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ABSTRACT

I n response to invasion by microbial pathogens, host
defense mechanisms get activated by both the innate and
adaptive arms of the immune responses. TNF (tumor

necrosis factor) is a potent proinflammatory cytokine
expressed by activated macrophages and lymphocytes that
induces diverse cellular responses that can vary from
apoptosis to the expression of genes involved in both early
inflammatory and acquired immune responses. A wide
spectrum of microbes has acquired elegant mechanisms to
overcome or deflect the host responses mediated by TNF. For
example, modulatory proteins encoded by multiple families of
viruses can block TNF and TNF-mediated responses at
multiple levels, such as the inhibition of the TNF ligand or its
receptors, or by modulating key transduction molecules of the
TNF signaling pathway. Bacteria, on the other hand, tend to
modify TNF-mediated responses specifically by regulating
components of the TNF signaling pathway. Investigation of
these diverse strategies employed by viral and bacterial
pathogens has significantly advanced our understanding of
both host TNF responses and microbial pathogenesis. This
review summarizes the diverse microbial strategies to regulate
TNF and how such insights into TNFmodulation could benefit
the treatment of inflammatory or autoimmune diseases.

Introduction

Metazoans have developed a variety of reactive mechanisms
to control invading pathogens. On the other hand, microbial
invaders such as viruses, bacteria, and intracellular parasites
have co-evolved with their hosts to counteract the innate and
adaptive responses mounted by the host. Of the many host
pathways activated by pathogen invasion, pro-inflammatory
cytokines play particularly significant roles in orchestrating
both the early and late host responses. TNF is one such
pleiotropic pro-inflammatory cytokine that plays an
important role in diverse host responses such as septic shock,
induction of other cytokines, cell proliferation,
differentiation, necrosis, and apoptosis. TNF is expressed as
either a membrane-bound or secreted ligand mainly by
activated macrophages, lymphocytes, natural killer cells, and
epithelial cells. Three classes of TNFs have been identified:
TNFa (here called TNF), lymphotoxin-a (LT-a), and LT-b, all
of which are bioactive as trimers. A TNF protein superfamily
that exhibits 15%–20% identity to each other now comprises
at least 20 members [1,2]. Many of the TNF-induced cellular
responses are mediated by either one of the two known TNF
receptors (TNFR), TNFR1 (p60), and TNFR2 (p80), both of
which also belong to a larger superfamily of receptors,
consisting of nearly 30 members [1,3].

The TNFR superfamily members fall into three major
groups, death domain (DD)-containing receptors, decoy

receptors, and TNF receptor-associated factor (TRAF)
binding receptors [1]. DD-containing TNFRs (such as FAS,
TNFR1, and DR3) can activate caspase cascades via DD-
containing signaling intermediates, leading to apoptosis.
Receptors that lack DD, such as TNFR2, contain motifs that
recruit TRAF proteins. Both TNFR1 and TNFR2 and many
other TNFR family members activate NF-jB (nuclear factor-
jB) which is associated with cellular activation,
differentiation, cytokine production, and survival signaling
[1,3,4]. The TNFR superfamily members are all type I
transmembrane proteins characterized by the presence of one
to six hallmark cysteine-rich domains. Some members of the
TNFR superfamily (FAS, TNFR1, and TNFR2) preassemble on
the cell surface prior to ligand binding using the N-terminal
pre-ligand binding assembly domain (PLAD) [5].
TNF can induce either an NF-jB-mediated survival (and

proinflammatory) pathway or an apoptotic response
depending on the cellular context (Figure 1). TNFR1 is
thought to initiate the majority of TNF-mediated biological
activities. The TNF ligand homotrimer binds to the
extracellular domain of the receptor, which induces TNFR1
trimer conformational changes and the activation of the
intracellular signaling pathway. TNFR1 ligand engagement
leads to the release of the inhibitory protein silencer of death
domains (SODD) from TNFR1 intracellular DD [6,7]. Release
of SODD allows binding of TRADD (TNFR1-associated death
domain protein) to the DD and recruits additional adapter
proteins such as RIP1 (receptor interacting protein), TRAF2,
and cIAP1 (cellular inhibitor of apoptosis) to form complex I.
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Complex I transduces signals leading to NF-jB translocation
to the nucleus. Later, RIP1, TRADD, and TRAF2 dissociate
from TNFR1 and recruit FADD (FAS-associated death
domain protein) and caspase 8 to form complex II. In the
absence of NF-jB activity from complex I, complex II can
initiate caspase-8 activation, which leads to cell death [8,9].
On the other hand, NF-jB inhibits cell death through
upregulation of antiapoptotic genes such as cellular FLICE-
like inhibitory protein (c-FLIP), cIAP1, cIAP2, TRAF1, and
TRAF2, which are recruited to complex II and inhibit caspase
activation [10].

