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Abstract
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1 Introduction
It is well known that the ball has the maximum volume among bodies of fixed surface area
in the Euclidean space R

n. That is, of all domains K with surface area S(K ) and volume
V (K ) (cf. [, ]),

S(K )n – nnωnV (K )n– ≥ , ()

with equality if and only if K is a ball. Here ωn denotes the volume of the unit ball,

ωn =
πn/

n�(n/)
,

where �(·) is the Gamma function.
The isoperimetric deficit

�n(K ) = S(K )n – nnωnV (K )n– ()

measures the deficit between the domain K and a ball of radius (S(K )/nωn)/(n–).
A Bonnesen-style isoperimetric inequality is of the form (cf. [–])

�n(K ) = S(K )n – nnωnV (K )n– ≥ BK , ()

where the quantity BK is a non-negative invariant of geometric significance of K and van-
ishes only when K is a ball.
Bonnesen himself proved several inequalities of the form () in the Euclidean plane

(cf. [, ]), but he was not able to obtain direct generalizations of his two-dimensional
results. This was done much later, first by Hadwiger [] for n = , and then by Dinghas []
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for arbitrary dimension. From then on, some Bonnesen-style inequalities in the higher di-
mensions and generalizations have been obtained by Osserman (cf. [, ]), Santaló (cf. []),
Groemer and Schneider (cf. []), Zhang (cf. []), Zhou (cf. [, ]) and others. See refer-
ences [–] for more details. The following well-known Bonnesen-style inequality for
a convex body K in the Euclidean space Rn is due to Dinghas (cf. []):

S(K )n – nnωnV (K )n– ≥ (
S(K )/(n–) – (nωn)/(n–)r

)n(n–), ()

where r is the in-radius of K , and equality holds if and only if K is a ball.
In [], some different forms of Bonnesen-style isoperimetric inequalities have been es-

tablished associated with the mean width of K . Zhang obtained (cf. [])

(
M(K )


)n/(n–)

–
(
V (K )
ωn

)/(n–)

≥
(
V (K )
ωn

)n/(n–)((
V (K )
ωn

)–/n

– R–
)
,

whereM(K ) and R are the mean width and out-radius of K , respectively.
The Minkowski inequality of mixed volume is a natural generalization of the isoperi-

metric inequality () in the Euclidean space Rn (cf. [, –]). Let K , L be convex bodies
in R

n, then

V(K ,L)n ≥ V (K )n–V (L), ()

where V(K ,L) is the mixed volume of K and L and the equality holds if and only if K and
L are homothetic.
Motivated by (), we define the Minkowski homothetic deficit as

�n(K ,L) = V(K ,L)n –V (K )n–V (L). ()

The Minkowski homothetic deficit �n(K ,L) measures the homothety between K and L.
Then a Bonnesen-style Minkowski inequality would be of the form

�n(K ,L) = V(K ,L)n –V (K )n–V (L) ≥ BK ,L, ()

where the quantity BK ,L is an invariant of geometric significance about K and L with the
following basic properties:
. BK ,L is non-negative;
. BK ,L vanishes only when K and L are homothetic.
Note that let L be the unit ball B and by S(K ) = nV(K ,B), the surface area of K , then the

Minkowski homothetic deficit is just the isoperimetric deficit. Therefore, the Bonnesen-
style Minkowski inequality () is more general than the Bonnesen-style isoperimetric in-
equality ().
In this paper, we focus on Bonnesen-style Minkowski inequalities of type (). Some BK ,L

are obtained. Let L be the unit ball; then we obtain stronger Bonnesen-style isoperimetric
inequalities K than ().
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2 Preliminaries
A set of points K in the Euclidean space R

n is convex if for all x, y ∈ K and  ≤ λ ≤ ,
λx + ( – λ)y ∈ K . A domain is a set with nonempty interiors. A convex body is a compact
convex domain. The set of convex bodies in R

n is denoted by Kn. Let Kn
o be the class

of members of Kn containing the origin in their interiors. Write V for an n-dimensional
Lebesgue measure and Hn– for an (n – )-dimensional Hausdorff measure. Sn– denotes
the surface of the unit ball in R

n.
A convex body K ⊂ R

n is uniquely determined by its support function hK : Rn → R,
where hK (x) = max{x · y : y ∈ K}, for x ∈ R

n. For the support function of the dilate cK =
{cx : x ∈ K} of a convex body K we have

hcK = chK , c > . ()

Note that support functions are positively homogeneous of degree one and subadditive.
It follows immediately from the definition of support functions that for convex bodies K
and L

K ⊆ L ⇐⇒ hK ≤ hL. ()

For a convex body K and each Borel set ω ⊂ Sn–, the reverse spherical image τ (K ,ω), of
K at ω is the set of all boundary points of K which have an outer unit normal belonging to
the set ω. Associated with each convex body K ∈ Kn

o there is a Borel measure SK on Sn–

called the Aleksandrov-Fenchel surface area measure of K , defined by

SK (ω) =Hn–(τ (K ,ω)
)
,

for each Borel set ω ⊆ S
n–. Observe that for the surface area measure of the dilate cK of

K we have

ScK = cn–SK , c > .

