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Abstract
Some sufficient conditions for complete convergence for maximal weighted sums
max1≤j≤n |∑j

k=1 ankXnk| and weighted sums
∑n

k=1 ankXnk are presented, where{Xnk , 1≤ k ≤ n,n≥ 1} is an array of rowwise ψ -mixing random variables, and
{ank , 1 ≤ k ≤ n,n≥ 1} is an array of constants. The obtained results extend and
improve the corresponding result in the previous literature.
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1 Introduction
The following notion was given firstly by Hsu and Robbins [].

Definition . A sequence of random variables {Un,n≥ } is said to converge completely
to a constant θ if for any ε > ,

∞∑
n=

P
(|Un – θ | > ε

)
<∞.

In this case, we write Un → θ completely. In view of the Borel-Cantelli lemma, the result
above implies that Un → θ almost surely. Therefore, the complete convergence is a very
important tool in establishing almost sure convergence of summation of random variables
as well as weighted sums of random variables.

Let {Xn,n ≥ } be a sequence of random variables, defined on a probability space
(�,F ,P), and denote σ -algebras

Fm
n = σ (Xk ,n≤ k ≤ m),  ≤ n≤ m ≤ ∞.

As usual, for a σ -algebra F , we denote by L(F ) the class of all F -measurable random
variables with the finite second moment. Given σ -algebrasA, B in F , let

ψ(A,B) = sup
A∈A,B∈B,P(A)P(B)>

∣∣∣∣ P(AB)
P(A)P(B)

– 
∣∣∣∣,

ϕ(A,B) = sup
A∈A,B∈B,P(A)>

∣∣P(B|A) – P(B)
∣∣.
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Define the mixing coefficients by

ψ(n) = sup
k≥

ψ
(
F k

 ,F∞
k+n

)
, ϕ(n) = sup

k≥
ϕ
(
F k

 ,F∞
k+n

)
, n≥ .

The concepts of ψ-mixing and ϕ-mixing random variables were introduced by Blum et
al. [] and Dobrushin [], respectively.

Definition . A sequence of random variables {Xn,n ≥ } is said to be a ψ-mixing
(ϕ-mixing) sequence of random variables if ψ(n) ↓  (ϕ(n) ↓ ) as n→ ∞.

Clearly, from the definition above, we know that the independence implies ψ-mixture
and ϕ-mixture. It is easily seen that theψ-mixing condition is stronger than the ϕ-mixing.
Therefore, the family ofψ-mixing is a special case of ϕ-mixing. Years after the appearance
of Dobrushin [], many works of investigation concerning the convergence properties of
ϕ-mixing random variables have emerged. We refer the reader to Ibragimov [], Cogburn
[], Sen [], Choi and Sung [], Utev [], Chen [], Shao [], Rüdiger [], Chen et al. [],
Zhou [], Wang et al. [, ], Guo [].
However, according to our knowledge, few papers discuss the subjects for sequences or

arrays of ψ-mixing random variables except Blum et al. [], Bradley [], Yang [], Wu
and Zhu [], Wang et al. [, ], and Yang and Liu []. The goal of this paper is to study
a complete convergence for arrays of rowwise ψ-mixing random variables.
Then we recall that the following concept of stochastic domination is a slight general-

ization of identical distribution.

Definition . An array of rowwise random variables {Xnk ,  ≤ k ≤ n,n ≥ } is said to be
stochastically dominated by a nonnegative random variable X (write {Xnk} ≺ X) if there
exists a constant C >  such that

sup
n,k

P
(|Xnk| > x

) ≤ CP(X > x), ∀x > .

Stochastic dominance of {Xnk ,  ≤ k ≤ n,n ≥ } by the random variable X implies that
E|Xnk|p ≤ CEXp if the p-moment of X exists, i.e., if EXp < ∞.

Hu et al. [] obtained the following result in the complete convergence.