TNFR2 does not contain a cytoplasmic death domain and
cannot directly engage the apoptotic machinery, and thus its
precise involvement in TNF-mediated cell death is
controversial. It can enhance the cell death signal of TNFR1,
possibly through TRAF2 degradation and enhanced
recruitment of FADD andRIP to TNFR1 [11]. TNFR2 also plays
an important role in antiviral response by inducing cellular

necrosis [12,13]. TNFR2 itself can induce TNF-dependent
apoptosis and cell death, as demonstrated using cytotoxic T
lymphocytes from TNFR1 knockout animals, possibly by
recruitment of FADD to TNFR2 via RIP1 and TRAF2 together
with some still-unidentified adapter molecules [14].
The TNF-induced NF-jB–mediated survival pathway can be

activated independently by either TNFR1 or TNFR2 [15]. In
response to TNF, complex I signals through some other
scaffolding and signaling proteins, such as NIK (NF-jB
inducing kinase) and MEKK1 (MAPK kinase-1), which
converge on the IjB kinase (IKK) signalosome complex and
activate NF-jB. Depending on stimuli such as viral or bacterial
infection, exposure to proinflammatory cytokines, mitogens,
growth factors, and stress inducing agents, IKK-a/IKK-b can
phosphorylate IjB, resulting in proteolytic degradation of the
inhibitor and translocation of NF-jB to the nucleus [16]. NF-
jB enhances cell survival by upregulating expression of
antiapoptotic genes such asmembers of the Bcl2 family (Bcl-xL
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Figure 1. TNF-Mediated Death and Survival Pathways

TNF-mediated death and survival pathways are activated following interaction with the TNFRs. The apoptotic pathway is activated through TNFR1 by
forming the DISC, which activates caspase-8. Activated caspase-8 or�10 then activates the proapoptotic Bcl-2 family members, which leads to cell
death by releasing cytochrome c from mitochondria and loss of MMP. The NF-jB-mediated survival pathway is activated by both TNFR1 and TNFR2.
Association of TRAFs with these receptors activate signaling proteins like NIK (NF-jB inhibitor kinase) and MEKK1 (MAPK kinase 1), which activate the
inhibitor of NF-jB (IkB) kinase (IKK) signalosome complex. IKK phosphorylates IkB, resulting in the degradation of the inhibitor. The free NF-jB than
translocates to nucleus to induce the expression of inflammatory or antiapoptotic genes.
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and A1/Bfl-1), cellular inhibitors of apoptosis (c-IAP1, c-IAP2,
and XIAP), TRAF1 and TRAF2, and the FLICE-inhibitory
protein cFLIP. In some cases, activation of NF-jB is also
associated with induction of apoptosis by enhancing
expression of proapoptotic cytokines [17,18]

Inhibition and Modulation of TNF by Viruses

TNF orchestrates powerful anti-microbial responses by a
variety of mechanisms, including the direct killing of infected
cells (cytolysis), induction of apoptosis, inhibition of
intracellular pathogen replication, and upregulation of other
diverse host responses. Using TNF or TNFRs-deficient mice,
it has been demonstrated that they are essential for survival
of infections with bacterial pathogens such as Listeria
monocytogens, Mycobacterium tuberculosis, M. avium, Salmonella
typhimurium, intracellular parasites such as Leishmania major or
Trypanosoma cruzi, and viruses such as herpes simplex virus
(HSV-1), mouse cytomegalovirus (MCMV), or lymphocytic

choriomeningitis virus (LCMV)[2,4,13]. TNF and TNFR
signaling pathway is required for differentiation of T cells,
induction of cytokines and chemokines, recruitment of
leukocytes, and development of granulomas that are capable
of controlling virulent bacterial infection. Deficiency of TNF
or TNFR network delays granuloma formation and affects
several other components of the innate and adaptive immune
system including activation of dendritic cells, natural killer
cells, and differentiation of T and B cells. Thus, TNF and
TNFR network provided powerful selection pressure for
viruses and other pathogens to evolve strategies to combat
the TNF-mediated responses to infection. As illustrated in
Figure 2, many viruses have acquired strategies to neutralize
TNF by targeting almost every step of TNF biology, ranging
from direct binding and inhibition of the ligand or receptor,
to modulation of various downstream signaling events [19,20].
Table 1 represents a spectrum of the viral factors that inhibit
TNF or modulate TNF signaling.

DOI: 10.1371/journal.ppat.0020004.g002

Figure 2. Different Strategies for Inhibiting TNF by Pathogens

Pathogens have evolved diverse strategies to target almost every step of TNF biology. Virus-encoded proteins inhibit TNF-mediated responses by
directly binding to TNF with secreted soluble decoy TNFR (vTNFRs) and vTNFBPs, downregulating the cellular death receptors, interacting with the
TNFR-associated factors, blocking caspase activation, and regulating the apoptotic checkpoint function of mitochondria. Viruses also regulate the
pathways leading to TNF-mediated activation of NF-jB. Bacteria and other pathogens can express proteins that regulate TNF-mediated responses by
activating or inhibiting NF-jB at different levels of signaling that range from the death receptor to nuclear localization of NF-jB.
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Table 1. Viral Inhibition and Modulation of TNF

Action Virus Viral Proteins Mechanism of Action Effects on TNF Reference

Interaction with TNF Cowpox Crm B (vTNFR) Binds to TNF and LT Blocks TNF function [27]

Crm C Binds to TNF Blocks TNF function [28]

Crm D Binds to TNF and LT Blocks TNF function [29]

Crm E Binds to TNF from human,

mouse, and rat

Blocks TNF function [30]

Myxoma M-T2 Binds to rabbit TNF Blocks TNF function and T cell

apoptosis

[22,26]

SFV S-T2 Binds to rabbit TNF Blocks TNF function [128]

Cowpox vCD30 Binds to CD30 ligand, CD153 Inhibits type I cytokine

response

[31]