The Minkowski sum of convex sets K, . . . ,Km in R
n is defined by

K + · · · +Km = {x + · · · + xm : x ∈ K, . . . ,xm ∈ Km}.

The mixed volume V (K, . . . ,Kn) of compact convex sets K, . . . ,Kn in R
n is defined by

V (K, . . . ,Kn) =

n!

n∑
j=

(–)n+j
∑

i<···<ik
V (Ki + · · · +Kik ).

The Aleksandrov-Fenchel inequality about the ith mixed volume is

Vi(K,K) ≥ Vi+(K,K)Vi–(K,K), ()

where

Vi(K,K) = V (K, . . . ,K︸ ︷︷ ︸
n–i

,K, . . . ,K︸ ︷︷ ︸
i

)
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with K appears n– i times and K appears i times and () holds as an equality if and only
if K and L are homothetic.
Note that

Vn(K,K) = V (K), V(K,K) = V (K). ()

The following inequality formixed volumes is the general Aleksandrov-Fenchel inequal-
ity: Let K, . . . ,Kn ∈K and  ≤m ≤ n. Then

V (K, . . . ,Kn)m ≥
m∏
i=

V (Ki, . . . ,Ki,Km+, . . . ,Kn).

Hence

V(K,K)n– ≥ V (K)n–Vn–(K,K). ()

Let K = B, then Vi(K,B) =Wi(K), the ith quermassintegral of the convex body K.
The mixed volume has monotonicity: If K ⊂ K ′

, then

V (K,K, . . . ,Kn) ≤ V
(
K ′
,K, . . . ,Kn

)
.

The mixed volume V(K ,L) of the convex bodies K ,L ∈Kn
o has the integral form

V(K ,L) =

n

∫
Sn–

hL dSK . ()

Since

V (K ) = V(K ,K ),

we have

V (K ) =

n

∫
Sn–

hK dSK .

If B is the unit ball, then

nV(K ,B) = S(K ),

the surface area of K . The mean widthM(K ) of K is

M(K ) =

ωn

V(B,K ),

that is,

M(K ) =


nωn

∫
Sn–

hK dSK .
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The in-radius r(K ,L), out-radius R(K ,L) of K with respect to L are, respectively, defined
by

r(K ,L) = sup
{
λ : x ∈ R

n and x + λL ⊂ K
}
,

R(K ,L) = inf
{
λ : x ∈R

n and K ⊂ x + λL
}
.

Notice that always

r(K ,L)R(L,K ) = .

When L is the unit ball, r(K ,L) and R(K ,L) are the radius of maximal inscribed and mini-
mal circumscribed balls of K , respectively.

3 Bonnesen-style Minkowski inequalities associated with r(K ,L)
In this section, we derive some Bonnesen-styleMinkowski inequalities associated with in-
radius r(K ,L) of K with respect to L. In [], Diskant improved the Minkowski inequality
of mixed volumes as follows.

Lemma  Let K , L be convex bodies in the Euclidean space Rn, then

V(K ,L)n/(n–) –V (K )V (L)/(n–) ≥ (
V(K ,L)/(n–) – r(K ,L)V (L)/(n–)

)n, ()

with equality if and only if K is homothetic to L.

Note that the right-hand side of () is non-negative for x+r(K ,L)L⊆ K (x ∈R
n). By ()

we have

V(K ,L) =

n

∫
Sn–

hL dSK ≥ 
n

∫
Sn–

hL dSr(K ,L)L ≥ r(K ,L)n–V (L).

From Lemma  and using the inequality xn– – yn– ≥ (x – y)n– (for x ≥ y ≥ ), a lower
bound of the Minkowski deficit follows (cf. [, ]).

Proposition  Let K , L be convex bodies in the Euclidean space Rn, then

�n(K ,L) ≥ (
V(K ,L)/(n–) – r(K ,L)V (L)/(n–)

)n(n–), ()

where the inequality holds as an equality if and only if K and L are homothetic.

