to kGPCR, US28 potent-
ly activated NFAT in a dose-dependent manner, whereas BILF1 failed to do so (S4A Fig), de-
spite that all three viral GPCRs were expressed at similar levels. To probe the mechanism of
US28-mediated NFAT activation, we assessed the interaction between viral GPCRs and
SERCA2. When US28 was precipitated from transfected 293T cells, SERCA2 was readily de-
tected, indicating that US28 associates with SERCA2 (S4B Fig). However, BILF1 did not inter-
act with SERCAZ2 by co-IP assay, agreeing with the observation that EBV BILF1 failed to
activate NFAT. These results suggest that the interaction with SERCA2 is crucial for HCMV
US28 to activate NFAT.
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doi:10.1371/journal.ppat.1004768.9004

Next, we measured the relative intracellular calcium concentration in control and US28-
expressing HUVEC cells. Fluorescent microscopy and semi-quantitative analysis showed that
US28 expression increased intracellular calcium concentration by ~3-fold in HUVEC cells
(Fig. 4A). Furthermore, qRT-PCR analysis demonstrated that US28 up-regulated the expres-
sion of RCAN1, COX-2, IL-8 and ANGPT?2, among which RCAN1 and COX-2 were also con-
firmed by immunoblotting analysis (Fig. 4B and C). Treatment with CsA reduced the
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expression of all genes to various extents by QRT-PCR analysis, with completely diminished ex-
pression of RCAN1 (Fig. 4B and C). Similar to what was observed for kGPCR, CsA treatment
abolished US28-induced RCANT1 protein expression, while partly reduced that of COX-2, as
analyzed by immunoblotting (Fig. 4D). Taken together, these findings indicate that HCMV
US28, like kGPCR, targets SERCA?2 to activate NFAT.

An EBV BILF1 Chimera Carrying kGPCR Cytoplasmic Loops and Talil
Interacts with SERCAZ2 and Activates NFAT

Despite being a homologue of KSHV kGPCR, EBV BILF1 failed to interact with SERCA2 and
activate NFAT. Conventional mutagenesis entailing deletion and truncation is not applicable
to the multi-transmembrane GPCR protein. Thus, we explored the chimera strategy to identify
sequences that enable vGPCR’s ability to bind SERCA?2 and activate NFAT. Previous reports
have shown that the cytoplasmic tail is necessary for KGPCR to activate downstream signaling.
However, replacing the BILF1 cytoplasmic tail with its counterpart of kGPCR did not confer
BILF1 to activate NFAT. Remarkably, when all cytoplasmic loops and tail of BILF1 were re-
placed with kGPCR equivalents, the BILF1 chimera (designated BILF1c) activated NFAT in a
dose-dependent manner (S4C Fig). NFAT activation by BILF1c was not as robust as KGPCR,
suggesting that other elements of kGPCR (e.g., transmembrane helices, extracellular N-termi-
nus and loops) also contribute to NFAT activation by kGPCR. In support of the ability of
BILF1c to activate NFAT, co-IP assay showed that BILF1c interacted with SERCA2 in trans-
fected 293T cells (S5A Fig). Moreover, NFAT activation by BILF1c was inhibited by calcium
chelators (EGTA and BAPTA-AM) and CsA (S5B-D Fig), supporting the conclusion that
BILF1c increases cytosolic calcium to activate NFAT. Collectively, these results show that the
cytoplasmic loops and tail of kGPCR endow EBV BILF1 to target SERCA?2 via physical interac-
tion and that targeting SERCA2 by vGPCRs is sufficient to enable NFAT activation.

kGPCR Activates NFAT during KSHV Lytic Replication

kGPCR is expressed predominantly in the lytic phase. We reasoned that KSHV lytic replication
up-regulates NFAT-dependent genes. In iSLK.219 cells that KSHV Iytic cycle was induced with
doxycycline, nRNAs of COX-2 and RCANI1 were increased to ~3- and 4.5-fold at 48 hours
post-induction (Fig. 5A). The recently reported KSHV BAC16 system provided a tool to effi-
ciently induce KSHYV lytic replication [49]. To examine the roles of kGPCR in NFAT activation
during KSHYV lytic replication, we have employed the BAC16 genetic system and engineered a
kGPCR-deficient recombinant KSHV (S6A Fig). When iSLK cells harboring wild-type BAC16
were induced by RTA expression and sodium butyrate, a histone deacetylase inhibitor, we
found that COX-2 and RCANI proteins greatly increased at 48 hours post-induction (Fig. 5B).
Importantly, treatment with the NFAT-specific CsA significantly reduced COX-2 induction,
while completely abolished RCAN1 protein induction. In iSLK cells harboring kGPCR-defi-
cient BAC16, KSHYV lytic replication marginally increased the protein of COX-2 and RCANI.
Moreover, CsA treatment minimally reduced COX-2 and RCANI protein, agreeing with the
minimal NFAT activation, if any, in the absence of kGPCR. Taken together, kGPCR expression
and downstream NFAT activation are responsible for the induced expression of COX-2 and
RCANI in KSHYV lytic replicating cells.