Mousepox [32]

Tanapox TPV2L (vTNF-BP) Binds to human TNF Blocks TNF function [39]

Modulation of TNFRs

and associated factors

Adenovirus RID complex

(E3–10.4k and 14.5k)

Downregulates surface TNFR1

level

Inhibits TNF-induced activation

of NF-jB and AP1

[40,41]

EBV BZLF1 Downregulates TNFR1 promoter

activity

Inhibits TNF-induced gene

expression

[44]

HPV16 E6 and E7 Binds to TNFR1 and inhibits DISC

formation

Inhibits TNF signaling [48]

HCMV Early proteins Reduces TNFR1 level by affecting

its trafficking

Inhibits TNF signaling [50]

MCMV Unknown Decreases the level of TNFR1

and TNFR2

Inhibits TNF signaling [53]

HCV NS5A Interacts with TRADD and

inhibits its association with

FADD

Inhibits TNF-mediated

apoptosis

[55,56]

HCV Core protein Interacts with TNFR1, facilitates

FADD recruitment to TNFR1,

activates NF-jB

Modulates TNF-mediated

apoptosis

[59,60]

EBV LMP1, vCD40 Engages TRAFs and TRADD,

activates NF-jB, upregulate

antiapoptotic genes, inhibits Bax

Antiapoptosis [34,35]

Poliovirus 3A Eliminates TNFR by affecting its

trafficking

Inhibits TNF signaling [51]

BLV Unknown Imbalance in the level of TNFRs,

increases TNFR2 level

Inhibits TNF-induced apoptosis [45]

ALV TRAILR2 ortholog, CAR1 Receptor for virus entry Induces apoptosis [129]

Blocking caspase

activation

ASFV vIAPs Inhibits caspase-9, caspase-3 Inhibits TNF-mediated

apoptosis

[63]

Cowpox CrmA Inhibits caspase-1 and caspase-8 Inhibits TNF- and Fas-induced

apoptosis

[64]

HCMV vICA (UL36) Prevents caspase-8 activation Inhibits TNF and Fas-induced

apoptosis

[65]

KSHV, HVS,

EHV-2, BHV-4

vFLIPs Inhibits caspase-8 activation,

interacts with TRAF2, RIP, NIK,

IKK2, and activates NF-jB

Inhibits apoptosis [66,67]

MCV MC159 (vFLIP) Interacts with FADD and

caspase-8, interacts with TRAF2,

and inhibits NF-jB activation

Inhibits apoptosis [68,69]

Regulation

at mitochondria

KSHV/HHV-8,

MHV68

KSbcl-2 (vBcl-2),

MHVbcl-2

Interacts with Bax and Bak under

certain physiological conditions

Inhibits TNF-induced apoptosis [74,130]

EBV BHRF1 and

BALF1

Blocks TNF-mediated MMP Inhibits TNF- and Fas-induced

apoptosis

[72]

Adenovirus E1B-19K Interacts with Bax and Bak Inhibits TNF-induced apoptosis [73]

Vaccinia F1L Inhibits MMP and release of

cytochrome c by interacting

with Bak and inhibit bak

activation

Inhibits apoptosis [75]

Myxoma M11L Interacts with Bak and PBR Inhibits apoptosis [76]

HCMV vMIA Interacts with ANT and Bax Inhibits mitochondrial

apoptosis

[77]

HCV NS2 Interacts with CIDE-B, block

cytochrome c release

Inhibition of TNF-mediated

apoptosis

[78]

KSHV K7 Binds to Bcl-2 and caspase-3 and

blocks TNF-mediated MMP

Inhibition of TNF-mediated

apoptosis

[131]

HCV NS5A Binds to Bax Inhibits TNF-mediated

apoptosis

[58]

HCV Core protein Enhances caspase-8, Bid

cleavage, activates mitochondrial

apoptosis signaling pathway

Induces TRAIL-mediated

apoptosis

[62]
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Viral TNFR Homologues

The first-identified TNF inhibition strategy deployed by
viruses was revealed by the discovery of encoded soluble
TNFRs homologs which function by binding and sequestering
extracellular TNF. Among these vTNFRs are the T2-like
family members encoded by Leporipoxviruses and the
cytokine response modifier (Crm) family members encoded
by Orthopoxviruses [21,22]. The myxoma-virus-encoded M-
T2 protein is a glycosylated, dimeric, secreted protein that
specifically inhibits rabbit TNF [23,24]. The pathogenicity of
myxoma virus in domestic rabbits is attenuated when the M-
T2 gene is deleted from the viral genome [25]. The
intracellular form of M-T2 protein is also able to inhibit
apoptosis in virus-infected lymphocytes. The first two N-
terminal cysteine-rich domains are responsible for anti-
apoptotic properties, while at minimum the first three
cysteine-rich domains are required to inhibit TNF [26].
Related TNFR orthlogs, designated CrmB, CrmC, CrmD, and
CrmE, have been characterized from members of the
orthopoxvirus genus [27–30]. Another poxvirus encoded
ortholog of TNFR family members, vCD30, has been
identified in cowpox and mousepox viruses [31,32]. vCD30

binds to CD30L/CD153 with high affinity, inhibits the ability
of CD30L to signal via cell surface CD30, and also inhibits
type I cytokine responses in a murine model of antigen-
induced granuloma [32].
Epstein-Barr virus (EBV) latent infection membrane

