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Abstract

In this paper, we introduce two iterative algorithms for finding common solutions of a
finite family of variational inclusions for maximal monotone and inverse-strongly
monotone mappings with the constraints of two problems: a generalized mixed
equilibrium problem and a common fixed point problem of an infinite family of
nonexpansive mappings and an asymptotically strict pseudocontractive mapping in
the intermediate sense in a real Hilbert space. We prove some strong and weak
convergence theorems for the proposed iterative algorithms under suitable
conditions.
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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, C be a nonempty
closed convex subset of H and P¢ be the metric projection of H onto C. Let S: C — H
be a nonlinear mapping on C. We denote by Fix(S) the set of fixed points of S and by R
the set of all real numbers. A mapping V is called strongly positive on H if there exists a
constant y € (0,1] such that

(Va,x) > yllx|?, VxeH.

A mapping S: C — H is called L-Lipschitz-continuous if there exists a constant L > 0 such
that

ISx—Syll <L|lx-yll, Vx,yeC.

In particular, if L = 1 then S is called a nonexpansive mapping; if L € (0,1) then A is called
a contraction.

Let ¢ : C — Rbe areal-valued function, A : H — H be a nonlinear mapping and ® : C x
C — R be a bifunction. We consider the generalized mixed equilibrium problem (GMEP)
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[1] of finding x € C such that
Ox,y) + o) —ekx) + (Ax,y—x) >0, VyeC. (1.1)

We denote the set of solutions of GMEP (1.1) by GMEP(®, ¢, A). The GMEP (1.1) is very
general in the sense that it includes, as special cases, optimization problems, variational in-
equalities, minimax problems, Nash equilibrium problems in noncooperative games and
others. The GMEP is further considered and studied in, e.g., [2—8].

Throughout this paper, it is assumed as in [1] that ® : C x C — R is a bifunction satis-
fying conditions (H1)-(H4) and ¢ : C — R is a lower semicontinuous and convex function
with restriction (H5), where

(H1) ®©(x,x) =0 forallx € C;

(H2) © is monotone, i.e., O(x,y) + O(y,x) <0 for any x,y € C;

(H3) © is upper-hemicontinuous, i.e., for each x,y,z € C,

lim sup ® (tz +(1- t)x,y) < O(x,y);
t—>0%
(H4) ©(x,-) is convex and lower semicontinuous for each x € C;
(H5) for each x € H and r > 0, there exist a bounded subset D, C C and y, € C such
that for any z € C\ Dy,

1
Oz, yx) + 0(yx) — @(2) + ;(yx -z,z-x) <0.

Let ®1,0, : C x C — R be two bifunctions, and By, B; : C — H be two nonlinear map-
pings. Consider the system of generalized equilibrium problems (SGEP): find (x*,5*) €
C x C such that

0, Vxe(C,
(1.2)
0, VyeC,

O1(x",x) + (Biy*, % —x%) + (" = y* 0 —x*) >
O2(*,9) + (Box™,y = y*) + -y =2,y = y%) =

where p; and u, are two positive constants.

Let {T,};°; be an infinite family of nonexpansive self-mappings on C and {A,}}2, be a
sequence of nonnegative numbers in [0, 1]. For any # > 1, define a self-mapping W,, on H
as follows:

un,n+1 = I;
Uy = Ay Tyl + L=x)1,
un,n—l = )Ln—l Tn—l un,n + (1 - )Ln—l)l»

Ui = M Tl pen + (L= M), (1.3)
Uy g1 = a1 T Ui + (1= A,

Upo = M Tolys + (1= A2)],
Wn = Uy’,l = )Ll TlL[,,,Z + (1 — )\1)]

Such a mapping W, is called the W-mapping generated by T}, T;-1,..., T1 and A, A,-1,
co A
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Let f : H — H be a contraction and V be a strongly positive bounded linear oper-
ator on H. Assume that ¢ : H — R is a lower semicontinuous and convex functional,
that ®,©;,0, : H x H — R satisfy conditions (H1)-(H4), and that A, By, B, : H — H are
inverse-strongly monotone. Very recently, motivated by Yao et al. [3], Cai and Bu [4] in-
troduced the following hybrid extragradient-like iterative algorithm:

(@,

Zn = Oy )(xn — rpAxy,),
Yu =TI = 1B T2 (I = paBs)z,, (1.4)