To corroborate the NFAT-dependent gene expression induced by kGPCR in KSHYV lytic
replication, we constructed recombinant KSHV that kGPCR deletion was restored with wild-
type kGPCR or a kGPCR chimera in which the cytoplasmic tail was replaced with the EBV
BILF1 counterpart (S6A-C Fig). Consistent with that the cytoplasmic tail of kGPCR is critical
for NFAT activation, the kGPCR chimera failed to activate NFAT by reporter assay (Fig. 5C).
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lysates (WCL) were analyzed by immunoblot with indicated antibodies (B). TK: thymidine kinase (ORF21). (C) 293T cells were transfected with the NFAT
luciferase reporter cocktail and increasing amount of a plasmid containing wild-type kGPCR or kGPCR chimera (kGPCRc) in which the cytoplasmidc tail was
replaced with the EBV BILF1 counterpart. NFAT activation was determined by luciferase reporter assay at 30 hours post-transfection. (D) 293T cells were
transfected with plasmids containing SERCA2b, kGPCR or kGPCR chimera (kGPCRc). WCLs were precipitated with anti-HA (kGPCR or kGPCRc).
Precipitated proteins and WCLs were analyzed by immunoblot with indicated antibodies. (E) iSLK cells containing wild-type BAC16 (wild-type), kGPCR-
deficient (AkGPCR), revertant with wild-type kGPCR (kGPCR Rev) or the kGPCR chimera (kGPCRc Rev) were induced for lytic replication and NFAT
activation was inhibited with cyclosporine A as described in (A). WCLs were analyzed by immunoblot with indicated antibodies.

doi:10.1371/journal.ppat.1004768.9005

Moreover, co-immuno-precipitation assay indicated that the kGPCR chimera did not interact
with SERCA2, but wild-type kGPCR did (Fig. 5D). Recombinant KSHV BAC16 DNA carrying
wild-type, kGPCR revertant and kGPCR chimera were obtained via homologous recombina-
tion. Gel electrophoresis confirmed that deletion of kGPCR gene reduced the size of the tar-
geted fragment by ~1 kb analyzed by digestion with both Kpnl and Sbfl, and the size of the
targeted fragment was restored in BAC16 revertant of kGPCR or kGPCRc (S6A-C Fig). The
kGPCR loci of BAC16 wild-type, kGPCR deletion, revertant with wild-type kGPCR or kGPCR
chimera were further validated by PCR amplification and subsequent sequencing of the PCR
products (S6C Fig).

We then transfected KSHV BAC16 DNA and its derivatives into iSLK cells and cells stably
carrying KSHV were selected with hygromycin. KSHV lytic replication was reactivated with so-
dium butyrate and doxycycline to induce RT'A expression. In cells that KSHV Iytic replication
was induced, we also inhibited NFAT activation with cyclosporine A. Using BAC16 wild-type
as the positive reference and BAC16AkGPCR as the negative reference, we found that the
kGPCR revertant demonstrated nearly identical expression of COX-2 and RCAN1 of wild-type
BACI16 that were induced by KSHYV lytic replication and inhibited by cyclosporine A. By con-
trast, BAC16 revertant with kGPCR chimera essentially replicated the phenotype in COX-2
and RCANT expression of BAC16AkGPCR (Fig. 5E). When KSHV early lytic gene products,
including RTA and thymidine kinase (TK or ORF21), were examined, no significant difference
of these viral proteins were detected among these recombinant KSHV carrying various kGPCR
mutants. Consistent with kGPCR-dependent NFAT activation, we also observed NFAT1 de-
phosphorylation in KSHV replicating iSLK cells in a kGPCR-dependent manner (S6D Fig).
Thus, kGPCR expression and consequent NFAT activation during KSHYV lytic replication are
important for the expression of COX-2 and RCAN1, two NFAT-dependent cellular genes.