protein 1 (LMP1) mimics a constitutively activated TNFR
member, CD40. LMP1 is essential for EBV conversion of
infected B lymphocytes into perpetually proliferating
lymphoblasts and is expressed in EBV-associated
lymphoproliferative disease, Hodgkin disease, and
nasopharyngeal carcinoma [33]. Two motifs of LMP1 located
in the carboxy-terminal cytoplasmic domain, designated
CTAR1 (C-terminal activation domain) and CTAR2, activate
both canonical (IKKb-dependent) and noncanonical (NIK/
IKKa-dependent) NF-jB pathways by engaging different
TRAFs. [34]. This activation mediates the antiapoptotic
activity of LMP-1 by upregulation of the expression of
antiapoptotic factors such as Bcl-2, Bfl-1, and A20, which are
potent inhibitors of Bax [35].
Some viruses exploit TNFR family members as receptors to

enter into cells. HSV-1 glycoprotein D (gD) interacts with
HVEM (herpes virus entry mediator) to enter into resting T
cells, monocytes, and immature dendritic cells [36]. A TNFR

Table 1. Continued

Action Virus Viral Proteins Mechanism of Action Effects on TNF Reference

Modulation

of NF-jB/TNF-mediated

survival pathway

HTLV-1 Tax protein Increases expression of

antiapoptotic molecules,

interacts with IKKc and activates

NF-jB

Inhibition of TNF signaling [80]

Rotavirus VP4 Activates NF-jB by modulating

TRAF-2

Enhances apoptosis [83]

HSV-1 gD Activates NF-jB and upregulate

antiapoptotic proteins

Inhibits apoptosis [84]

HIV-1 Tat and Nef Activates NFjB and increases

release of inflammatory factors

such as TNF

Enhances TNF-mediated

apoptosis

[132,133]

KSHV vIRF3 Inhibits nuclear translocation of

NF-jB induced by TNF by

inhibiting IKKb activity

Enhances TNF-induced

apoptosis

[85]

Adenovirus E1A Induces TNF-dependent caspase-

8 activation, downregulates c-

FLIPs expression, and inhibits

NF-jB

Enhances TNF-induced

apoptosis

[86]

Vaccinia N1L Inhibits TRAF2, TRAF6, IKK-a, and

IKK-b
Inhibits signaling to NF-jB by

TNF and LTs

[87]

Vaccinia K1L Inhibits NF-jB by preventing

IjBa degradation

Inhibits proinflammatory gene

expression

[88]

ASFV A238L (ASFV-IkB) Binds to NF-jB and inhibits

nuclear localization

Enhances apoptosis [89]

HCV NS5A Inhibits TNF-induced NF-jB

activation by interacting with

TRAF2

Enhances TNF-induced

apoptosis

[54]

HBV X protein, HBx Induction of TNFR1/TNF

expression, caspase-8 activation,

NF-jB activation, upregulates LT-

a expression, associates and

inactivates c-FLIP

Enhances TNF-induced

apoptosis

[76,91–93]

Reovirus Unknown Inhibits NF-jB activation by

preventing IjBa degradation

Inhibits TNF [90]

HIV-1 Vpr and Vpu Suppresses NFjB, downregulates

antiopoptotic proteins and

proimflammatory cytokines

Induces apoptosis [134,135]

DOI: 10.1371/journal.ppat.0020004.t001
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ortholog (UL 144 orf) encoded by human CMV, which is
closest in sequence to the extracellular domain of human
HVEM and TRAILR2, binds BTLA (B and T lymphocyte
attenuator) and inhibits T cell proliferation by mimicking the
inhibitory cosignaling function of HVEM [37]. Recently,
another TNFR family member, designated equine lentivirus
receptor-1, has been identified as cellular receptor for the
entry of equine infectious anemia virus, a member of
lentiviruses family, into monocytes and macrophages [38].

Viral TNF-Binding Proteins

A new class of TNF binding protein has been recently
identified from Tanapox virus, a member of the Yatapoxvirus
genus of poxviruses [39]. This vTNF-BP is encoded by the
TPV gene 2L, and related orthologs are present in other
members of the Yatapoxvirus (YLDV and YMTV), swinepox,
and deerpoxvirus. The 2L protein exhibits some sequence
identity (25%) to the a1, a2, and a3 domains of the cellular
MHC class I molecules, but, unlike the cellular counterpart,
lacks a transmembrane domain. TPV-2L binds to human TNF
with very high affinity (Kd¼ 43 pM), but this protein failed to
interact with any other human cytokine or TNF from other
species. The discovery of this novel group of vTNF-BPs
suggests that there could still be unidentified classes of
cellular TNF-BPs, too.

Modulation of TNF Receptors
and Associated Factors by Viruses

The adenovirus early transcription region 3 (E3) encodes at
least seven proteins, five of which block the acquired or
innate immune response. Three of these, Ad E3–14.7K, Ad
E3–10.4K, and Ad E3–14.5K, impose inhibitory effects on the
TNF pathway [40]. Two of these proteins, 10.4K (RIDa) and
14.5K (RIDb), form a heterotrimeric complex in the plasma
membrane known as RID (receptor internalization and
degradation), which inhibits signaling through TNFR1 [40].
RID downregulates surface TNFR1 levels by reducing the
assembly of TNFR1 signaling complex and thus inhibiting
TNF induced activation of NF-jB. In terms of the NF-jB
pathway, RID blocks the association of members of the IKK
complex, as well as the protein kinase RIP, with the TNFR1
[40]. In a recent study it has been demonstrated that RIDb
directly interacts with TNFR1, and its tyrosine sorting motif
plays a major role in downregulation of TNFR1 by a clathrin-
dependent process involving l2 and dynamin, followed by
degradation of TNFR1 via an endosomal/lysosomal pathway
[41]. In addition to TNFR1, RID can degrade other death
receptors such as Fas, and in conjunction with E3–6.7K
protein it can also degrade TRAIL receptor 2 [42,43].