Theorem A Let {Xnk ,  ≤ k ≤ n,n ≥ } be an array of rowwise independent random vari-
ables with EXnk = . Suppose that {Xnk ,  ≤ k ≤ n,n ≥ } are uniformly bounded by some
random variable X. If E|X|p < ∞ for some  ≤ p < , then

n–/p
n∑
k=

Xnk →  completely.

Taylor et al. [], Baek et al. [] extended and generalized Theorem A to rowwise neg-
atively dependent (ND) random variables.
The main purpose of this article is to discuss the complete convergence for weighted

sumsofψ-mixing randomvariables.We shall extendTheoremAby consideringψ-mixing
instead of independent. It is worthy to point out that our main methods differ from those
used by Hu et al. [].
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Below, C will be used to denote various positive constants, whose value may vary from
one application to another. For a finite set A, the symbol �(A) denotes the number of ele-
ments in the set A. I(A) will indicate the indicator function of A.

2 Main results and some lemmas
Now, we state our main results. The proofs will be given in Section .

Theorem . Let {Xnk ,  ≤ k ≤ n,n ≥ } be an array of rowwise ψ-mixing random vari-
ables with

∑∞
m= ψ(m) < ∞ and EXnk = . Suppose that {Xnk} ≺ X and EXp <∞ for some

p > . Let {ank ,  ≤ k ≤ n,n≥ } be a real numbers array satisfyingmax≤k≤n |ank| =O(n–α)
for some α > /(p). Furthermore, when p≥ , we suppose that there exists a constant θ > 
such that

∑n
k= ank ≤ Cn–θ . Then

∞∑
n=

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

k=

ankXnk

∣∣∣∣∣ > ε

)
<∞, ∀ε > .

Take ank = n–/p and ≤ p <  in Theorem ., we can have the following corollary.

Corollary . Let {Xnk ,  ≤ k ≤ n,n ≥ } be an array of rowwise ψ-mixing random vari-
ables with

∑∞
m= ψ(m) < ∞ and EXnk = . Suppose that {Xnk} ≺ X and EXp <∞ for some

 ≤ p < , then

∞∑
n=

P

(
max
≤j≤n

∣∣∣∣∣
j∑

k=

Xnk

∣∣∣∣∣ > n/pε

)
< ∞, ∀ε > .

Remark . Since the independence implies ψ-mixture, Theorem . and Corollary .
hold for arrays of rowwise independent random variables. Therefore, Theorem . and
Corollary . extend and improve Theorem A.

Theorem . Let {Xnk ,  ≤ k ≤ n,n ≥ } be an array of rowwise ψ-mixing random vari-
ables with EXnk = . Suppose that {Xnk} ≺ X and EXp < ∞ for some p ≥ . Let {ank ,  ≤
k ≤ n,n≥ } be a real numbers array satisfyingmax≤k≤n |ank| =O(n–α) for some α > /(p).
Suppose that the following statements hold.

(i) There exists a positive constant λ <min{ 
p ,

αp–
p } such that

∑∞
n= ψ

λ
–λ (n) <∞;

(ii) logn
∑n

k= ank = o() if 
p < α ≤ 

 . Then

∞∑
n=

nαp–P

(∣∣∣∣∣
n∑
k=

ankXnk

∣∣∣∣∣ > ε

)
< ∞, ∀ε > .

Remark . Compared with Theorem ., Theorem . requires a stronger mixing rate,
but weakens the requirement of

∑n
k= ank . In fact, logn

∑n
k= ank = o() holds if

∑n
k= ank ≤

Cn–θ , θ > .

Now, we state some lemmas which will be used in the proofs of our main results.

Lemma . (Wang et al. [, ]) Let {Xn,n≥ } be a sequence of ψ-mixing random vari-
ables satisfying

∑∞
m= ψ(m) < ∞, q ≥ . Assume that EXn =  and E|Xn|q < ∞ for each

http://www.journalofinequalitiesandapplications.com/content/2013/1/393
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n≥ . Then there exists a constant C depending only on q and ψ(·) such that

E max
≤j≤n

∣∣∣∣∣
j∑

k=

Xk

∣∣∣∣∣
q

≤ C

{ n∑
k=

E|Xk|q +
( n∑

k=

EX
k

)q/}
.

