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Abstract
Assume n≥ 2. Consider the elementary symmetric polynomials ek(y1, y2, . . . , yn) and
denote by E0, E1, . . . , En–1 the elementary symmetric polynomials in reverse order
Ek(y1, y2, . . . , yn) := en–k(y1, y2, . . . , yn) =

∑
i1<···<in–k yi1yi2 · · · yin–k , k ∈ {0, 1, . . . ,n – 1}. Let,

moreover, S be a nonempty subset of {0, 1, . . . ,n – 1}. We investigate necessary and
sufficient conditions on the function f : I →R, where I ⊂ R is an interval, such that
the inequality f (a1) + f (a2) + · · · + f (an) ≤ f (b1) + f (b2) + · · · + f (bn) (∗) holds for all
a = (a1,a2, . . . ,an) ∈ In and b = (b1,b2, . . . ,bn) ∈ In satisfying Ek(a) < Ek(b) for k ∈ S and
Ek(a) = Ek(b) for k ∈ {0, 1, . . . ,n – 1} \ S. As a corollary, we obtain our inequality (∗) if
2 ≤ n ≤ 4, f (x) = log2 x and S = {1, . . . ,n – 1}, which is the sum of squared logarithms
inequality previously known for 2≤ n ≤ 3.
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1 Introduction - the sum of squared logarithms inequality
In a previous contribution [] the sum of squared logarithms inequality has been intro-
duced and proved for the particular cases n = , . For n =  it reads: let a, a, a, b, b, b >
 be given positive numbers such that

a + a + a ≤ b + b + b,

aa + aa + aa ≤ bb + bb + bb,

aaa = bbb.

Then

log a + log a + log a ≤ log b + log b + log b.

The general form of this inequality can be conjectured as follows.

Definition . The standard elementary symmetric polynomials e, . . . , en–, en are

ek(y, . . . , yn) =
∑

≤j<j<···<jk≤n

yj · yj · · · · · yjk , k ∈ {, , . . . , n}; (.)

note that en = y · y · · · · · yn.
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Conjecture . (Sum of squared logarithms inequality) Let a, a, . . . , an, b, b, . . . , bn be
given positive numbers. Then the condition

ek(a, . . . , an) ≤ ek(b, . . . , bn), k ∈ {, , . . . , n – }, en(a, . . . , an) = en(b, . . . , bn)

implies that

n∑

i=

log ai ≤
n∑

i=

log bi.

Remark . Note that the conclusions of Conjecture . are trivial provided we have
equality everywhere, i.e.

ek(a, . . . , an) = ek(b, . . . , bn), k ∈ {, , . . . , n}. (.)

In this case, the coefficients a, . . . , an, b, . . . , bn are equal up to permutations, which can
be seen by looking at the characteristic polynomials of two matrices with eigenvalues
a, . . . , an and b, . . . , bn. From this perspective, having equality just in the last product en

and strict inequality else seems to be the most difficult case.

Based on extensive random sampling on R
n
+ for small numbers n it has been conjectured

that Conjecture . might be true for arbitrary n ∈ N. The sum of squared logarithms
inequality has immediate important applications in matrix analysis ([]; see also []) as
well as in nonlinear elasticity theory [–]. In matrix analysis it implies that the global
minimiser over all rotations to

inf
Q∈SO(n)

∥
∥sym∗ Log QT F

∥
∥ =

∥
∥
√

FT F
∥
∥ (.)

at given F ∈ GL+(n) is realised by the orthogonal factor R = polar(F) (such that RT F =√
FT F). Here, ‖X‖ :=

∑n
i,j= X

ij denotes the Frobenius matrix norm and Log : GL(n) →
gl(n) = R

n×n is the multivalued matrix logarithm, i.e. any solution Z = Log X ∈ C
n×n of

exp(Z) = X and sym∗(Z) = 
 (Z∗ + Z).

Recently, the case n =  was used to verify the polyconvexity condition in nonlinear
elasticity [, ] for a certain class of isotropic energy functions. For more background in-
formation on the sum of squared logarithms inequality we refer the reader to [].

In this paper we extend the investigation as to the validity of Conjecture . by consider-
ing arbitrary functions f instead of f (x) = log x. We formulate this more general problem
and we are able to extend Conjecture . to the case n = . The same methods should
also be useful for proving the statement for n = , . However, the necessary technicalities
prevent us from discussing these cases in this paper.

In addition, we present ideas which might be helpful in attacking the fully general case,
namely arbitrary f and arbitrary n.

2 The generalised inequality
In order to generalise Conjecture . in the directions hinted at in the introduction, we
consider from now on a non-standard definition of the elementary symmetric polynomi-
als. In fact, for n ≥  it will be more convenient for us to reverse their numbering and
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define E, E, . . . , En– by

Ek(y, . . . , yn) := en–k(y, . . . , yn) =
∑

i<···<in–k

yi · yi · · · · · yin–k , k ∈ {, , . . . , n – }. (.)