The EBV-encoded immediate-early gene product BZLF1
(also called Zta, ZEBRA, or EB1) prevents cellular responses
to TNF, including TNF-induced cell death [44]. During
reactivation of the EBV lytic cycle, BZLF1 reduces TNF-R1
promoter activity and thus downregulates TNF-R1 protein
expression levels. Mutational analysis of BZLF1 revealed that
inhibition of TNF-R1 promoter activity requires both the
transactivation and the DNA binding domains of BZLF1,
suggesting that BZLF1 may bind to and activate the promoter
of a gene that encodes a repressor of the TNF-R1 promoter
[44]. Bovine leukemia virus (BLV), a type C retrovirus, induces
TNFR2, but not TNFR1, by a yet unknown mechanism in

PBMC from BLV-infected cattle, which results in resistance to
TNF-induced apoptosis, possibly by activating antiapoptotic
genes in an NF-jB–dependent fashion [45].
Small DNA viruses, such as human papillomaviruses (HPVs)

are the major cause of cervical cancer (.90%) and a
significant number of head and neck cancers [46]. They infect
various human epithelial tissues, and have acquired
mechanisms to inhibit TNF-induced apoptosis. HPV16
encoded two oncogene products, E6 and E7, which can
stimulate cell cycle progression by binding to the tumor
suppressor proteins or negative regulator of the cell cycle p53
and retinoblastoma (Rb) protein, respectively [47].
Inactivation of these proteins leads to deregulated entry of
cells into S phase and maintenance of a favourable
environment for viral DNA replication. Both E6 and E7 can
also associate with other proteins involved in cell
proliferation and apoptosis. HPV16 E6 protein binds to
TNFR1 and affects the transmission of pro-apoptotic signals
triggered by TNF [48]. E6 binds to the C-terminal 41 amino
acids of TNFR1 and inhibits binding of TRADD to TNFR1
and thereby blocks formation of the death-inducing signaling
complex (DISC). This inhibition subsequently blocks
transmission of apoptotic signals by inhibiting the activation
of initiator caspases such as caspase 8. E6-mediated
protection against TNF-induced apoptosis occurs in cells of
different species (mouse and human) and tissues (fibroblast,
osteosarcoma, and histiocyte/monocyte). Both E6 and E7 of
HPV16 increased the transcription of cIAP1 and cIAP2 by
upregulation of NF-jB–expression and confer resistance to
TNF in human keratinocytes [49].
Human and murine CMV have also developed mechanisms

to evade a TNF-induced antiviral state by dysregulating
TNFRs. HCMV infection of THP1 cells reduced the level of
TNFR1 on the cell surface by accumulating the receptor pool
in the trans-Golgi network [50]. Time course analysis and
drug inhibition studies suggest that viral early gene products
may target trafficking of TNFR1 [50]. Poliovirus noncapsid
protein 3A also affects the intracellular trafficking of TNFR
and induces TNF resistance by eliminating TNFRs from the
plasma membrane [51]. However, 3A-protein–mediated
inhibition of ER to Golgi traffic of TNFR was limited to
poliovirus and coxsackievirus B3 [51,52]. MCMV infection of
bone marrow-derived macrophages inhibited TNF-induced
ICAM-1 surface expression and mRNA expression in infected
cells via expression of immediate early and/or early viral
genes [53]. MCMV infection blocked TNF-induced nuclear
translocation of NF-jB, which decreased the level of both
TNFR1 and TNFR2.
The hepatitis C virus (HCV) nonstructural protein 5A

(NS5A) is a multifunctional phosphoprotein that utilizes
multiple mechanisms to inhibit both extrinsic and intrinsic
apoptotic stimuli [54]. Using NS5A transgenic mice, it has
been demonstrated that NS5A interacts with TRADD,
inhibiting its association with FADD and TNF-mediated
apoptosis, resulting in persistent infection [55,56]. NS5A also
binds to the TNFR1 signaling complex through its interaction
with TRAF2, and subsequently inhibits TRAF2-dependent
NF-jB activation, thereby sensitizing the cells to TNF-
induced cytotoxicity. However, the sensitivity of cells
expressing NS5A to TNF was not affected [57]. The inhibition
of intrinsic apoptotic signals is mediated by the putative BH
(Bcl-2 homology) domain of NS5A, which allows it to bind to
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the pro-apoptotic protein Bax, rendering cells refractile to
certain pro-apoptotic agonists [58]. HCV core protein has
been reported as both inducer and inhibitor of TNF-
mediated apoptosis. In some human and mouse cell lines,
HCV core protein interacts with TNFR1 or LTbR and
activates the NF-jB pathway [59]. Core protein can also
facilitate FADD recruitment to TNFR1 and sensitize cells to
TNF-induced apoptosis [60]. However, HCV core-protein–
mediated suppression of TNF-induced apoptosis has also
been reported [61]. One recent study demonstrated that HCV
core protein also induces TRAIL-mediated apoptosis in Huh7
cells through sequential induction of DISC formation [62].