K1 = (0 + Vf(xn)) + Buxn + Q- ﬂn)l —a, + Mv)) Wnym Vn >0,

for finding a common solution of GMEP (1.1), SGEP (1.2), and the fixed point problem of
an infinite family of nonexpansive mappings { 7;}{°, on H, where {r,,} C (0, 00), {ot,,}, {Bx} C
(0,1), and xo,u € H are given. The authors proved the strong convergence of the se-
quence generated by the hybrid iterative algorithm (1.4) to a point x* € ()5, Fix(T})) N
GMEP(®, ¢, A) N SGEP(G) under some suitable conditions, where SGEP(G) is the fixed
point set of the mapping G := Tf}l - ,udlBl)Tl(:)Z2 (I = u2By). This point x* also solves the
following optimization problem:

. I
min —

1 2
(Vat, ) + —[le — ull” = h(x), (OP1)
x€(N2; Fix(T))"GMEP(6,¢,4)N\SGEP(G) 2 2

where /1 : H — R is the potential function of yf.
Let B be a single-valued mapping of C into H and R be a set-valued mapping with
D(R) = C. Consider the following variational inclusion: find a point x € C such that

0 € Bx + Rx. 1.5)

We denote by I(B,R) the solution set of the variational inclusion (1.5). In particular, if
B =R =0, then I(B,R) = C. If B = 0, then problem (1.5) becomes the inclusion problem
introduced by Rockafellar [9]. It is known that problem (1.5) provides a convenient frame-
work for the unified study of optimal solutions in many optimization related areas includ-
ing mathematical programming, complementarity problems, variational inequalities, op-
timal control, mathematical economics, equilibria and game theory, etc. Let a set-valued
mapping R : D(R) C H — 2!’ be maximal monotone. We define the resolvent operator
Jry:H— m associated with R and A as follows:

Jro=U+AR), VxeH,

where A is a positive number.

In 1998, Huang [10] studied problem (1.5) in the case where R is maximal monotone and
B is strongly monotone and Lipschitz-continuous with D(R) = C = H. Subsequently, Zeng
et al. [11] further studied problem (1.5) in the case which is more general than Huang’s [10].
Moreover, the authors [11] obtained the same strong convergence conclusion as in Huang’s
result [10]. In addition, the authors also gave the geometric convergence rate estimate for
approximate solutions. Also, various types of iterative algorithms for solving variational
inclusions have been further studied and developed; for more details, refer to [5, 12-17]
and the references therein.
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In 2011, for the case where C = H, Yao et al. [5] introduced and analyzed an iterative
algorithms for finding a common element of the set of solutions of the GMEP (1.1), the set
of solutions of the variational inclusion (1.5) for maximal monotone and inverse-strongly
monotone mappings and the set of fixed points of a countable family of nonexpansive
mappings on H.

Recently, Kim and Xu [18] introduced the concept of asymptotically « -strict pseudocon-
tractive mappings in a Hilbert space.

Definition 1.1 Let C be a nonempty subset of a Hilbert space H. A mapping S: C — C
is said to be an asymptotically « -strict pseudocontractive mapping with sequence {y,} if
there exist a constant x € [0,1) and a sequence {y,} in [0, 00) with lim,,_, », ¥, = 0 such that

||S”9c—S”y||2 <@+p)lx—y)*+ K||x—S”x— (y-S") ||2, Vn>1,Vx,yeC.

Subsequently, Sahu et al. [19] considered the concept of asymptotically « -strict pseudo-
contractive mappings in the intermediate sense, which are not necessarily Lipschitzian.

Definition 1.2 Let C be a nonempty subset of a Hilbert space H. A mapping S: C — C is
said to be an asymptotically « -strict pseudocontractive mapping in the intermediate sense
with sequence {y,} if there exist a constant « € [0,1) and a sequence {y,} in [0, c0) with
lim,,—, ¥ = 0 such that
. 2 2
lim sup sup (||S”x - S”y” —A+y)lx—9yl* -« ||x - S"x— (y - S”y) || ) <0. (1.6)
n—>oo  xyeC
Put ¢, := max{0, sup, . c([1S"x = S"y|1> = (1 + y,) | = ylI*> — & [ x = §"x — (y = §"y)|1*)}. Then
¢, >0(Vn>1),c,— 0 (n— 00),and (1.6) reduce to the relation

||S”x—S”y||2 <@+ y)lx=yI* +x|x=S"x - (y - S"y) ||2 +¢,, VYn>1,VxyeC.
(1.7)