In particular, now

E(y, . . . , yn) := en(y, . . . , yn) = y · y · · · · · yn,

En–(y, . . . , yn) := e(y, . . . , yn) = y + y + · · · + yn.
(.)

Let I ⊂ R be an open interval and let

�n :=
{

y = (y, y, . . . , yn) ∈ In | y ≤ y ≤ · · · ≤ yn
}

. (.)

Let S be a nonempty subset of {, , . . . , n – } and assume that a, b ∈ �n are such that

Ek(a) < Ek(b) for k ∈ S and Ek(a) = Ek(b) for k ∈ {, , . . . , n – } \ S. (.)

In this section we investigate necessary and sufficient conditions for a (smooth) function
f : I →R, such that the inequality

f (a) + f (a) + · · · + f (an) ≤ f (b) + f (b) + · · · + f (bn)

holds for all a, b ∈ �n satisfying assumption (.).

Remark . The formulation of the above problem has a certain monotonicity structure:
we assume that ‘E(a) < E(b)’ and want to prove that ‘F(a) < F(b)’. Therefore our idea is to
consider a curve y connecting the points a and b, such that E(y(t)) ‘increases’. Then the
function g(t) = F(y(t)) should also increase and therefore g ′(t) >  must hold. From this we
are able to derive necessary and sufficient conditions on the function f .

This approach motivates the following definition.

Definition . (b dominates a, a � b) Let a, b ∈ �n. We will say that b dominates a and
denote a � b if there exists a piecewise differentiable mapping y : [, ] → �n (i.e. y is
continuous on [, ] and differentiable in all but at most countably many points) such that
y() = a, y() = b, yi(t) �= yj(t) for i �= j and all but at most countably many t ∈ [, ] and the
functions

Ak(t) := Ek
(
y(t)

)
, k ∈ {, , . . . , n – }

are nondecreasing on the interval [, ].

If a � b, then Ek(a) = Ak() ≤ Ak() = Ek(b), so it follows from Definition . that a,
b satisfy assumption (.) with S being the set of all k for which Ak(t) is not a constant
function on [, ].

We are ready to formulate the main results of this section.
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Theorem . Assume that a, b ∈ �n and let a � b. Let S ⊆ {, , . . . , n – } denote the set
of all integers k with Ek(a) < Ek(b). Moreover, assume that f ∈ Cn(I) be such that

(–)n+k(xkf ′(x)
)(n–) ≤  for all x ∈ I and all k ∈ S. (.)

Then the following inequality holds:

f (a) + f (a) + · · · + f (an) ≤ f (b) + f (b) + · · · + f (bn). (.)

A partially reverse statement is also true.

Theorem . Let f ∈ Cn(I) be such that the inequality

f (a) + f (a) + · · · + f (an) ≤ f (b) + f (b) + · · · + f (bn) (.)

holds for all a, b ∈ �n satisfying

Ek(a) ≤ Ek(b) for k ∈ S and Ek(a) = Ek(b) for k ∈ {, , . . . , n – } \ S (.)

for some subset S ⊆ {, , . . . , n – }. Then f satisfies property (.), i.e.

(–)n+k(xkf ′(x)
)(n–) ≤  for all x ∈ I and all k ∈ S. (.)

In this respect, we can formulate another conjecture.

Conjecture . Let S be a nonempty subset of {, , . . . , n – } and assume that a, b ∈ �n

are such that (.) is satisfied, i.e.

Ek(a) < Ek(b) for k ∈ S and Ek(a) = Ek(b) for k ∈ {, , . . . , n – } \ S.

Then there exists a curve y satisfying the conditions from Definition . and thus a � b.

Remark . In concrete applications of Theorem . and Theorem . one would like to
know whether condition (.) already implies a � b. This is Conjecture .. Unfortunately,
we are able to prove Conjecture . only for  ≤ n ≤ , I = (,∞) and S ⊆ {, , . . . , n – }
(see the next section).

Example . It is easy to see that if I = (,∞) then the function f (x) = log x satisfies
property (.) for S = {, , . . . , n – }. Indeed, we proceed by induction on n. For n =  and
k =  the property is immediate. Moreover, for k ≥  and n ≥  we get

(–)n+k(xkf ′(x)
)(n–) = (–)n+k(xk– log x

)(n–)

= (–)n+k((k – )xk– log x
)(n–) + (–)n+k(xk–)(n–) ≤  (.)

by the induction hypothesis, since the second summand vanishes. It remains to check
property (.) for k = , which is also immediate.