The following Bonnesen-style Minkowski inequality is stronger than () for n = .

Theorem  Let K , L be convex bodies in the Euclidean space R, then

�(K ,L) ≥ (
V(K ,L)/ – r(K ,L)V (L)/

)
+ r(K ,L)V (L)/

(
V(K ,L)/ – r(K ,L)V (L)/

), ()

with equality if and only if K is homothetic to L.
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Proof Since V (K ) ≥ r(K ,L)V (L) and by x – y ≥ (x – y) (for x ≥ y≥ ), we have

V(K ,L)/ +V (K )V (L)/ ≥ V(K ,L)/ + r(K ,L)V (L)/

= V(K ,L)/ –
(
r(K ,L)V (L)/

) + r(K ,L)V (L)/

≥ (
V(K ,L)/ – r(K ,L)V (L)/

) + r(K ,L)V (L)/.

Note that () can be rewritten as

V(K ,L)/ –V (K )V (L)/ ≥ (
V(K ,L)/ – r(K ,L)V (L)/

).
Multiplying by V(K ,L)/ +V (K )V (L)/ on both sides, we have

V(K ,L) –V (K )V (L) ≥ (
V(K ,L)/ – r(K ,L)V (L)/

)(V(K ,L)/ +V (K )V (L)/
)
.

By these inequalities, we complete the proof of the theorem. �

Let L be the unit ball and notice S(K ) = V(K ,B) in (), we obtain the following
Bonnesen-style isoperimetric inequality that strengthens Dinghas’s inequality () for
n = .

Corollary  Let K be a convex body in R
 and r be the in-radius of K , then

�(K ) ≥ (
S(K )/ – (π )/r

) + π/r
(
S(K )/ – (π )/r

), ()

with equality if and only if K is a ball.

For n≥ , we obtain a stronger Bonnesen-style Minkowski inequality as follows.

Theorem  Let K , L be convex bodies in the Euclidean space Rn (n≥ ), then

�n(K ,L) ≥ (
V(K ,L)/(n–) – r(K ,L)V (L)/(n–)

)n(n–)
+ 

(
r(K ,L)V (L)/(n–)

)n(n–)(V(K ,L)/(n–) – r(K ,L)V (L)/(n–)
)n

+
(
V(K ,L)V (L)

)n/(n–)r(K ,L)n
(
V(K ,L)/(n–) – r(K ,L)V (L)/(n–)

)n(n–),
with equality if and only if K is homothetic to L.

Proof Let p = V(K ,L)n/(n–) and q = V (L)n/(n–)r(K ,L)n, then p ≥ q.

n∑
i=

(
V(K ,L)n(n–i)/(n–)

(
V (K )n–V (L)

)(i–)/(n–))

≥
n∑
i=

(
V(K ,L)n(n–i)/(n–)

(
V (L)/(n–)r(K ,L)

)n(i–))
=

(
pn– – qn–

)
+ pq

(
pn– + pn–q + · · · + pn–iqi– + · · · + qn–

)
+ qn–

=
(
pn– – qn–

)
+ pq · p

n– – qn–

p – q
+ qn–

http://www.journalofinequalitiesandapplications.com/content/2014/1/270
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≥ (p – q)n– + pq(p – q)n– + qn–

≥ (
p/n – q/n

)n(n–) + pq
(
p/n – q/n

)n(n–) + qn–.

That is,

n∑
i=

(
V(K ,L)n(n–i)/(n–)

(
V (K )n–V (L)

)(i–)/(n–))
≥ (

V(K ,L)/(n–) –V (L)/(n–)r(K ,L)
)n(n–) + 

(
V (L)/(n–)r(K ,L)

)n(n–)
+

(
V(K ,L)V (L)

)n/(n–)r(K ,L)n
(
V(K ,L)/(n–) –V (L)/(n–)r(K ,L)

)n(n–).
Multiplying by

∑n
i=(V(K ,L)n(n–i)/n–(V (K )n–V (L))(i–)/(n–)) both sides of () and via

the formula

an– – bn– = (a – b)
(
an– + an–b + · · · + an–ibi– + · · · + abn– + bn–

)
,

we obtain

V(K ,L)n –V (K )n–V (L) ≥ (
V(K ,L)/(n–) – r(K ,L)V (L)/(n–)

)n
×

( n∑
i=

(
V(K ,L)n(n–i)/(n–)

(
V (K )n–V (L)

)(i–)/(n–))).
We complete the proof of Theorem . �

Let L be the unit ball and by S(K ) = nV(K ,B) in Theorem ; we obtain the following
stronger Bonnesen-style isoperimetric inequality than Dinghas’s inequality () for n≥ .