Lemma . (Yang []) Let {Xn,n ≥ } be a sequence of ψ-mixing random variables with
EXk = , |Xk| ≤ d < ∞ a.s., k = , , . . . ,  < λ < ,m = [nλ]. Then ∀ε > ,

P

(∣∣∣∣∣
n∑
k=

Xk

∣∣∣∣∣ > ε

)
≤ eC exp

{
–tε +CtBn

}
,

where Bn =
∑n

k= EX
k , tmd ≤ /, C = exp{en–λψ(m)}, C = ( + 

∑m
k= ψ(k)).

Lemma . Let {Xn,n ≥ } be a sequence of ψ-mixing random variables, and let Aj =
{|Xj| ≥ xj}, xj ∈R

+, j = , , . . . ,N , then

P(A,A, . . . ,AN )≤
(
 +ψ()

)N N∏
j=

P(Aj).

Proof By the definition of ψ-mixing, we have

P(A,A, . . . ,AN ) ≤ (
 +ψ()

)
P(A)P(A, . . . ,AN )

≤ · · ·
≤ (

 +ψ()
)NP(A)P(A) · · ·P(AN ).

The proof is complete. �

3 Proofs
In this section, we state the proofs of our main results.

Proof of Theorem . Let Snj =
∑j

k= ankXnk ,  ≤ j ≤ n. Since ank = a+nk – a–nk , without loss
of generality, we may assume that  < ank ≤ Cn–α . Let  < ρ < (αp–)(N–)

pN , where N is a
positive integer with N > . Let

X ′
nk = XnkI(ank |Xnk |≤n–ρ ), X ′′

nk = XnkI(ank |Xnk |>ε/N),

X ′′′
nk = Xk –X ′

nk –X ′′
nk = XnkI(n–ρ<ank |Xnk |≤ε/N),

S′
nj =

j∑
k=

ankX ′
nk , S′′

nj =
j∑

k=

ankX ′′
nk , S′′′

nj =
j∑

k=

ankX ′′′
nk .

Firstly, we prove
∑∞

n= nαp–P(max≤j≤n |S′
nj| > ε) < ∞. By {Xn} ≺ X, we know that

E|Xnk|p ≤ EXp < ∞. If  < p≤ /, we have

max
≤j≤n

∣∣∣∣∣
j∑

k=

ankEX ′
nk

∣∣∣∣∣ ≤
n∑
k=

ank
∣∣EX ′

nk
∣∣ ≤

n∑
k=

ankE|Xnk|I(ank |Xnk |≤n–ρ )

≤
n∑
k=

apnkE|Xnk|p
n–ρp

n–ρ ≤ Cnρ(p–)–(αp–) → , n→ ∞. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/393
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If p > /, by EXnk =  and ρ < αp–
p < αp–

p– , we also have

max
≤j≤n

∣∣∣∣∣
j∑

k=

ankEX ′
nk

∣∣∣∣∣ ≤
n∑
k=

ank
∣∣EX ′

nk
∣∣ ≤

n∑
k=

ankE|Xnk|I(ank |Xnk |>n–ρ )

≤
n∑
k=

apnkE|Xnk|p
n–ρp

n–ρ ≤ Cnρ(p–)–(αp–) → , n → ∞.

Therefore, we know that () holds for p > . Let S∗
nj =

∑j
k= ank(X

′
nk – EX ′

nk). To prove∑∞
n= nαp–P(max≤j≤n |S′

nj| > ε) < ∞, it suffices to show that
∑∞

n= nαp–P(max≤j≤n |S∗
nj| >

ε) < ∞.
If  < p < , by Markov’s inequality and Lemma ., we have

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S∗
nj
∣∣ > ε

)

≤ C
∞∑
n=

nαp–E
(
max
≤j≤n

∣∣S∗
nj
∣∣) ≤ C

∞∑
n=

nαp–
n∑
k=

ankE
(
X ′
nk

)