kGPCR Also Activates NFAT via a Paracrine Mechanism

Although the major constituent of KS tumors is the KSHV latently-infected spindle cell, Iytic
replicating cells were invariably observed in KS tumors. The TIE2-tva mouse model that
kGPCR expression in endothelial cells is sufficient to induce KS-like tumors provides a useful
tool to recapitulate the genesis of Kaposi’s sarcoma [17]. We examined NFAT-dependent gene
expression in tumor tissues derived from the TIE2-tva mice infected with retrovirus carrying
kGPCR. gRT-PCR analysis revealed that mRNAs of COX-2 and RCAN1 were up-regulated by
~4- and 3-fold in kGPCR-tumors compared to control tissues, respectively (Fig. 6A). Immuno-
histochemistry staining further showed apparent induction of COX-2 and RCAN1 in kGPCR-
tumor (Fig. 6B). Based on the expression level of COX-2, two types of cells were identified in
kGPCR-tumors. A small subset of cells of high COX-2 expression had round shape and small
cytoplasm, which likely represented infiltrated immune cells. The majority of tumor tissue con-
sists of spindle-shaped or other endothelial cells that had lower COX-2 expression, displaying
light brown color in the cytoplasm. By contrast, a uniformed RCANT1 staining pattern was ob-
served in most tumor cells, specifically the spindle-shaped endothelial cells. This result
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analyzed by IHC with antibodies against LANA (left panels), COX-2 (middle panels) and RCAN1 (right panels). Boxed region was amplified and shown at the
bottom of each panel. (D) HUVEC cells were incubated with conditioned medium from HUVEC/Vec (control) or HUVEC/kGPCR cells for indicated time. Total
RNA was extracted and analyzed by gRT-PCR with primers for COX-2 and RCAN1. Data are presented as mean+SEM. *p<0.05; scale bars: 10 um.

doi:10.1371/journal.ppat.1004768.9006

indicates the differential expression of NFAT-dependent genes in cell type-specific manner,
which signifies distinct roles of NFAT in corresponding tumor constituents. We further exam-
ined the expression of these NFAT-dependent genes in human KS tissue. The expression of
COX-2 and RCANT1 was apparent in regions that were positive for LANA, the nuclear antigen
and marker for KSHYV infected cells (Fig. 6C and S7A-C). Specifically, COX-2 was high in cells
with relatively small cytoplasm, implying their immune cell identity. In the spindle-shaped
cells, heterogeneous COX-2 expression was observed, with majority of these tumor cells dem-
onstrating cytoplasm staining of COX-2. Interestingly, cells with high RCANI1 protein, residing
in region proximal to the slit-like structure, were reminiscent of immune cells, while spindle-
shaped tumor cells were stained relatively low for RCAN1. These results show that COX-2 and
RCANT proteins are highly expressed in KS-like mouse lesion and human KS tumors.

Given that kGPCR is expressed within approximately 5% of cells of tumors derived from
the TIE2-tva mouse, we reasoned that kGPCR can induce NFAT via paracrine stimulation. In
fact, a number of factors that were induced by kGPCR, including IL-8, CCL-2 and KITLG, in-
stigate NFAT activation when bound to their cognate receptors on the cell surface, constituting
a feed-forward loop that fuels signaling amplification. To test this hypothesis, we collected con-
ditioned medium from control or kGPCR-expressing HUVECs to stimulate fresh HUVECs.
We found that conditioned medium from kGPCR-expressing HUVEC modestly up-regulated
the expression of COX-2 and RCANT1 to ~3-fold, compared to conditioned medium from con-
trol HUVECs (Fig. 6D). However, when anti-IL-8 antibody was added into medium to neutral-
ize IL-8, we observed minimal impact on the mRNA levels of COX-2 and RCAN1 (S7D Fig).
This is likely due to other secreted factors that activate NFAT, such as CCL2 and KITLG. Alter-
natively, exosome-mediated delivery of these factors or kGPCR may be resistant to neutralizing
antibodies. Nevertheless, these results support the conclusion that kGPCR also activates NFAT
via a paracrine mechanism, in addition to an autocrine mechanism.

NFAT Activation Is Crucial for Tumor Formation Induced by Viral GPCRs

NFAT is crucial for GPCR-mediated gene expression and many of gene products downstream
of NFAT are key players in tumorigenesis. Thus, we examined tumor formation in the xeno-
graft mouse model using murine SVEC endothelial cells expressing kGPCR and US28, under
the condition that NFAT activation was inhibited with CsA. As expected, SVEC expressing
kGPCR and US28 were sufficient to induce tumor formation in nude mice. Tumor volumes
were detectable at two weeks post-inoculation and reached ~500-600 mm® at 24 days post-
inoculation (Fig. 7A and B). Under the conditions that nude mice were treated with CsA,
tumor volume was reduced by ~60 and ~50% for kGPCR and US28 groups, respectively

(Fig. 7A and B). When mice were euthanized and tumor weight was determined, we found that
CsA treatment reduced tumor weight by ~50% for both groups derived from kGPCR- and
US28-expressing cells (Fig. 7C and D). We then quantified the expression of IL-8 and RCAN]1,
two NFAT-dependent genes, by qRT-PCR using tumor tissues. We found that kGPCR and
US28 had similar levels of induction on IL-8 and RCAN1, with IL-8 being more robustly in-
duced than RCANT1 (Fig. 7E). Strikingly, CsA treatment abolished the induction of IL-8 and
RCANT1 gene expression by both viral GPCRs. These results support the conclusion that NFAT
activation is critical for tumor formation induced by KSHV kGPCR and HCMV US28.
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Discussion