Note also that property (.) is not true for k = . Therefore Theorem . and Theo-
rem . for f (x) = log x attain the following formulation.
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Corollary . Assume that a, b ∈ R
n
+ be such that a � b and aa · · ·an = bb · · ·bn. Then

log(a) + log(a) + · · · + log(an) ≤ log(b) + log(b) + · · · + log(bn)

and this inequality fails if the constraint aa · · ·an = bb · · ·bn is replaced by the weaker
one aa · · ·an ≤ bb · · ·bn.

In order to see that the weaker condition is not sufficient for the inequality to hold,
consider the case

a =
(


n

, . . . ,

n

)

, b = (, . . . , ).

Then a � b and aa · · ·an ≤ bb · · ·bn, but

log(a) + log(a) + · · · + log(an) = n log(n) >  = log(b) + log(b) + · · · + log(bn).

Remark . Corollary . is a weaker statement than Conjecture . since we assume that
a � b. If Conjecture . is true, then Conjecture . follows.

Example . The function f (x) = xp (x > ) with p ∈ (, ) satisfies property (.) for the
set S = {, , . . . , n – }. Indeed, for each n ≥  and  ≤ k ≤ n – , we have

(–)n+k(xkf ′(x)
)(n–) = (–)n+kp(k + p – )(k + p – ) · · · (k + p – (n – )

)
xk+p–n.

The above product is not greater than , because among the factors k + p – , k + p –
, . . . , k + p – (n – ) there are exactly n –  – k negative ones.

Similarly, the function f (x) = xp for p ∈ (–, ) satisfies property (.) for the set S =
{, , . . . , n – }, because p <  and among the factors k + p – , k + p – , . . . , k + p – (n – )
there are exactly n–k negative ones. On the other hand, property (.) is not true for k = .

Thus, like above, we have the following.

Corollary . Assume that a, b ∈ (,∞)n be such that a � b and aa · · ·an = bb · · ·bn.
If p ∈ (–, ), then

ap
 + ap

 + · · · + ap
n ≤ bp

 + bp
 + · · · + bp

n.

This inequality fails for – < p <  (but remains true for  < p < ) if the constraint
aa · · ·an = bb · · ·bn is replaced by the weaker one aa · · ·an ≤ bb · · ·bn.

Proof of Theorem . If S is empty, then Ek(a) = Ek(b) for all k ∈ {, , . . . , n – } and hence
a = b, which immediately implies the inequality. We therefore assume that S is nonempty.

Let y : [, ] → �n be the curve connecting points a and b as in Definition .. Consider
the function

p(t, x) =
(
x + y(t)

)(
x + y(t)

) · · · (x + yn(t)
)

=
n–∑

k=

xkEk
(
y(t)

)
+ xn

= (x + a)(x + a) · · · (x + an) +
∑

k∈S

xkAk(t), (.)
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where Ak(t) = Ek(y(t)) – Ek(a) is a nondecreasing mapping. Our goal is to show that the
function

η(t) =
n∑

i=

f
(
yi(t)

)
(.)

is nondecreasing on [, ], i.e. we show that η′(t) ≥  a.e. on (, ).
To this end, fix i ∈ {, , . . . , n}. Since p(t, –yi(t)) =  for all t ∈ (, ), we obtain

∂p
(
t, –yi(t)

)
+ ∂p

(
t, –yi(t)

) · (–y′
i(t)

)
= 

for all t ∈ (, ) and therefore

∑

k∈S

(
–yi(t)

)kA′
k(t) +

∏

j �=i

(
yj(t) – yi(t)

) · (–y′
i(t)

)
= , (.)

which gives

y′
i(t) =

∑

k∈S

(
–yi(t)

)kA′
k(t)

(∏

j �=i

(
yj(t) – yi(t)

)
)–

.

This equality holds, if yi(t) �= yj(t) for i �= j, which is true for all but countably many values
of t ∈ (, ). For those values of t we get

η′(t) =
n∑

i=

f ′(yi(t)
) · y′

i(t)

=
n∑

i=

f ′(yi(t)
) ·

∑

k∈S

(
–yi(t)

)kA′
k(t)

(∏

j �=i

(
yj(t) – yi(t)

)
)–

=
∑

k∈S

A′
k(t)

n∑

i=

f ′(yi(t)
) · (–yi(t)

)k
(∏

j �=i

(
yj(t) – yi(t)

)
)–

. (.)

Fix t ∈ (, ) such that yi(t) �= yj(t) for i �= j and write yi = yi(t) for simplicity. Since A′
k(t) ≥ ,

we will be done if we show that

D̂ :=
n∑

i=

f ′(yi) · (–yi)k
(∏

j �=i

(yj – yi)
)–

≥  for all k ∈ S.