Viral Inhibition of TNF-Induced Apoptosis

Activation of caspases and release of cytochrome c from
the mitochondria generally lead to the induction of apoptosis
and cell death. A number of viral proteins have been shown to
inhibit caspases or intervening at the mitochondrial
checkpoint to prevent TNF-mediated apoptosis. Proteins that
inhibit caspase activation include vIAP from ASFV, CrmA
from poxvirus, vICA from HCMV, vFLIPs from several c-
herpesviruses, and its ortholog MC159 from MCV [63–69].
One group of antiapoptotic proteins known as vBcl-2 from c-
herpesviruses, adenoviruses, and poxviruses inhibit
proapoptotic Bax and Bak, and block mitochondrial
apoptosis. Some viruses that lack vBcl-2 instead encode
mitochondria-localized protein such as F1L from vaccinia,
M11L from myxoma, and vMIA from HCMV, which inhibit
apoptosis by preventing depolarization of the mitochondrial
membrane potential (MMP) and stopping the release of
cytochrome c [70–78].

Modulation of NF-jB by Viruses

NF-jB is a critical regulator of the immediate early
pathogen response, playing an important role in promoting
inflammation, and in the regulation of cell proliferation,
activation and survival [79]. NF-jB thus provides an attractive
target to various microbial pathogens for modulating host
TNF-mediated events.

The Tax transactivator oncoprotein of human T cell
leukemia virus type I (HTLV-I) persistently activates NF-jB
signaling pathways, resulting in the deregulation of cellular
gene expression and immortalization of HTLV-I-infected T
cells [80]. Tax interacts with IKK-c and stimulates the
catalytic activity of IKK-a and IKK-b, which degrades IjB and
enhances the activation of NF-jB [81]. Tax also interacts with
and blocks tristetraprolin repressor, an inhibitor of TNF
expression, and indirectly increases TNF expression in
macrophages [82]. Rotavirus capsid protein VP4 contains a
conserved TRAF-binding motif, and is responsible for NF-jB
activation and the inhibition of TNF-mediated death
signaling by engaging the TRAF2-NIK signaling pathway [83].
HSV-1 encoded gD inhibits TNF-mediated apoptosis in the
U937 monocytoid cells by activation of NFjB and
upregulation of some of the downstream antiapoptotic
proteins, such as FLIP and cIAP2 [84].

Viruses also can inhibit NF-jB activation by different
methods, which can result in increased sensitivity to TNF-
induced apoptosis. KSHV-encoded viral interferon
regulatory factor 3 (vIRF3) inhibits the activation of NF-jB
induced by TNF [85]. In 293T cells, vIRF3 inhibits IKKb

activity, resulting in reduced IjB phosphorylation and
inhibition of NF-jB activity and thus sensitizes cells to TNF-
induced apoptosis [85]. Adenovirus E1A protein also
sensitizes cells to TNF-mediated apoptosis. E1A inhibits c-
FLIPs expression, which results in TNF-dependent caspase-8
activation in the DISC [86]. Vaccinia virus encoded protein
N1L, a viral virulence factor, inhibits signaling to NF-jB via
both TNF and LT. This N1L-mediated inhibition of NF-jB
occurs by association with IKK-c and inhibition of IKK-a and
IKK-b [87]. N1L also inhibits IRF3 signaling and thus might
play a broad role as viral immunomodulator of innate
immunity. Another vaccinia encoded protein, K1L, inhibits
NF-jB activation by preventing IjBa degradation, probably
by interfering directly with IKK to prevent phosphorylation
or indirectly by hampering kinases that act upstream of IKK
[88]. ASFV A238L, which is an ankyrin-repeat–containing
homolog of host IjB (ASFV-IjB), binds to NF-jB following
degradation of host IjB and inhibits the nuclear
transportation of NF-jB [89]. In contrast, Reovirus induces
apoptosis by regulating NF-jB at two distinct levels. In
human epithelial HEK293 cells, reovirus activates NF-jB to
induce apoptosis early after infection. At later times, the
reovirus inhibits NF-jB activation by preventing degradation
of IjBa and inhibiting TNF-mediated apoptosis [90].
Induction of apoptosis in HBV-infected hepatocytes is

mediated by the viral X protein (HBx). HBx-dependent
activation of p38MAP kinase and JNK pathways leads to the
activation of both TNFR1/TNF and Fas/FasL [91]. HBx also
binds and inactivates c-FLIP and activates NF-jB through
induction of LTa and TNF, both of which induce apoptosis
[92,93].