≤
∞∑
n=

nαp–
n∑
k=

apnkE
(∣∣ankX ′

nk
∣∣–p∣∣X ′

nk
∣∣p)

≤
∞∑
n=

nαp–n–ρ(–p)
n∑
k=

apnkE
∣∣X ′

nk
∣∣p ≤ C

∞∑
n=

n––ρ(–p) < ∞. ()

If p≥ , take q >max{p, (αp – )/θ}. By q >  and Lemma ., we have

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S∗
nj
∣∣ > ε

)

≤
∞∑
n=

nαp–
[ n∑

k=

aqnkE
∣∣X ′

nk
∣∣q +

( n∑
k=

ankE
(
X ′
nk

))q/]
. ()

By a similar argument as in the proof of () (replacing exponent  into q), we can get

∞∑
n=

nαp–
n∑
k=

aqnkE
∣∣X ′

nk
∣∣q <∞. ()

Note that E|X ′
nk| ≤ EX < ∞ and the definition of q, we have

∞∑
n=

nαp–
( n∑

k=

ankE
(
X ′
nk

))q/

≤
∞∑
n=

nαp–
( n∑

k=

ank

)q/(
EX)q/ ≤ C

∞∑
n=

n–+(αp–)–θq/(EX)q/ < ∞. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/393
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From ()-(), we know that () still holds for p≥ . By () and (), we have

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S′
nj
∣∣ > ε

)
<∞.

Secondly, we prove
∑∞

n= nαp–P(max≤j≤n |S′′
nj| > ε) < ∞. Let ϕn(j) = �{ ≤ k ≤ n : ank >

ε/(jN)} and φj = [(jCN/ε)/α], then

P
(
max
≤j≤n

∣∣S′′
nj
∣∣ > ε

)
≤ P

( n⋃
k=

{
ank|Xnk| > ε/N

})

≤
n∑
k=

P
(
ank|Xnk| > ε/N

) ≤ C
n∑
k=

P(ankX > ε/N)

= C
∞∑
j=

n∑
k=

P(ankX > ε/N , j –  ≤ X < j)

≤ C
∞∑
j=

ϕn(j)P(j –  ≤ X < j). ()

By ankX > ε/N , we know ank > ε/(jN). Note ank ≤ Cn–α , we have n < (jCN/ε)/α . Hence, we
have n≤ φj, then

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S′′
nj
∣∣ > ε

)
≤ C

∞∑
n=

nαp–
∞∑
j=

ϕn(j)P(j –  ≤ X < j)

≤ C
∞∑
j=

φj∑
n=

nαp–ϕn(j)P(j –  ≤ X < j). ()

Take v ∈ (, αp–
α

), then
∑n

k= avnk ≥ ϕn(j)εv/(jN)v. From
∑n

k= avnk ≤ Cn–αv, we have

ϕn(j) ≤ Nvjv/εv
n∑
k=

avnk ≤ Cn–αvjv. ()

Therefore, by () and (), we have

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S′′
nj
∣∣ > ε

)
≤ C

∞∑
j=

φj∑
n=

nαp–αv–jvP(j –  ≤ X < j). ()

By the definition of v, we have αp – αv –  > , then

φj∑
n=

nαp–αv– ≤ φ
α(p–v)
j ≤ Cjp–v. ()

From (), () and EXp < ∞, then

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S′′
nj
∣∣ > ε

)
≤ C

∞∑
j=

jpP(j –  ≤ X < j) <∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/393
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Finally, we prove
∑∞

n= nαp–P(max≤j≤n |S′′′
nj| > ε) < ∞. Obviously, we know that

P(max≤j≤n |S′′′
nj| > ε) ≤ P(

∑n
k= ank|X ′′′

nk| > ε). Let M = �{ ≤ k ≤ n : n–ρ < ank|Xnk| ≤ ε/N}.
We must let M be at least N such that