GPCRs constitute the largest family of signaling molecules that regulates nearly every funda-
mental biological process. Upon ligand binding, cellular GPCRs are coupled to a panel of het-
erotrimeric G proteins that are composed of a o subunit and a By dimer. These small G
proteins are activated via guanidine nucleotide exchanging catalyzed by agonist-stimulated
GPCRs and relayed to diverse effectors that influence cellular metabolism and proliferation
chiefly through regulated gene expression [50]. Some herpesviral GPCRs, e.g., KSHV kGPCR
and HCMV US28, demonstrate ligand-independent constitutive activity to instigate signaling
cascades that culminate in regulated gene expression [12,51]. We report here that KSHV
kGPCR and HCMV US28 bypass the upstream components of NFAT pathway by interacting
with and inhibiting the SERCA calcium ATPase, a key negative regulator of NFAT activation.
As such, kGPCR and US28 elevated cytosolic calcium and activated signaling events down-
stream of SERCA. Furthermore, kKGPCR expression installed a gene expression profile signa-
ture of NFAT activation. Key effectors downstream of NFAT transcription factors were
confirmed in human KS tumors and KS-like lesions derived from the tva mouse model. Impor-
tantly, pharmacological inhibitors targeting components upstream of ER calcium release had
no detectable effect on NFAT activation induced by kGPCR and US28, whereas calcium chela-
tors and the calcineurin inhibitor CsA effectively diminished kGPCR- and US28-induced
NFAT activation. Notably, these results do not exclude the possibility that viral GPCRs activate
small G proteins and downstream signaling thereof, either with or without cognate agonists.
Previous studies have identified structural elements that enable these viral GPCRs to efficiently
couple with small G proteins, contributing to the constitutive signaling capacity [18,52]. Al-
though EBV BILF1 is closely-related to kGPCR, BILF1 failed to interact with SERCA2 and acti-
vate NFAT. Replacing the cytoplasmic loops and tail of BILF1 with counterparts of kGPCR
enabled BILF1 to interact with SERCA?2 and activate NFAT. Conversely, replacing the cyto-
plasmic tail of kGPCR with that of EBV BILFI resulted in a kGPCR chimera that failed to in-
teract with SERCA?2 and activate NFAT. These studies, entailing gain- and loss-of-function
experiments, highlight the pivotal role of interaction with and likely inhibition of SERCA2 in
NFAT activation and identifies additional structural elements underpinning the constitutive
activation of viral GPCRs. Taken together, our study unravels a distinct action of viral GPCRs
in activating NFAT independent of agonist association.

NFAT activation is central for the gene expression of a large spectrum of effectors partici-
pating in key physiological events such as immune response, development and homeostasis.
Dys-regulation of GPCR-NFAT signaling circuitry underpins diverse human diseased condi-
tions ranging from mild inflammatory responses to life-threatening malignancies including
cancer [22,53]. Despite that the roles of NFAT signaling cascades in cell differentiation and de-
velopment are well established, the contribution of NFAT activation in the development and
metastasis of various types of cancers is gradually emerging. Initial studies using clinical sam-
ples demonstrated that elevated NFAT activation was detected in tumor biopsies from patients
with invasive breast carcinoma. Moreover, expression of constitutively active NFAT1 in breast
cancer cells promoted migration and invasion [54,55]. Paradoxically, NFAT proteins were
shown to serve as tumor suppressors under certain physiological conditions. For example,
NFAT4-deficient mice were reported to be more susceptible to develop T cell lymphomas in-
duced by murine leukemia virus SL3-3 than wild-type mice [56]. This is supported by the ob-
servation that NFAT inhibits the expression of cyclin-dependent kinase 4 and cyclin A2
[57,58].