Modulation of TNF by Bacteria and Parasites

Bacterial mechanisms of inhibiting TNF-mediated
responses differ significantly from that of viruses. To date, no
bacterial or parasite protein has been reported that directly
binds and inhibits TNF, TNFR, or their associated factors.
Instead, they rely on indirect mechanisms to modulate TNF
signaling, for example by reducing the synthesis of
inflammatory mediators, cytokines, and the modulation of
signaling pathways such as NF-jB or MAPK (Figure 2). Table
2 lists some of the known TNF modulating factors produced
by bacteria and other nonviral pathogens.
Bacterial pathogens generally mediate their interactions

with host cells via preformed soluble small-molecule or
peptide effectors secreted by type III secretion system, a
multicomponent translocation apparatus that spans the
bacterial cell wall from the interior of the bacterium into the
external environment [94]. The best-studied effector proteins
are from Yersinia, and known as Yops (Yersinia outer
proteins). Among the six Yop effector proteins, YopP/YopJ is
involved in the inhibition of NF-jB and MAPK pathways,
which results in the downregulation of cytokines such as TNF,
chemokines, and adhesion molecules. This then inhibits the
recruitment and activation of macrophages and natural killer
cells to the site of infection [95]. YopJ is a cysteine protease
(structurally related to the ubiquitin-like protease family of
proteins) that can remove K63- and K48-linked polyubiquitin
chains and inhibit proteasomal degradation of 1jBa,
resulting in inhibition of NFjB signaling. YopJ also removes
ubiquitin moieties from TRAF2 and TRAF6 [96,97]. Recently
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it has been demonstrated that YopP from Yersinia enterocolitica
also induces apoptosis in murine dendritic cells and inhibits
TNF production [98]. Two other type III secretory proteins
from Yersinia pestis, Low calcium response V (LcrV) or V
antigen and YopB inhibit production of TNF from murine
peritoneal macrophages by inhibiting the transcription
factor NF-jB after LPS treatment [99].

An ortholog of YopJ, AvrA from Salmonella typhimurium, also
demonstrates potent inhibitory action towards the NF-jB
pathway but does not seem to affect MAPK activation [100].
Unlike YopJ, AvrA in HeLa epithelial cells potently inhibits
TNF-induced activation of the NF-jB pathway by inhibiting
translocation of the p65 subunit of NF-jB. Another type III
secretion protein, SptP from S. typhimurium, is also involved in
host modulation involving the MAPK pathway by inhibiting
Raf activation, which ultimately attenuates the secretion of
TNF from infection-activated macrophages [101].

Escherichia coli K1 outer membrane protein A (OmpA) in
infected monocytes suppresses the production of cytokines
such as TNF by inhibiting IjB phosphorylation and blocking
the translocation of NF-jB to the nucleus [102]. OmpA also
induces expression of antiapoptotic protein Bcl-xL to
promote the survival of monocytes and macrophages [103].
Suppression of NF-jB activation and downregulation of
genes involved in inflammatory and immune responses is the
most common mechanism used by other pathogenic E. coli
strains. The Shiga toxin-producing E. coli (STEC),
enterohemorrhagic E. coli, and enteropathogenic E. coli all
interfere with NF-jB–activation initiated by TNF. EspB (E.
coli–secreted protein B), a component of the type III secretion
system, is also involved in the inhibition of NF-jB activation
and proinflammatory cytokine production [104].

Some bacterial proteins activate NF-jB, which inhibits
TNF-mediated apoptosis by upregulation of antiapoptotic
genes, or induces TNF production to enhance apoptosis. The
outer membrane protein, porin, from Neisseria gonorrhoeae,
increases the transcription of several host antiapoptotic
genes, including bfl-1, cox-2, and c-IAP-2, by the activation of
NF-jB, and thus protects human urethral epithelial cells from
apoptosis [105]. Infection with Helicobacter pylori, the main
causative agent of chronic active type B gastritis, enhances
the expression of TNFR1 and Fas and induces apoptosis of
gastric epithelial cells [106]. Proteins encoded by the cag
pathogenicity island of H. pylori are required for NF-jB
activation, which enhances the production of TNF and other
pro-apoptotic cytokines [107]. Listeria monocytogenes virulence
protein Listeriolysin O (LLO) and Outer membrane protein
(OMP) from Bartonella henselae both activate NF-jB and
induce antiapoptotic signaling, which prolongs bacterial
survival [108,109].
Bacteria can also use host TNFRs to mediate pathogenicity.

A recent study has demonstrated that TNFR1 is a receptor for
protein A from Staphylococcus aureus, a pathogen associated
with pneumonia and sepsis. Activation of TNFR1 by protein
A induces TNF-like responses which are associated with the
pathogenesis of staphylococcal pneumonia [110].
Extracellular IgA1 protease from Neisseria gonorrhoeae is
capable of inhibiting the TNF-mediated apoptosis of the
human myelo-monocytic cell line U937 [111]. This proteolytic
enzyme cleaves TNFRII but not TNFRI. Since TNFRII also can
activate NFjB and induces apoptosis, inactivation of TNFRII
could lead to direct inhibition of apoptosis.
Like virus and bacteria, parasites can also modulate NF-jB

function and regulate host immune responses. They can

Table 2. Modulation of TNF by Bacteria and Parasites

Bacteria Bacterial Proteins Mechanism of Action Effects on TNF Reference

Yersinia Yop J/P Inhibits NF-jB by preventing degradation of IKKb Inhibits TNF production [95]

Y. enterocolitica Yop P Inhibits TNF production Induces apoptosis [98]

Yersinia LcrV and YopB Inhibits NF-jB Suppresses TNF production [99]

Salmonella typhimurium SptP Inhibits MAPK pathway Inhibits TNF secretion [101]

AvrA Inhibits antiapoptotic NF-jB pathway Induces apoptosis [100]

Escherichia coli K1 OmpA Blocks translocation of NF-jB and downregulates

caspase activity

Inhibits TNF production [102]