To this end, consider the polynomial

g(x) =
n∑

i=

f ′(yi) · (–yi)k
(∏

j �=i

(yj – yi)
)–

·
∏

j �=i

(x – yj).

The degree of g equals n –  and the coefficient at xn– is equal to D̂. Moreover,

g(yi) = f ′(yi) · (–yi)k · (–)n– (i = , , . . . , n).
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Therefore the function h(x) = g(x) + (–)n+kxkf ′(x) has n different roots y, y, . . . , yn in the
interval I . It follows that the function

h(n–)(x) = (n – )!D̂ + (–)n+k(xkf ′(x)
)(n–) (.)

has a root in the interval I , and since (–)n+k(xkf ′(x))(n–) ≤  for all x ∈ I , it follows that
D̂ ≥ , which completes the proof of Theorem .. �

Proof of Theorem . Suppose, to the contrary, that (–)k+n(xkf ′(x))(n–) >  for some x ∈ I
and some k ∈ S. Then (–)k+n(xkf ′(x))(n–) >  holds for all x belonging to some interval J
contained in I . Choose the numbers a < a < · · · < an from J and consider

p(t, x) = (x + a) · (x + a) · · · · · (x + an) + txk .

Then for all sufficiently small t ( < t < ε), there exist different numbers yi(t) belonging to
J , such that

p(t, x) =
(
x + y(t)

)(
x + y(t)

) · · · (x + yn(t)
)
.

Then

xn +
n–∑

i=

Ei(a) · xi + txk = p(t, x) = xn +
n–∑

i=

Ei
(
y(t)

) · xi,

and since t > , we see that a and b = y(t) satisfy (.). We will be done if we show that

f (a) + f (a) + · · · + f (an) > f
(
y(t)

)
+ f

(
y(t)

)
+ · · · + f

(
yn(t)

)
.

We proceed in the same way as in the proof of Theorem .. We define

η(t) =
n∑

i=

f
(
yi(t)

)
for  < t < ε

and this time we want to show that η′(t) <  for  < t < ε.
By the inverse mapping theorem (see the proof of Proposition . below for a more

detailed explanation), y ∈ C(, ε) and therefore

η′(t) =
n∑

i=

f ′(yi(t)
) · y′

i(t) =
n∑

i=

f ′(yi(t)
) · (–yi(t)

)k
(∏

j �=i

(
yj(t) – yi(t)

)
)–

. (.)

Now, like previously, write yi = yi(t) for simplicity. Our goal is therefore to prove that

D̂ :=
n∑

i=

f ′(yi) · (–yi)k
(∏

j �=i

(yj – yi)
)–

< .

Consider the polynomial

g(x) =
n∑

i=

f ′(yi) · (–yi)k
(∏

j �=i

(yj – yi)
)–

·
∏

j �=i

(x – yj).
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The degree of g equals n– and the coefficient at xn– is equal to D̂. Moreover, the function
h(x) = g(x) + (–)n+kxkf ′(x) has n different roots y, y, . . . , yn in the interval J . It follows that
the function

h(n–)(x) = (n – )!D̂ + (–)n+k(xkf ′(x)
)(n–)

has a root in the interval J . Since (–)n+k(xkf ′(x))(n–) >  for all x ∈ J , it follows that D̂ < ,
which completes the proof of Theorem .. �

3 Construction of the connecting curve
In this section we prove that condition (.) implies a � b, if  ≤ n ≤ , I = (,∞) and
S ⊆ {, , . . . , n–}. However, we start with a construction of the desired curve for a general
interval I , integer n ≥  and set S ⊆ {, , . . . , n – }.

For a, b ∈ �n, we say that a < b, if a �= b and Ek(a) ≤ Ek(b) for all k = , , . . . , n – . We say
that a ≤ b, if a < b or a = b.

Definition . For a < b denote by C(a, b) the set of all piecewise differentiable (i.e. contin-
uous and differentiable in all but at most countably many points) curves y in �n satisfying:

(a) the curve y(t) starts at a (i.e. y() = a, if the curve y(t) is parametrised by the interval
[, ε]);

(b) y(t) ∈ int(�n) for all but at most countable many values t;
(c) the mappings Ek(y(t)) are nondecreasing in t and Ek(y(t)) ≤ Ek(b) for all t and each

k = , , . . . , n – .
Note that a curve in C(a, b) does not necessarily end at the point b.

Proposition . Let n ≥  be a positive integer and let S be a nonempty subset of
{, , . . . , n – }. Let, moreover, a, b ∈ �n be such that (.) holds. Furthermore, suppose that
for all c ∈ �n with a ≤ c < b the set C(c, b) is nonempty. Then a � b.

Proof Each element (curve) of C(a, b) is a (closed) subset of �n. We equip the set C(a, b)
with the inclusion relation ⊆, obtaining a nonempty partially ordered set (C(a, b),⊆). We
are going to show that each chain {yi}i∈I has an upper bound in C(a, b).