NFAT activation was shown to up-regulate the expression of many effectors that have pro-
liferative and transforming activity. Among NFAT downstream effectors that are involved in
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the development and maintenance of tumor microenvironment, ANGPT2 has been shown to
promote tumor growth and angiogenesis [28,29,59]. Disrupting the interaction between
ANGPT?2 and its TIE2 receptor suppressed tumor growth and angiogenesis [60]. In support of
the findings that intimately link IL-8 and COX-2 to tumor angiogenesis [61-63], KSHV infec-
tion induces COX-2 expression that enables viral latent infection and angiogenesis thereof
[64]. KSHV K15 and vFLIP, indeed, have been implicated in promoting COX-2 expression
[65-67]. VELIP has also been shown to induce cytokine production including IL-8 [68]. Fur-
thermore, COX-2 is crucial for inflammatory cytokine production, angiogenesis and invasion
of KSHV-infected cells [67]. Inhibition of COX-2 blocks HCMV replication [69] and leads to a
significant reduction of tumor formation induce by HCMV US28 [70]. Similarly, inhibiting
COX-2 also impaired cell survival of the KSHV latently-infected PEL cells [71]. Combining in-
hibitors of COX-2 and NFAT may synergistically ameliorate malignant conditions associated
with HCMV and KSHYV infection, given that NFAT inhibition can only partially reduce COX-
2 expression. RCAN1, a negative feedback regulator of NFAT activation, was implicated in ren-
dering resistance to the development of various cancers in Down’s syndrome patients. Trans-
genic mice mimicking RCANT1 trisomy showed significant suppression of tumour growth [72].
Surprisingly, knockout of RCANI in mouse also inhibited tumor growth due to hyperactivated
calcineurin and apoptosis of endothelial cells [73]. These findings suggest that, perhaps, a bal-
anced NFAT activation is critical for tumorigenesis. We demonstrate here that viral GPCRs ac-
tivate NFAT to install a unique gene expression profile consisting of effectors (e.g., COX-2,
RCANT, IL-8 and ANGPT?2) that constitute the autocrine and paracrine circuitries in amplify-
ing the igniting stimulation (Fig. 7F). We noted that the induction of NFAT-dependent tran-
scripts (e.g., COX-2 and RCANT1) varies in HUVEC cells expressing kGPCR and SLK cells
infected with replicating KSHV. This likely reflects different viral factors and cellular proteins
that impinge on NFAT activation, in addition to kGPCR. Nevertheless, the autocrine and para-
crine mechanism of NFAT activation may be applicable to the tumor microenvironment
wherein diverse inflammatory effectors and growth-promoting factors signal through GPCRs
and NFAT activation. The central role of NFAT activation in these signaling cascades implies
that inhibiting NFAT activation will thwart tumor formation induced by viral GPCRs and
other oncogenic proteins. The findings that CsA inhibited kGPCR- and US28-mediated tu-
morigenesis provide a proof-of-principle to target NFAT for antitumor therapy. In an immune
competent host, however, approaches that selectively attack tumor tissues while sparing func-
tional immune system are prerequisite to enable the application of an anti-tumor strategy tar-
geting NFAT activation.

Materials and Methods
Constructs, Cell Lines and Compounds

If not specified, pcDNAS5/FRT/TO (Invitrogen) and pCDH-CMV-EF-Puro (System Biosci-
ence) were used for transient and stable expression of corresponding genes. For protein expres-
sion, the HA epitope was inserted upstream or downstream of protein coding sequence.
pSF91-K15-IRESGFP was a gift from Dr. Thomas Schulz (Medizinische Hochschule Hanno-
ver). pcDEF-HA-US28 was kindly provide by Dr. Liliana Soroceanu (California Pacific Medical
Center Research Institute). MSCV-BILF1 was purchased from addgene. pcDNA3.1-SERCA2b
and pNFAT1(1-460)-EGFP were kindly provided by Drs. Jonathan Lytton (University of Cal-
gary) and Yousang Gwack (UCLA). pcDNAS5/FRT/TO-HA-BILF1c was constructed by replac-
ing the three intracellular loops and C-terminal tail with the counterpart of KSHV GPCR.
pcDNA/FRT/TO-HA-kGPCRc was constructed by replacing the C-terminal tail of kGPCR
with the counterpart of EBV BILF1.
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HEK293T and immortalized murine endothelial cells (SVECs) were maintaind in Dulbec-
co's modified Eagle's medium (DMEM) containing 10% fetal bovine serum supplemented
with 100 U penicillin/streptomycin. iSLK.219 cells were maintained with G418 (250 ug/ml),
hygromycin (400 pg/ml) and puromycin (10 pg/ml). iSLK cells were maintained with G418
(250 pg/ml) and puromycin (1 pug/ml). BAC16 and all the mutants were introduced into iSLK
cells by using Fugene HD (Promega) transfection and the stable cell lines were maintained
with puromycin (1 pg/ml), G418 (250 pg/ml) and hygromycin B (1,200 pg/ml). Human umbil-
ical vein endothelial cells (HUVEC) were purchase from Lifeline Cell Technology and main-
tained in human endothelial culture medium according to the instructions. To establish stable
cell lines, SVECs or HUVECs were infected with lentivirus containing indicated genes and se-
lected with puromycin (1 pg/ml) as described previously [38,74].

Chemicals used in the study include ionomycin (Sigma), cyclosporin A (Cell Signaling),
edelfosine (Sigma), 2-Aminoethyl diphenylborinate (Sigma), BAPTA-AM (Abcam), thapsigar-
gin (Sigma)