Corollary  Let K be a convex body in R
n (n≥ ) and r be the in-radius of K , then

�n(K ) ≥ (
S(K )/(n–) – (nωn)/(n–)r

)n(n–)
+ 

(
(nωn)/(n–)r

)n(n–)(S(K )/(n–) – (nωn)/(n–)r
)n

+
(
nωnS(K )

)n/(n–)rn(S(K )/(n–) – (nωn)/(n–)r
)n(n–),

with equality if and only if K is a ball.

4 Bonnesen-style Minkowski inequalities associated with themean width
In this section, we derive some Bonnesen-style Minkowski inequalities associated with
the mean width.

Lemma  Let K , L be convex bodies in R
n, then

V(K ,L)
V(K ,L)

≤
(
V(K ,L)
Vn(K ,L)

)/n

≤ Vn–(K ,L)
Vn(K ,L)

≤ V(K ,L)n–

V (K )n–V (L)
, ()

with equality if and only if K and L are homothetic.

http://www.journalofinequalitiesandapplications.com/content/2014/1/270
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Proof By inequality (), we have

Vn–(K ,L)
V (L)

≤ V(K ,L)n–

V (K )n–V (L)
.

By the Aleksandrov-Fenchel inequality () we have

V(K ,L)
V(K ,L)

≤ V(K ,L)
V(K ,L)

≤ · · · ≤ Vi(K ,L)
Vi+(K ,L)

≤ · · · ≤ Vn–(K ,L)
Vn(K ,L)

.

Therefore

V(K ,L)
V(K ,L)

≤
(
V(K ,L)
Vn(K ,L)

)/n

≤ Vn–(K ,L)
Vn(K ,L)

. �

Theorem  Let K , L be convex bodies in R
n, then

�n(K ,L) ≥ V (K )n–V (L)V(K ,L)
(
Vn–(K ,L)
Vn(K ,L)

–
(
V(K ,L)
Vn(K ,L)

)/n)
, ()

with equality if and only if K and L are homothetic.

Proof Via (), we have

V(K ,L)n–

V (K )n–V (L)
–
V(K ,L)
V(K ,L)

≥ Vn–(K ,L)
Vn(K ,L)

–
(
V(K ,L)
Vn(K ,L)

)/n

.

That is

V(K ,L)n –V (K )n–V (L) ≥ V (K )n–V (L)V(K ,L)
(
Vn–(K ,L)
Vn(K ,L)

–
(
V(K ,L)
Vn(K ,L)

)/n)
. �

The following Bonnesen-style inequality is a direct consequence of Theorem .

Theorem  Let K be a convex body in R
n, then

�n(K ) ≥ nn–ωnS(K )V (K )n–
(
M(K )


–
(
V (K )
ωn

)/n)
,

with equality if and only if K is a ball.

Lemma  Let K , L be convex bodies in R
n, then

V(K ,L)n– –
√
V(K ,L)n–(V(K ,L)n –V (K )n–V (L))

V (K )n–V (L)

≤ V(K ,L)
V(K ,L)

≤ Vn–(K ,L)
Vn(K ,L)

≤ V(K ,L)n–

V (K )n–V (L)
. ()

Proof The Minkowski inequality () gives

V(K ,L)n– –
√
V(K ,L)n–(V(K ,L)n –V (K )n–V (L))

V (K )n–V (L)
≤ V(K ,L)

V(K ,L)
.

The above inequality together with () leads to Lemma . �
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We are now in a position to prove the following Bonnesen-style Minkowski inequality.

Theorem  Let K , L be convex bodies in R
n, then

�n(K ,L) ≥ V (K )n–V (L)

V(K ,L)n–

(
Vn–(K ,L)
Vn(K ,L)

–
V(K ,L)
V(K ,L)

)

, ()

with equality if and only if K and L are homothetic.

Proof From () we have

√
V(K ,L)n–(V(K ,L)n –V (K )n–V (L))

V (K )n–V (L)
≥ Vn–(K ,L)

Vn(K ,L)
–
V(K ,L)
V(K ,L)

. �

The following Bonnesen-style inequality is a direct consequence of Theorem  when L
is the unit ball.

Theorem  Let K be a convex body in R
n, then

S(K )n – nnωnV (K )n– ≥ nn–ω
nV n–

Sn–

(
M(K )


–
nV (K )
S(K )

)

,

with equality if and only if K is a ball.
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