To achieve this, consider the curve

y =
⋃

i∈I
yi,

i.e. the concatenation of the curves yi. Then obviously y satisfies conditions (a) and (c) of
Definition .. To prove (b) assume that y is parametrised on [, ]. Then for each positive
integer k the curve yk , defined as the restriction of y to the interval [,  – 

k ], is contained
in some curve yi ∈ C(a, b) of the given chain {yi}. Therefore yk(t) is piecewise differentiable
and satisfies condition (b) for each positive integer k. Moreover,

y =
∞⋃

k=

yk .

Hence y is piecewise differentiable and satisfies (b) as well.



Pompe and Neff Journal of Inequalities and Applications  (2015) 2015:101 Page 9 of 17

Now, by the Kuratowski-Zorn lemma, there exists a maximal element y in (C(a, b),⊆).
We show that y is a desired curve connecting the points a and b, which will imply that
a � b.

To this end, it is enough to show that, if the curve y is parametrised on [, ], then y() = b.
Suppose, to the contrary, that y() = c �= b. Then a ≤ c < b, and hence the set C(c, b) is
nonempty. Thus the curve y can be extended beyond the point c, which contradicts the
fact that y is a maximal element in C(a, b). This completes the proof of Proposition ..

�

From now on assume that I = (,∞) and S is a nonempty subset of {, , . . . , n – }.
In order to prove that (.) implies a � b, it suffices to show that the sets C(a, b) for

a, b ∈ �n with a < b are nonempty. This is implied by the following conjecture, which we
will prove later for n ≤ .

Conjecture . Let n ≥  be an integer and a ∈ �n. Let S be a nonempty subset of
{, , . . . , n – } with the property that there exist Ak >  for k ∈ S such that all the roots
of the polynomial

q(x) = (x + a)(x + a) · · · (x + an) +
∑

k∈S

Akxk

are real (and hence negative). Then there exist mappings Bk : [, ε] →R (k ∈ S) continuous
on [, ε], differentiable on (, ε), and nondecreasing with Bk() =  such that

∑
k∈S Bk(t) is

increasing on [, ε] and for all sufficiently small values of t >  the polynomial

(x + a)(x + a) · · · (x + an) +
∑

k∈S

Bk(t)xk

has n distinct real (and hence negative) roots.

Now we show how Conjecture . implies that the sets C(a, b) are nonempty.

Proposition . Let n and S be such that the conjecture holds. Let, moreover, a, b ∈ �n be
such that (.) holds. Then the set C(a, b) is nonempty.

Proof Consider the polynomials

p(x) = (x + a)(x + a) · · · (x + an) and q(x) = (x + b)(x + b) · · · (x + bn).

Then

q(x) – p(x) =
n–∑

k=

(
Ek(b) – Ek(a)

)
xk =

∑

k∈S

Akxk ,

where Ak >  for all k ∈ S. According to the conjecture, there exist nondecreasing map-
pings Bk : [, ε] →R, continuous on [, ε] and differentiable on (, ε), with Bk() = , such
that

∑
k∈S Bk(t) is increasing on [, ε] and for all t ∈ (, ε) the polynomial

p(x) +
∑

k∈S

Bk(t)xk
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has n distinct real (and hence negative) roots –yn(t) < –yn–(t) < · · · < –y(t) < . We show
that y(t) = (y(t), y(t), . . . , yn(t)) defines a differentiable curve (parametrised on [, ε]) that
belongs to C(a, b), provided ε is chosen in such a way that Bk(ε) ≤ Ak for k ∈ S.

Consider the mapping � : �n → �(�n) given by

�(y) =
(
En–(y), En–(y), . . . , E(y)

)
.

Then it follows from Remark . that the mapping � is injective, hence � is a continu-
ous bijection defined on a closed subset of Rn. Therefore the restriction �|U of � to a
neighbourhood U of a is continuously invertible and thus

y(t) = �–(�(a) +
(
B(t), B(t), . . . , Bn–(t)

)) (
t ∈ [, ε]

)

(here we put Bk(t) =  for k /∈ S) is a curve starting at a; note that �(a) + (B(t), B(t),
. . . , Bn–(t)) is contained in �(U) for sufficiently small ε. Moreover y(t) ∈ �n. Hence
condition (a) is satisfied. Since y(t) ∈ int(�n) for all t ∈ (, ε), condition (b) holds. It is
also clear that (c) is satisfied, since Ek(y(t)) = Ek(a) + Bk(t) ≤ Ek(a) + Ak = Ek(b) for all
k ∈ {, , . . . , n – }.