Immunoprecipitation and Immunoblotting

Commercial antibodies used in this study include mouse anti-HA monoclonal antibody and
agarose (Sigma), mouse anti- $-Actin monoclonal antibody (Abcam), rabbit anti-COX-2 poly-
clonal antibody (Abcam), rabbit anti-RCAN1 polyclonal antibody (Sigma), mouse anti-
SERCA2 (IID8) monoclonal antibody (Santa cruz), mouse anti-calcineurin Ao (Santa cruz).
Thymidine kinase (TK) anti-serum was generated by immunizing rabbit with GST fusion pro-
tein containing N-terminal (aal-330) of TK. RTA antibody were kindly provided by Dr. Yoshi-
hiro Izumiya (UC-Davis). Immunoprecipitation and immunoblotting were carried out as
described previously [37]. Briefly, cells were harvested and lysed with NP40 buffer (50 mM
Tris-HCI [pH 7.4], 150 mM NaCl, 1% NP-40, 5 mM EDTA) supplemented with a protease in-
hibitor cocktail (Roche). Centrifuged cell lysates were pre-cleared with Sepharose 4B beads and
incubated with HA-agarose at 4°C for 4 h. The agarose beads were washed three times with
lysis buffer and precipitated proteins were released by boiling with 1xSDS sample buffer at
95°C for 5 min. Immunoblotting analysis was performed with the indicated primary antibodies
and proteins were visualized with IRDye800 conjugated secondary antibodies (Licor) using an
Odpyssey infrared imaging system (Licor).

Luciferase Reporter Assay

HEK?293T cells in 24-well plates were transiently transfected with a reporter cocktail as previ-
ously described [74,75]. The reporter cocktail contained 50 ng of the plasmid expressing firefly
luciferase under the control of response elements of NFAT and 100 ng of the plasmid express-
ing B-galactosidase. The reporter cocktail contained 100 ng, 200 ng and 500 ng of plasmid
when increasing dose was indicated and all transfections were balanced with empty vector.
Cells were harvested at 24 h post-transfection, lysed and centrifuged supernatant was used to
measure luciferase and -galactosidase activity according to the manufacturer’s instruction
(Promega). For inhibitors treatment, cells were treated with the inhibitors and cell toxicity of
the inhibitors was evaluated by trypan blue staining (Amresco).

Immunofluorescence and Immunohistochemistry

HEK?293T cells were transfected with plasmids containing EGFP-NFAT1(N) and kGPCR. At
24 h post-transfection, cells were treated with 1 uM of ionomycin for 1 h, fixed with 4% para-
formaldehyde and permeabilized with 1% Triton X-100. After staining with primary antibody
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(anti-HA antibody) and secondary antibody (Alexa 568-conjugated goat anti-mouse antibody),
cells were analyzed with a Nikon E800M microscope.

For immunohistochemistry staining [76], mouse or human tissue samples were fixed with
10% (vol/vol) formalin solution (Sigma) overnight. Tissue specimens were dehydrated, embed-
ded in paraffin, and cut into 3-um sections. Tissue sections were analyzed by immunohis-
tochemistry staining with antibodies against COX-2, RCAN1, HA or LANA and DAB
substrate kit (Vector Laboratories). Images were visualized with a Nikon E800M microscope
equipped with a Nikon DXM1200 digital camera and the Nikon ACT-1 imaging
software system.

Proximity Ligation Assay

Proximity ligation assay (PLA) was performed by using the Duolink in situ starter kit (Sigma-
Aldrich) according to previous reports [77,78]. Briefly, HUVEC-Vector or kGPCR stable cells
were fixed with 4% PFA for 10 min at room temperature, and incubated with DuoLink block-
ing buffer for 30 min at 37°C. Cells were then reacted with primary antibodies diluted in Duo-
link antibody diluents for 1 h and then incubated for another 1 h at 37°C with species-specific
PLA probes under hybridization conditions. The PLA probes can be hybridized only when
they were in close proximity (<40 nm). Ligation was then performed for 30 min at 37°C. After
which, a detection solution containing fluorescently labeled oligonucleotides was used to
amply the signal for 100 min at +37°C. The signal was detected as a distinct fluorescent dot
under fluorescence microscope.

Antibody Neutralization of IL-8

Conditioned medium from vector or kGPCR-expressing HUVECs were used to stimulate pri-
mary HUVECs. Control IgG or IL-8 neutralization antibody (R&D systems) was included in
the conditioned medium (0.5 pg/ml) for 24 h. Then, cells were collected for RNA extraction, re-
verse transcription-PCR and quantitative real-time PCR analysis.

SERCA ATPase Activity Assay

HEK?293T cells were transfected with a plasmid containing Flag-SERCA2b together with a vec-
tor or a plasmid containing kGPCR. SERCA2b was precipitated with anti-Flag antibody-
conjugated agarose and used for in vitro ATPase assay. The ATPase activity of SERCA2b was
determined by using ATPase assay kit according to the manufacturer's instructions (Innova
Biosciences). Briefly, the reaction was carried out in a mixture containing 0.5 M of assay buffer,
0.1 M of MgCl,, 2 uM of CaCl, and 10 mM of ATP for 30 min at 37°C. Then 50yl of Gold mix
was added to stop reactions. After 2 min, 20 ul of stabilizer solution was added and the absor-
bance was read at 620 nm at 30 min later.