Whenever ¢, = 0 for all # > 1 in (1.7), then S is an asymptotically «-strict pseudocon-
tractive mapping with sequence {y,}. The authors [19] derived the weak and strong con-
vergence of the modified Mann iteration processes for an asymptotically « -strict pseudo-
contractive mapping in the intermediate sense with sequence {y,}. More precisely, they
first established one weak convergence theorem for the following iterative scheme:

x1 = x € C chosen arbitrarily,
KXntl = (1 - an)xn + ansnxm Vn = 1,

where0<§ <a, <1-k-6, Z:‘il o, < 00, and 220:1 ¥, < 00; and then obtained another
strong convergence theorem for the following iterative scheme:

x1 = x € C chosen arbitrary,

I = (L= 0tn)%y + uS" %,
Cu={zeC:lly,—zll” < %, — 2II* + 6.},
Qu=1{zeC: (xy—2z,x—-x,) =0},

Xni1 = Pc,ng, % Y >1,

where 0 <8 <a, <1-k,6, =, + YuAn and A, = sup{|lx, — z||? : z € Fix(S)} < 0.
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Inspired by the above facts, we in this paper introduce two iterative algorithms for find-
ing common solutions of a finite family of variational inclusions for maximal monotone
and inverse-strongly monotone mappings with the constraints of two problems: a gener-
alized mixed equilibrium problem and a common fixed point problem of an infinite family
of nonexpansive mappings and an asymptotically strict pseudocontractive mapping in the
intermediate sense in a real Hilbert space. We prove some strong and weak convergence
theorems for the proposed iterative algorithms under suitable conditions. The results pre-
sented in this paper are the supplement, extension, improvement, and generalization of
the previously known results in this area.

2 Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by (-,-) and | - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence {x,} converges weakly to x
and x, — x to indicate that the sequence {x,} converges strongly to x. Moreover, we use
wy(x,) to denote the weak w-limit set of the sequence {x,}, i.e.,

wy(x,) = {x € H : x,, — x for some subsequence {x,,} of {xn}}.

Definition 2.1 A mapping A: C — H is called
(i) monotone if

(Ax —Ay,x—y) >0, Vx,yeC;
(i) n-strongly monotone if there exists a constant 1 > 0 such that
(Ax—Ay,x—y) = nllx -yl Vax,yeC
(ili) ¢-inverse-strongly monotone if there exists a constant ¢ > 0 such that
(Ax - Ay,x —y) > ¢||Ax - Ay||*>, Vx,yeC.
It is easy to see that the projection P¢ is 1-inverse-strongly monotone (in short, 1-ism).
Inverse-strongly monotone (also referred to as co-coercive) operators have been applied

widely in solving practical problems in various fields.

Definition 2.2 A differentiable function K : H — R is called:
(i) convex, if

K(y) -K(x) > (K'(x),y - %), Vx,y€H,

where K'(x) is the Frechet derivative of K at «x;
(ii) strongly convex, if there exists a constant o > 0 such that

K(y) - K(x) - (K'(x),y—x) > —|x—9yl? Vx,yeH.

N Q

It is easy to see that if K : H — R is a differentiable strongly convex function with con-
stant o > 0 then K" : H — H is strongly monotone with constant o > 0.
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The metric (or nearest point) projection from H onto C is the mapping Pc : H — C
which assigns to each point x € H the unique point Pcx € C satisfying the property

llx — Pcx|| = inf [x — y|| =: d(x, C).
yeC

Some important properties of projections are gathered in the following proposition.

Proposition 2.1 For givenx € H and z € C:
(i) z=Pcx < (x—2z,y-2) <0,Vy e C;
(i) z=Pcx & |lx—z|* < llx=ylI> = lly -zl ¥y € C;
(iii) (Pcx — Pcy,x —y) > |Pcx — Pcy||?, Yy € H. (This implies that Pc is nonexpansive

and monotone.)
By using the technique of [20], we can readily obtain the following elementary result.

Proposition 2.2 (see [6, Lemma 1 and Proposition 1]) Let C be a nonempty closed convex
subset of a real Hilbert space H and let ¢ : C — R be a lower semicontinuous and convex
function. Let © : C x C — R be a bifunction satisfying the conditions (H1)-(H4). Assume
that
(i) K:H — Risstrongly convex with constant o > 0 and the function x — (y —x, K'(x))
is weakly upper semicontinuous for each y € H;
(ii) for each x € H and r > 0, there exist a bounded subset D, C C and y, € C such that
foranyze C\ Dy,

L /
O(2,x) + p(yx) — 0(2) + ;(K (2) - K'(%),yx — 2) < 0.
Then the following hold:

(a) foreachx e H, S99 (x) # 0,

(b) S js single-valued;

(©) S s nonexpansive if K’ is Lipschitz-continuous with constant v > 0 and

(K'(x1) = K'(2), w1 — tho) = (K () = K' (), iy — ),  V(x1,%2) € H x H,

where u; = Sﬁa’q’)(xi)for i=1,2;
(d) foralls,t >0andxe H

(K’ (5©9)x) - K’ (SEQ‘W)x), SO0y Sg(")’(”)x>
s—t

(K (872) ~ K (), 8 - 517

(e) Fix(5/”") = MEP(®, ¢);

(f) MEP(O, @) is closed and convex.
In particular, whenever © : C x C — R is a bifunction satisfying the conditions (H1)-(H4)
and K(x) = % lx||12, Vx € H, then, for any x,y € H,

|S© % — 5Oy |* < (5O — SOy, x — )
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(S99 is firmly nonexpansive) and
||S§(")"”)x - Sig’w)x” < g ||S§(“)"")x - x||, Vs, t>0,x € H.