It remains to prove that y(t) is differentiable on (, ε). This, however, is a consequence
of the inverse mapping theorem, if we show that

det
[
D�(y)

] �=  for all y ∈ int(�n).

To this end, let V (y) be the n × n Vandermonde-type matrix given by Vij(y) = (–yi)n–j

( ≤ i, j ≤ n). This matrix is obtained from the standard Vandermonde matrix

W (–y, –y, . . . , –yn) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 –y (–y) · · · (–y)n–

 –y (–y) · · · (–y)n–

 –y (–y) · · · (–y)n–

...
...

...
. . .

...
 –yn (–yn) · · · (–yn)n–

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(.)

by reversing the order of columns of W .
Since []

(
D�(y)

)
jk =

∂

∂yk
En–j(y) =

⎧
⎨

⎩

, j = ,

En–j(y(k)), j > ,

where y(k) = (y, . . . , yk–, yk+, . . . , yn) is y with its kth component removed, it follows from
the general formula

tn– +
n–∑

j=

tjEj(z, z, . . . , zn–) = (t + z)(t + z) · · · (t + zn–) (.)
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that

(
V (y) · D�(y)

)
ik =

n∑

j=

(
V (y)

)
ij ·

(
D�(y)

)
jk

= (–yi)n– +
n∑

j=

(–yi)n–j · En–j
(
y(k))

= (–yi)n– +
n–∑

j=

(–yi)j · Ej
(
y(k)) =

∏

j �=k

(yj – yi)

and thus

V (y) · D�(y) = diag

(∏

j �=

(yj – y),
∏

j �=

(yj – y), . . . ,
∏

j �=n

(yj – yn)
)

. (.)

It is well known that

det
[
V (y)

]
=

∏

i<j

(yj – yi) �=  (y ∈ int�n).

Therefore we obtain

det
[
D�(y)

]
=

∏

i<j

(yi – yj) �=  (y ∈ int�n),

which completes the proof of Proposition .. �

Lemma . Assume that n ≥  is odd and let  < a ≤ a ≤ · · · ≤ an. Let, moreover, Ak ≥ 
for k = , , . . . , (n – )/ with at least one Ak not equal to . Consider the polynomials

P(x) = (x + a)(x + a) · · · (x + an) +
(n–)/∑

k=

Akxk–,

Q(x) = (x + a)(x + a) · · · (x + an) +
(n–)/∑

k=

Akxk .

(.)

Then the polynomial P has exactly one root in the interval (–a, ) and at most two roots in
the interval (–an, –an–). Moreover, the polynomial Q has exactly one root in the interval
(–∞, –an) and at most two roots in the interval (–a, –a).

Proof That P has exactly one root in (–a, ) follows immediately from the observation
that P(–a) < , P() >  and P′(x) >  on (–a, ).

Now we show that Q has exactly one root in (–∞, –an).
Dividing the equation Q(x) =  by xnaa · · ·an and substituting z = /x and bi = /ai

yield the equation P(z) = , where

P(z) = (z + b)(z + b) · · · (z + bn) +
(n–)/∑

k=

Bkzk–
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for some nonnegative numbers Bk , not all equal to . We already know that P has exactly
one root in the interval (–bn, ), so it follows that Q has exactly one root in the interval
(–∞, –an).

Now we prove that Q has at most two roots in the interval (–a, –a). To the contrary,
suppose that Q has at least three roots in (–a, –a). Since Q(–a) >  and Q(–a) > ,
it follows that Q has an even number, and hence at least four, roots in the interval
(–a, –a).

Let  > –c ≥ –c ≥ · · · ≥ –cn– be the roots of p′(x) = , where

p(x) = (x + a)(x + a) · · · (x + an). (.)

Then a < c < a. The polynomial Q(x) is decreasing on the interval [–a, –c], so it has
at most one root in this interval. Therefore the polynomial Q has at least three roots in
the interval (–c, –a), and consequently the equation Q′′(x) =  has a root in (–c, –a).
But Q′′(x) >  for all x > –c, a contradiction. Hence Q must have at most two roots in
(–a, –a).

Finally, to prove that P has at most two roots in the interval (–an, –an–), divide the
equation P(x) =  by xnaa · · ·an and substitute z = /x and bi = /ai. This reduces to the
equation Q(z) = , where

Q(z) = (z + b)(z + b) · · · (z + bn) +
(n–)/∑

k=

Bkzk

for some nonnegative numbers Bk , not all equal to . We already know that Q has at
most two roots in the interval (–bn–, –bn), so it follows that P has at most two roots in the
interval (–an, –an–). This completes the proof of Lemma .. �

The same proof yields an analogous result for even values of n.