Measurement of Intracellular Calcium

HUVEC stable cells were loaded with Fluoro-4-AM (Molecular Probes) for 45 min at 37°C.
Cells were then washed and further incubated with fresh medium for 20 min. Live cells were
analyzed with a Nikon E800M microscope and the fluorescence signal was quantified by Ima-
geJ (NIH).

Reverse Transcription-PCR and Quantitative Real-Time PCR

To determine the relative levels of the NFAT downstream genes, reverse- transcription PCR
and quantitative real-time PCR were performed as previously reported. Briefly, total RNA was
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extracted from cells using RNAeasy kit (Qiagen). The RNA was digested with DNase I (New
England Biolabs) to remove genomic DNA. One microgram of total RNA was used for reverse
transcription with Superscript II reverse transcriptase (Invitrogen) according to the manufac-
turer’s instruction. The abundance of mRNAs was assessed by qRT-PCR using StepONEPlus
Real-Time PCR system (Applied Biosystems). Mouse or human B-actin was used as internal
controls. The primers were listed in Table S2.

Generation of kKGPCR and kGPCRc Revertant KSHV (BAC16-kGPCR.
Rev and BAC16-kGPCRc.Rev

The kGPCR-deficient KSHV was generated by deleting kGPCR coding sequence in bacterial arti-
ficial chromosome 16 (BAC16) as previously described [49]. To generate the revertant mutants,
we performed the first around of PCR by amplifying a Kan®/I-Scel cassette from the pEP-Kan-S
plasmid with the following primers: forward primer GTAGATATCTTCAGTGTTGTGTGCGT-
CAGTCTAGTGAGGTACCTCCAGGATGACGACGATAAGTAGGG and reverse primer
TGCGATATCAACCAATTA ACCAATTCTGATTAG. The PCR products were digested with
EcoRV and inserted into pcDNAS5/FRT/TO-kGPCR or kGPCRc. Then the second around of
PCR was performed with the forward primers AAAGGCGTGGCTAAACAACACCTATAC-
TACTTGTTATTG TAGGCCATGTATCCGTATGATGTTCCTGA or AGGCTAGAT-
TAAATTAAGGGGGAAG GGCACGTAGACATCCGCGGGTCAGGTGGACTGGCTAGG-
CACCCT and reverse primer AGGCTAGATTAAATTAAGGGGGAAGGGCACGTAGA-
CATCCGCGGGCTACG TGGTGGCGCCGGACATGA to get the revertant PCR segments.

The recombination was performed in the GS1783 Escherichia coli strain as previously de-
scribed [49]. Kpnl and SbfI digestion of the BAC16 DNA followed by either conventional aga-
rose gel electrophoresis or pulsed-field gel electrophoresis were used to verify the constructs. In
addition, colony PCR and direct sequencing were performed to verify the correct insertion of
the revertant mutants.

Ethics Statement

All animal experiments were carried out according to the National Institutes of Health princi-
ples of laboratory animal care and approved by the University of Southern California Institu-
tional Animal Care and Use Committee (IACUC) with permit number A0372.

Mouse Xenograft Tumor Formation and Treatment

Six to eight-week old athymic (nu/nu) nude mice (Jackson Laboratory) were used for xenograft
experiment. KSHV GPCR or HCMV US28 stable SVEC cells (0.5x10%) were harvested, washed,
resuspended in PBS, mixed with 10° SVEC cells and injected subcutaneously into the flank of
nude mice. Mice were treated with CsA (20 pg/g body weight) every the other day via intrapre-
toneal injection, and monitored for tumor development twice every week. At 4-6 wk after inoc-
ulation, mice were euthanized and tumor weight was determined.

Supporting Information

S1 Fig. Expression of KGPCR induces NFAT activation. (A) HEK 293T cells were transfected
with plasmids containing EGFP-NFAT1(N) and kGPCR. At 24 h post-transfection, cells were
treated with ionomycin (Iono) (1 uM) and then fixed, stained and analyzed by immunofluores-
cence microscopy. Representative images were shown. Scale bar, 20 um. (B) 293T cells were
transfected with a plasmid containing EGFP-N1(N) without or with a plasmid containing
kGPCR. For 293T cells transfected with the plasmid containing EGFP-NFAT1(N), cells were
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treated with vehicle (DMSO) or ionomycin (1 pM) for 6 hours. Nuclear NFAT1 was counted
with fluorescence microscope. (C and D) Transfection and NFAT activation by ionomycin (C)
or cyclosporine A (CsA, D) were carried out in (B). Whole cell lysates were analyzed by immu-
noblotting with indicated antibodies.

(TTF)

S2 Fig. Effect of drug treatment on 293T cells. 293T cells were transfected with plasmids of
NFAT reporter and that containing kGPCR. At 6 h post-transfection cells were treated with
edelfosine (10 uM) (A), 2-APB (50 and 100 uM) (B) or cyclosporine A (CsA, 2, 20 and 200 nM)
(C). At 24 hours, cells were treated with EGTA (1-5 mM) (D) or BAPTA-AM (10, 20 and

50 uM) (E) for 5 hours. Cell viability was determined by trypan blue staining.

