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Abstract

We obtain the sharp constants of some Hardy-Sobolev-type inequalities proved by
Balinsky et al. (Banach J Math Anal 2(2):94-106).
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1. Introduction
Hardy inequality in R” reads, for all f € C3°(R") and n > 3,
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The Sobolev inequality states that, for all f € C5°(R") and n > 3,
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where 2* = 2n and 2 is the best constant (cf. [1,2]). A
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result of Stubbe [3] states that for g < § < ,
n—1
(n—2)* 5) " 2
7 4
/ VfPdx — 8 dx >

2*
Sh / If12 dx (1.3)

X2 n—1

X X (n—2)*\ n
4

and the constant in (1.3) is sharp. Recently, Balinsky et al. [4] prove analogous
inequalities for the operator £ := x - V. One of the results states that, for 0 < § <n*/4
and f € C°(R"),
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where F(r) is the integral mean of f over the unit sphere 57—}, i.e.,

F(r) = |gn1—1| /f(rw)dw,
Sn—l

272
I(n/2)
of this note is to look for the sharp constant of inequality (1.4). To this end, we have:

2
Theorem 1.1. Let f € C3°(R")and n = 3. There holds, for 9 < § < r;’

and |G| = Jon do> = Here, we use the polar coordinates x = rw. The aim
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and the constant in (1.5) is sharp.

When ¢ = n”/4, we have the following Theorem, which generalize the results of [4],
Corollary 4.6.

Theorem 1.2. If f is supported in the annulus Ag := {x € R": R < |x| <R}, then
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2. The proofs
We first recall the Bliss lemma [5]:
Lemma 2.1. For s 20,g >p >l and r = q/p - 1,

| s q pla %)
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where

T (q/r) )“’”
r(/nr(q—1)/n

is the sharp constant. Equality is attained for functions of the form

Cpg=(q—1— 1)_’7/4(

r+1

g)=ci(s +1) T, ¢ >0,¢>0.

Using the Bliss lemma, we can prove the Theorem 1.1 for the radial function f i.e.,
f(x) = f(Ial) for some f € C*([0, 00)).
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2
Lemma 2.2. Let f(|x]) € CF(R")and n > 3. There holds, for 0 < § < "
= 4
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and the constant in (2.1) is sharp.
Proof. We note if fis radial, then F(r) = f{r) and Lf = 1f'(r). Therefore, inequality
(2.1) is equivalent to
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Let 0 < B <n/2 and set g(r) = 7 fir). Through integration by parts, we have that
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Make the change of variables s = %,
/Ig’(r)lzr"+1’2ﬁdr =(n— 2,3)/52 2 ds. (2.4)
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On the other hand, set h(s) = ?Bg so that g = — [" h(t)dt, we have
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where w(s) = s2h(s™). By Bliss lemma,
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Recall that s = 7% and g(r) = /* fir),
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Therefore, by (2.3), (2.4), (2.5) and (2.6),
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—Jn?2—
Let g = n—/n? -4 when 0 < 6 <n’/4. Then, 0 < 8 <n/2 and 6 = B (n - fB). There-
2

fore,
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Inequality (2.1) follows.
Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Decomposing f into spherical harmonics, we get (see e.g. [6])

F=Y fi=Y_ gnee(o),
k=0 k=0

where ¢;(0) are the orthonormal eigenfunctions of the Laplace-Beltrami operator
with responding eigenvalues

a=k(N+k—2), k=>o0.

The functions gi(r) belong to C3°(R"), satisfying gi(r) = O(") and g, (r) = O(r* ') as r
— 0. By orthogonality,

F(r) = |S"1*1| / f(rw)dw = go(r).
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Here, we use the radial derivative = X| | = |£|. Therefore,
T X X

/ Cf Pdx — 8 / fde=Y / P1g,(r) Pdx — 8 / gdx
R R k=0

n Rn

> /r2|g/0(r)|2dx—8/g§dx=/rle’(r)lzdx—S/F(r)zdx
IRYI IRYI

Rn R



Xiao Journal of Inequalities and Applications 2011, 2011:132
http://www.journalofinequalitiesandapplications.com/content/2011/1/132

holds for all u € C§°(R") and Lu = r/(r) if u is radial. By Lemma 2.2,
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The proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. We denote by By € R the unit ball centered at zero.

Step 1. Assume f'is radial and f € CJ°(Bgr). Then,
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Therefore, by Theorem B in [7],
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where

Xi(a,s) = (a—lns)’l, a>0 0<s<1.
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Thus,
2 2
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Br Br Br Br
n—2
2(n—1) 2(n—1) 2n n
>(n-2) n s, /Xln‘z (a,';')hﬂn—zdx

Bg

Step 2. Assume f is not radial and f € C(Br). We extend f as zero outside Bg. So

f € C¥(R"). Decomposing f into spherical harmonics, we have
[o¢] [o¢]
f=Y fi=)_ aner(o),
k=0 k=0

where ¢;(0) are the orthonormal eigenfunctions of the Laplace-Beltrami operator
with responding eigenvalues

a=k(N+k—2), k=>o0.

The functions fi(r) belong to C3°(Bg). By the proof of Theorem 1.1 and Step 1,
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Step 3. By Step 1 and Step 2, the following inequality holds for f € C3°(Br)
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We note if R < |x| <R, then
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Therefore, If f is supported in the annulus Ag := fx € R”: R < |x| <R}, then

2
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Letting @ — 0, we have
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The proof of Theorem 2 is completed.
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