In this case, S©) is rewritten as T, If, in addition, ¢ = 0, then T is rewritten as
T? (see [21, Lemma 2.1] for more details).

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.1 Let X be a real inner product space. Then we have the following inequality:
Il +y1% < 1 + 2(p,2 +y), Vx,yeX.

Lemma 2.2 Let H be a real Hilbert space. Then the following hold:
(@) llx—yl2 = %12 = lyll2 - 2(x - y,) for all %,y € H;
(b) 12 + eyl = Allxll? + pllyll® = hpellx = yI|2 for all x,y € H and &, p € [0,1] with
A+u=1
(c) If{x,} is a sequence in H such that x,, — x, it follows that

limsup [lx, - yII* = limsup |, — x[* + e = 5], VyeH.
n—0o0 n—0o0

Lemma 2.3 ([19, Lemma 2.5]) Let H be a real Hilbert space. Given a nonempty closed
convex subset of H and points x,y,z € H and given also a real number a € R, the set

veC:ly—vI®<llt—vI>+ (zv) + a}
is convex (and closed).
Lemma 2.4 ([19, Lemma 2.6]) Let C be a nonempty subset of a Hilbert space H and S :

C — C be an asymptotically « -strict pseudocontractive mapping in the intermediate sense
with sequence {y,}. Then

1

s 5] < 1

(il =1+ (1+ (L= D)l = 3112 + (1= K)c)

forallx,y e Candn>1.

Lemma 2.5 ([19, Lemma 2.7]) Let C be a nonempty subset of a Hilbert space H and S :
C — C be a uniformly continuous asymptotically k-strict pseudocontractive mapping in
the intermediate sense with sequence {y,}. Let {x,} be a sequence in C such that |x, —
Xps1ll = 0 and ||x, — S"x,|| — 0 as n — oo. Then ||x, — Sx,|| — 0 as n — oo.

Lemma 2.6 (Demiclosedness principle [19, Proposition 3.1]) Let C be a nonempty closed
convex subset of a Hilbert space H and S : C — C be a continuous asymptotically k -strict
pseudocontractive mapping in the intermediate sense with sequence {y,}. Then I — S is
demiclosed at zero in the sense that if {x,} is a sequence in C such that x, — x € C and
limsup,,_, . limsup,_,  Il%, — S™x,| = 0, then (I - S)x = 0.
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Lemma 2.7 ([19, Proposition 3.2]) Let C be a nonempty closed convex subset of a Hilbert
space Hand S : C — C be a continuous asymptotically « -strict pseudocontractive mapping
in the intermediate sense with sequence {y,} such that Fix(S) # @). Then Fix(S) is closed and

convex.

Remark 2.1 Lemmas 2.6 and 2.7 give some basic properties of an asymptotically «-
strict pseudocontractive mapping in the intermediate sense with sequence {y,,}. Moreover,
Lemma 2.6 extends the demiclosedness principles studied for certain classes of nonlinear

mappings; see [19] for more details.

Lemma 2.8 ([22, p.80]) Let {a,}2, {bn}i2y, and {8,}52, be sequences of nonnegative real

numbers satisfying the inequality
App1 = (1 + (Sn)ﬂn + bn’ Vn >1.

If> 02 8, <00 and’y o by, < 0o, then lim,,_, o a, exists. If, in addition, {a,}32, has a sub-

sequence which converges to zero, then lim,_, o a, = 0.

Recall that a Banach space X is said to satisfy the Opial condition [23] if, for any given

sequence {x,} C X which converges weakly to an element x € X, we have the inequality

limsup ||x, — x| <limsup ||x, —y|, VyeX,y#«x.

n—00 n—00

It is well known in [23] that every Hilbert space H satisfies the Opial condition.

Lemma 2.9 (see [24, Proposition 3.1]) Let C be a nonempty closed convex subset of a real

Hilbert space H and let {x,} be a sequence in H. Suppose that
e = pI* < L+ Aa)lln = pI* + 84 VpeCin=1,

where {\,} and {8,,} are sequences of nonnegative real numbers such thaty .-, A, < 00 and

> 8n < 00. Then {Pcx,} converges strongly in C.