(TIF)

S3 Fig. Thapsigargin (TG) treatment disrupts the interaction between kGPCR and
SERCA2. (A) HEK293T cells were transfected with the NFAT reporter cocktail and a plasmid
containing KSHV GPCR. At 20 h post-transfection cells were treated with 1uM of TG or iono-
mycin for 6 h and NFAT activation was determined by luciferase reporter assay. (B) 293T cells
were transfected with plasmids containing indicated genes and, 24 h post-transfection, cells
were treated with vehicle (DMSO) or TG (1 uM) for 6 h. Co-immunoprecipitation and immu-
noblot were carried out as in (B). HC, IgG heavy chain.

(TIF)

S4 Fig. HCMV US28, but not EBV BILF1, interacts with SERCA2 and activates NFAT. (A)
293T cells were transfected with the NFAT reporter cocktail and increasing amount of plas-
mids containing KSHV kGPCR, HCMV US28 and EBV BILF1. NFAT activation was deter-
mined by luciferase reporter assays. (B) 293T cells were transfected with plasmids containing
SERCAZ2 and US28 or BILF1. Centrifuged cell extracts were precipitated with anti-HA agorose
(US28 or BILF1), precipitated proteins and whole cell lysates were analyzed by immunoblot
with indicated antibodies. (C) 293T cells were transfected with the NFAT luciferase reporter
cocktail and increasing amount of a plasmid containing wildtype kGPCR, EBV BILF1 or the
BILF1 chimera (BILFIc) in which the carboxyl terminal tail and cytoplasmic loops of BILF1
were replaced with counterparts of kGPCR. NFAT activation was determined by luciferase
assay at 30 hours post-transfection. Whole cell lysates were analyzed by immunoblotting for
the expression of viral GPCRs (A and C).

(TIF)

S5 Fig. The BILF1 chimera (BILF1c) interacts with SERCA?2 and activates NFAT. (A) 293T
cells were transfected with plasmids containing SERCA2 with BILF1 or BILFlc. Co-immuno-
precipitation was performed with anti-HA-conjugated agarose (BILF1 or BILF1c). Precipitated
proteins and whole cell lysates (WCL) were analyzed by immunoblotting. (B and C) HEK293T
cells were transfected with the NFAT reporter cocktail and a plasmid containing BILF1c. At

24 h post-transfection cells were treated with EGTA (1-5 mM) or BAPTA-AM (10, 20 and

50 uM) for 5 h and NFAT activation was determined by luciferase reporter assay. (D) 293T
cells were transfected with the NFAT reporter cocktail and a plasmid containing BILF1c. At

6 h post transfection cells were treated with the indicated compounds and NFAT activation
was determined by luciferase reporter assay. Whole cell lysates were analyzed by immunoblot-
ting for the expression of BILF1c (B-D).

(TIF)

S6 Fig. Generation of KSHV BAC16 with kGPCR or kGPCRc revertant. (A-B) Gel electro-
phoresis of Kpnl- (A) or Sbfl-digested (B) BAC16 constructs (WT, AvGPCR, kGPCR revertant

PLOS Pathogens | DOI:10.1371/journal.ppat.1004768 March 26, 2015 21/26


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004768.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004768.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004768.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004768.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004768.s006

@'PLOS ‘ PATHOGENS

NFAT Activation by Herpesviral G Protein-Coupled Receptors

clone 1-5 and kGPCRc revertant clone 1-5). (C) PCR products were amplified from the
kGPCR locus of KSHV and were analyzed by agarose gel electrophoresis. (D) iSLK cells carry-
ing wild-type and kGPCR-deficient BAC16, revertant BAC16 with wild-type kGPCR or signal-
ing defective kGPCRc were transfected with a plasmid containing EGFP-NFAT1 (1-460). At
12 hours post-transfection, cells were induced with sodium butyrate (1 mM) and doxycycline
(0.5 ug/ml) for 48 hours. Whole cell lysates were analyzed by immunoblotting with

indicated antibodies.

(TIF)

S7 Fig. kGPCR activates NFAT in a paracrine mechanism. (A-C) Human Kaposi’s sarcoma
tumors were analyzed by immunohistochemistry staining with antibodies against LANA (A),
COX-2 (B) and RCANT1 (C). Images of low magnification were collected. Scale bars denote

50 um. (D) HUVEC cells were incubated with conditioned medium from HUVEC/Vec (con-
trol) or HUVEC/kGPCR cells, with a control (CTL) or anti-IL-8 antibody (0.5 pug), for indicat-
ed time. Total RNA was extracted and analyzed by qRT-PCR with primers for COX-2 and
RCANI.

(TIF)
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