E. coli (STEC) EspB Inhibits TNF-mediated NF-jB activation Inhibits TNF production [104]

Bordotella bronchoseptica Type III secretion Inhibits NF-jB in response to TNF Induces apoptosis [136]

Neisseria gonorrhoeae Porin IB Activates antiapoptotic genes by activating NF-jB Inhibits TNF-mediated apoptosis [105]

IgA1 protease Cleaves TNFR2 Inhibits TNF-mediated apoptosis [111]

Helicobacter pylori type IV secretory protein Activates NF-jB Induction of cytokine production [107]

Enhances expression of TNFR1 and Fas Enhances TNF-mediated apoptosis [106]

Bartonella henselae OMP Activates NF-jB Induces TNF production [109]

Listeria monocytogenes LLO Activates NF-jB Inhibit apoptosis [108]

Brucella suis Omp25 Unknown Inhibits TNF production [137]

Staphylococcus aureus Protein A Interacts with TNFR1 and activates it Induces TNF-like response [110]

Other Pathogens

Trypanosoma cruzi Unknown Activates NF-jB in some cell lines Inhibits apoptosis [112]

Theileria parva Unknown Degrades IkBa and IkBb and activates NF-jB Inhibits apoptosis [114]

Chlamydia pneumoniae Unknown Degrades BH3-only proteins Inhibits apoptosis [115, 118–120]

Plasmodium falciparum Unknown Activates NF-jB Inhibits apoptosis [117]

Rickettsia rickettsii Unknown Activates NF-jB by inhibiting caspase activation Inhibits apoptosis [116]

Francisella tularensis 23kDa protein Inhibits NF-jB, p38, and c-Jun pathways Inhibits TNF production [121]

Toxoplasma gondii Unknown Inhibits caspase activation and activate NF-jB Inhibits apoptosis [113]

Trichinella spiralis Unknown Induces expression of TNF, TNFR1, TRADD, TRAF2 Induces apoptosis [122]

DOI: 10.1371/journal.ppat.0020004.t002
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either activate NF-jB by degrading the IjB or inhibit NF-jB
activation by blocking the degradation of IjB. Protozoan
parasites such as Trypanosoma cruzi, Toxoplasma gondii, Theileria
parva, and other pathogens such as Chlamydia pneumoniae,
Plasmodium falciparum, and Rickettsia rickettsii all activate NF-jB
and inhibit apoptosis to enhance parasite replication [112–
117]. Recent studies demonstrated that Chlaydia infection
results in the degradation of BH3-only proteins such as Bim,
Puma, Bad, Bik, Bmf, Noxa, and tBid, which inhibit
proapoptotic Bax and Bak [118–120]. Degradation of these
proapoptotic factors leads to protection of infected cells
against apoptotic stimuli such as TNF [120]. A 23 kDa protein,
which is upregulated during intracellular infection from the
intracellular pathogen Francisella tularensis, inhibits TNF
secretion from the murine macrophage like cell line J774A.1
by blocking the degradation of IjB and inhibiting NF-jB
[121]. It has been demonstrated that the intracellular parasite
nematode Trichinella spiralis can induce expression of TNF,
TNFR1, TRADD, caspase-3, caspase-8, TRAF-2, and RIP in
infected muscle cells, resulting in induction of either
apoptosis or the transformation of muscle cells to nurse cells
[122].

Anti-TNF Therapy: Clues from Pathogens?

Although TNF plays a major role in growth regulation, cell
differentiation, and response to microbial infections, its
inappropriate overexpression has been implicated in the
pathogenesis of a wide spectrum of human disorders, such as
autoimmunity (e.g., multiple sclerosis, rheumatoid arthritis,
inflammatory bowel disease), allergy, septic shock, allograft
rejection, and insulin resistance. TNF derived from mast cells
also plays a crucial role in initiation of inflammation,
particularly in the case of rheumatoid arthritis [123]. TNF
may also exert tumor-promoting activity [124]. A recent study
has demonstrated that the PLAD domain of TNFR1 is critical
in TNF response, because mutations in PLAD reduce NF-jB
activation and cause TNFR-associated periodic syndrome, an
autoinflammatory syndrome [125]. Protein therapeutics
containing only the PLAD domain can effectively prevent
TNFR signaling and potently inhibit arthritis [126].

Many approaches have been investigated to inhibit TNF
activity for the treatment of various inflammatory/
autoimmune diseases (e.g., rheumatoid arthritis, Crohn
disease, and inflammatory bowel disease). The currently
commercially available TNF antagonists are infliximab (a
chimeric mouse/human monoclonal anti-TNF antibody),
etanercept (a soluble fusion protein combining two p75
TNFRs with an Fc fragment of human IgG1), and adalimumab
(a humanized monoclonal anti-TNF antibody). Although they
have shown to be partially effective in clinical trails, still more
needs to be learned in terms of the biology of TNF. These
current inhibitors need to be delivered at high doses, and
some adverse events have been reported, so that the long-
term safety of all these molecules is not thoroughly
understood [127]. The investigation of TNF inhibition
mechanisms by pathogens may provide novel therapeutic
insights. In particular, TNF inhibitors derived from viral
pathogens, which operate at relatively low concentration
within the infected host, offer new therapeutic strategies for
reducing the pathologic consequences of excessive TNF
expression in inflammatory disorders. “
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