Lemma . Assume that n ≥  is even and let  < a ≤ a ≤ · · · ≤ an. Let, moreover, Ak ≥ 
for k = , , . . . , n/ and not all of the Ak’s are equal to . Consider the polynomials

P(x) = (x + a)(x + a) · · · (x + an) +
n/∑

k=

Akxk–,

Q(x) = (x + a)(x + a) · · · (x + an) +
n/–∑

k=

Akxk .

(.)

Then the polynomial P has exactly one root in each of the intervals (–∞, –an) and (–a, )
and Q has at most two roots in each of the intervals (–an, –an–) and (–a, –a).

Proof The same proof as that for Lemma . can be used. �

Now we turn to the proof of Conjecture . for  ≤ n ≤  and an arbitrary nonempty set
S ⊆ {, , . . . , n – }.

We first make some useful general remarks.
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Let I(a) = {i ∈ {, , . . . , n – } : ai = ai+}. If I(a) is empty, then the conjecture holds. In-
deed, if k ∈ S, then all the roots of the polynomial

(x + a)(x + a) · · · (x + ak) + txk

are, for all sufficiently small t > , real and distinct.
On the other hand, if I(a) = {, , . . . , n – }, then only the set S = {, , . . . , n – } possibly

satisfies the assumptions of the conjecture. Indeed, suppose that l /∈ S and let –b ≥ –b ≥
· · · ≥ –bn be the roots of

q(x) = (x + a)n +
∑

k∈S

Akxk .

Then by the inequality of arithmetic and geometric means, we obtain

El(a)
(n

l
) =

El(b)
(n

l
) ≥ (

E(b)
)(n–l)/n =

(
E(a)

)(n–l)/n =
El(a)
(n

l
) , (.)

and hence b = b = · · · = bn. Since E(a) = E(b), it follows that a = b, i.e. Ak =  for all
k ∈ S. A contradiction.

Let I be a nonempty subset of {, , . . . , n – }. We observe that the conjecture is true for
a set S and all a ∈ �n with I(a) = I , if it is true for a set T = {n – k : k ∈ S} and all b ∈ �n

with I(b) = {n – i : i ∈ I}. Indeed, if all the roots of the polynomial

q(x) = (x + a)(x + a) · · · (x + an) +
∑

k∈S

Akxk

are real, then substituting x = /z and ai = /bi, we infer that all the roots of the polynomial

r(z) = (z + b)(z + b) · · · (z + bn) +
∑

l∈T

Blzl

are real. Hence there exist mappings Cl(t) with Cl() = , continuous on [, ε], differen-
tiable on (, ε) and nondecreasing such that the polynomial

(z + b)(z + b) · · · (z + bn) +
∑

l∈T

Cl(t)zl

has n distinct real roots. Substituting z = /x and bi = /ai, we infer that the polynomial

(x + a)(x + a) · · · (x + an) +
∑

k∈S

Cn–k(t)xk

has n distinct real roots.
For n =  the only possibility for the set S is {} and it is enough to notice that the poly-

nomial (x + a)(x + a) + tx has two distinct real roots for any t > .
Assume now n = . Then, in view of the above remarks, we have to consider two cases:

() a < a = a; () a = a = a.



Pompe and Neff Journal of Inequalities and Applications  (2015) 2015:101 Page 14 of 17

() If  /∈ S, then the condition of Conjecture . cannot be satisfied since for A > ,
according Lemma ., the polynomial

P(x) = (x + a)(x + a) + Ax

has only one real root in the interval (–a, ) and obviously no roots on R\ (–a, ). Thus P
has only one real root for all A > . We can therefore assume  ∈ S, and for all sufficiently
small t > , the polynomial

(x + a)(x + a) + tx

has three distinct real roots.
() According to the above remarks, S = {, }. Then the polynomial (x + a) + tax + tx

has three distinct real roots for all sufficiently small t > .
Assume n = . In this case we have five possibilities: () a = a < a < a; () a < a =

a < a; () a < a = a = a; () a = a < a = a; () a = a = a = a.
() We note that S �= {}, since, by Lemma ., the polynomial

Q(x) = (x + a)(x + a)(x + a) + Ax for A > 

has at most two real roots in the interval (–a, –a) and obviously no roots on R \
(–a, –a). Thus Q has at most two real roots. Therefore S contains an odd integer k.
Then for all sufficiently small t > , the polynomial (x + a)(x + a)(x + a) + txk has four
distinct real roots.