∑n
k= ank|X ′′′

nk| > ε. Take Wk = {ank|Xnk| > n–ρ}, we
have

P
(
max
≤j≤n

∣∣S′′′
nj
∣∣ > ε

)
≤ P

(
M is at least N , such that ank|Xnk| > n–ρ

)
≤

∑
≤i<i<···<iN≤n

P(WiWi · · ·WiN ). ()

By Lemma ., we have

P(WiWi · · ·WiN ) ≤
(
 +ψ()

)NP(Wi )P(Wi ) · · ·P(WiN ). ()

From () and (), we have

nαp–P
(
max
≤j≤n

∣∣S′′′
nj
∣∣ > ε

)

≤ (
 +ψ()

)Nnαp– ∑
≤i<i<···<iN≤n

P(Wi )P(Wi ) · · ·P(WiN )

≤ Cnαp–
(
n
N

)
PN(

X > a–nkn
–ρ

)
≤ Cnαp–nNPN(

X > C–n–ρ+α
)

≤ Cn––(αp–)(N–)+ρpN(
EXp)N . ()

Noting that  < ρ < (αp–)(N–)
pN . We have

–(αp – )(N – ) + ρpN < ,

then

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S′′′
nj
∣∣ > ε

)
≤ C

∞∑
n=

n––(αp–)(N–)+ρpN < ∞.

The proof is completed. �

Proof of Theorem . Following the notations of X ′
nk , X

′′
nk and X ′′′

nk , but let

T ′
n =

n∑
k=

ankX ′
nk , T ′′

n =
n∑
k=

ankX ′′
nk ,

T ′′′
n =

n∑
k=

ankX ′′′
nk , T∗

n =
n∑
k=

ank
(
X ′
nk – EX ′

nk
)
.

Obviously, by following the methods used in the proof of (), we have

∣∣∣∣∣
n∑
k=

ankEX ′
nk

∣∣∣∣∣ → , n→ ∞. ()
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By similar arguments as in the proofs of

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S′′
nj
∣∣ > ε

)
<∞ and

∞∑
n=

nαp–P
(
max
≤j≤n

∣∣S′′′
nj
∣∣ > ε

)
< ∞,

we can prove

∞∑
n=

nαp–P
(∣∣T ′′

n
∣∣ > ε

)
< ∞ and

∞∑
n=

nαp–P
(∣∣T ′′′

n
∣∣ > ε

)
<∞.

Here, we omit the details. Therefore, we need only to show

∞∑
n=

nαp–P
(∣∣T∗

n
∣∣ > ε

)
< ∞.

Take λ < ρ < (αp–)(N–)
pN , by  < λ < 

p and p ≥ , we know  < λ
–λ

< . Hence, from condi-
tion (i), we have

C = 

(
 + 

m∑
k=

ψ(k)

)
≤ 

(
 + 

∞∑
k=

ψ(k)

)
<∞, ψ(m) = o

(
m

λ–
λ

)
,

wherem = [nλ]. Therefore, C = exp{en–λψ(m)} � exp{e} <∞.
Take t = αp logn

ε
. Clearly, t ≤ nρ–λ/ when n is sufficiently large. Note that |ank(X ′

nk –
EX ′

nk)| ≤ n–ρ = d, then tmd ≤ / when n is sufficiently large. By Lemma ., we have

P
(∣∣T∗

n
∣∣ > ε

) ≤ C exp

{
–tε +CCt

n∑
k=

ank

}

= C exp

{
–αplogn +CC

(αp) log n
ε

n∑
k=

ank

}
, ()

where C = E(X ′
nk) ≤ EXp < ∞. Note that logn

∑n
k= ank = o() holds if α > 

 . Therefore,
by condition (ii), we have

CC
(αp) logn

ε

n∑
k=

ank → , n→ ∞. ()

Hence, when n is sufficiently large, by () and (), we have

P
(∣∣T∗

n
∣∣ > ε

) ≤ C exp
(
–αp logn + – logn

)
= Cn–αp+/.

Then

∞∑
n=

nαp–P
(∣∣T∗

n
∣∣ > ε

) ≤ C
∞∑
n=

n–

 < ∞.

The proof is completed. �
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