() Note that  ∈ S, since by Lemma ., the polynomial

(x + a)(x + a)(x + a) + Ax + Ax for A, A > 

has at most two real roots. Then for all sufficiently small t > , the polynomial

(x + a)(x + a)(x + a) + tx

has four distinct real roots.
() We observe that {, } ⊂ S or {, } ⊂ S, since by Lemma ., each of the polynomials

(x + a)(x + a) + Ax + Ax and (x + a)(x + a) + Ax for A, A, A > 

as well as

(x + a)(x + a) + Ax and (x + a)(x + a) + Ax for A, A > 

has at most two real roots. Moreover, we prove that S �= {, }.
Suppose that the polynomial Q(x) = (x + a)(x + a) + Ax + Ax has four real roots. Let

Q(x) = (x + a)(x + a) and Q(x) = Ax + Ax. Let –c �= a be the root of the polynomial
Q′

(x) and let –d be the root of Q′
(x).
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If d < c, then Q is decreasing on (–∞, –c], so Q has at most one root in this interval.
Therefore Q has at least three roots in the interval (–c, ). Thus Q′′(x) has a root in the
interval (–c, ), which is impossible, since Q′′(x) >  on (–c, ).

If a ≥ d ≥ c, then Q is increasing on the interval [–c, ) and decreasing on the interval
(–∞, –d], so Q must have at least two roots in the interval (–d, –c). But Q(x) <  on this
interval.

Finally, if d > a, then Q may only have roots in the union (–∞, a) ∪ (–a, ). But Q is
increasing on (–a, ), so Q has three roots in (–∞, a). This, however, is impossible, since
Q′′(x) >  for x ∈ (–∞, a). Thus {, } ⊆ S and the polynomial

(x + a)(x + a) + tx(x + a)

has, for all sufficiently small t > , four distinct roots.
() Since the polynomial (x + a)(x + a) + Ax has no real roots,  ∈ S or  ∈ S. Then

the polynomial (x + a)(x + a) + txk for k = ,  has, for all sufficiently small t > , four
distinct real roots.

() In view of the above remarks, S = {, , }. Consider

r(x) = (x + a) + tx + tax + t
(
a

 – t)x = (x + a) + tx
(
(x + a) – t).

Then for all sufficiently small t > , a
 – t > , and the polynomial r has four distinct real

roots, because

r(–a – t) = t(t – a) < , r(–a) = at >  and

r(–a + t) = t(t – a) < .

Thus we have proved the following.

Corollary . Conjecture . is true if  ≤ n ≤  and S is an arbitrary nonempty subset of
{, , . . . , n – }.

This implies that the sum of squared logarithms inequality (Conjecture .) holds also
for n = .

Corollary . (Sum of squared logarithms inequality for n = ) Let a, a, a, a, b, b,
b, b >  be given positive numbers such that

a + a + a + a ≤ b + b + b + b,

aa + aa + aa + aa + aa + aa ≤ bb + bb + bb + bb + bb + bb,

aaa + aaa + aaa + aaa ≤ bbb + bbb + bbb + bbb,

aaaa = bbbb.

Then

log a + log a + log a + log a ≤ log b + log b + log b + log b.
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Proof Use Corollary . and observe that S may be an arbitrary subset of {, , }. �

Corollary . Let n ≥  be an integer and let T be an arbitrary subset of {, , . . . ,
n – }. Assume that the Conjecture . holds for n and for any nonempty subset S of T .
Let, moreover, f ∈ Cn(,∞). Then the inequality

f (a) + f (a) + · · · + f (an) ≤ f (b) + f (b) + · · · + f (bn)

holds for all a, b ∈ �n satisfying

Ek(a) ≤ Ek(b) for k ∈ T and Ek(a) = Ek(b) for k =  or k /∈ T (.)

if and only if

(–)n+k(xkf ′(x)
)(n–) ≤  for all x >  and all k ∈ T . (.)

Proof Assume first (.) holds and let a, b ∈ �n satisfy (.). Consider any c ∈ �n with
a ≤ c < b. Then the pair c, b satisfies condition (.) for some nonempty subset S of T .
Therefore by Proposition ., the set C(c, b) is nonempty and hence by Proposition .,
a � b. Now Theorem . implies that inequality (.) holds.

Conversely, if (.) holds for all a, b ∈ �n satisfying (.), then (.) also holds for all
a, b ∈ �n satisfying condition (.) with S = T . Thus Theorem . implies (.). This com-
pletes the proof. �

4 Outlook
Our result generalises and extends previous results on the sum of squared logarithms in-
equality. Indeed, compared to the proof in [] our development here views the problem
from a different angle in that it is not the logarithm function that defines the problem,
but a certain monotonicity property in the geometry of polynomials, explicitly stated in
Conjecture ..

If one tries to adopt the above proof of Conjecture . for n ≤  to the case n ≥ , one
has to deal with approximately n cases considered separately. Therefore it is clear that
the extension to natural numbers n beyond n = , say, is out of reach with such a method.
Instead, a general argument should be found to prove or disprove Conjecture . for gen-
eral n. Furthermore, it might be worthwhile to develop a better understanding of the dif-
ferential inequality condition (–)n+k(xkf ′(x))(n–) ≤ .
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