Lemma 2.10 (see [25]) Let C be a closed convex subset of a real Hilbert space H. Let {x,}
be a sequence in H and u € H. Let q = Pcu. If {x,} is such that w,(x,) C C and satisfies the
condition

0 —ull < llu—qll, foralln,
then x,, — q as n — oo.
Lemma 2.11 (see [26, Lemma 3.2]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let {T,,}.°, be a sequence of nonexpansive self-mappings on C such that

Mooy Fix(T,,) # ¥ and let {1} be a sequence in (0, b] for some b € (0,1). Then, for every x € C
and k > 1 the limit lim,,_, o U, xx exists.
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Remark 2.2 (see [27, Remark 3.1]) It can be known from Lemma 2.11 that if D is a

nonempty bounded subset of C, then for € > 0 there exists o > k such that for all n > n

sup || Uy ix — Upx|| < €.
xeD

Remark 2.3 (see [27, Remark 3.2]) Utilizing Lemma 2.11, we define a mapping W : C — C
as follows:

Wx = lim W,x= lim U,;x, VxeC.
n—0o0 n— o0
Such a W is called the W-mapping generated by T3, T, ... and A, Ay, .... Since W, is non-
expansive, W : C — C is also nonexpansive. Indeed, observe that for each x,y € C

W= Wyl = lim [[ W,z — Wyl < =yl

If {x,} is a bounded sequence in C, then we put D = {x, : n > 1}. Hence, it is clear from
Remark 2.2 that for an arbitrary € > 0 there exists Ny > 1 such that for all n > Nj

” ann - Wxn” = ”Un,lxn - len” <sup ”Un,lx - le” <e.

xeD

This implies that

lim ||W,x, — Wx,|| = 0.

n>00
Lemma 2.12 (see [26, Lemma 3.3]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let {T,,}3°, be a sequence of nonexpansive self-mappings on C such that
Mooy, Fix(Ty,) # ¥, and let {1,} be a sequence in (0,b] for some b € (0,1). Then Fix(W) =
Mooy Fix(T5,).

Lemma 2.13 (see [28, Theorem 10.4 (Demiclosedness Principle)]) Let C be a nonempty
closed convex subset of a real Hilbert space H. Let T : C — C be nonexpansive. Then I — T
is demiclosed on C. That is, whenever {x,} is a sequence in C weakly converging to some
x € C and the sequence {(I — T)x,} strongly converges to some y, it follows that (I - T)x = y.
Here I is the identity operator of H.

Recall that a set-valued mapping R : D(R) C H — 2" is called monotone if, for all x,y €
D(R), f € R(x), and g € R(y) imply

f —gx—y) =>0.

A set-valued mapping R is called maximal monotone if R is monotone and ( + AR)D(R) =
H for each A > 0, where [ is the identity mapping of H. We denote by G(R) the graph
of R. It is known that a monotone mapping R is maximal if and only if, for (x,f) € H x H,
(f —g,x —y) = 0 for every (y,2) € G(R), we have f € R(x). We illustrate the concept of
maximal monotone mapping with the following example.
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Let A : C — H be a monotone, k-Lipschitz-continuous mapping and let Ncv be the

normal coneto Catve C,ie.,
Ncv = {weH: (v—u,w)>0,Vu € C}.
Define

_JAv+Ncv ifveC,
o ifveC.

Tv

Then T is maximal monotone and 0 € Tv ifand only if (Av,y—v) > 0 for all y € C (see [9]).

Assume that R : D(R) C H — 2! is a maximal monotone mapping. Let A > 0. In terms
of Huang [10] (see also [11]), we have the following property for the resolvent operator
Jry.: H— D(R).

Lemma 2.14 Jr, is single-valued and firmly nonexpansive, i.e.,

Urax = Jrayrx = 9) = Wrax = Jrayl®s - Vay € H.
Consequently, Jr ;. is nonexpansive and monotone.

Lemma 2.15 (see [14]) Let R be a maximal monotone mapping with D(R) = C. Then for
any given A >0, u € C is a solution of problem (1.6) if and only if u € C satisfies

u = Jp;(u — ABu).

Lemma 2.16 (see [11]) Let R be a maximal monotone mapping with D(R) = C and let
B: C — H be a strongly monotone, continuous, and single-valued mapping. Then for each
z € H, the equation z € (B + AR)x has a unique solution x; for A > 0.

Lemma 2.17 (see [14]) Let R be a maximal monotone mapping with D(R) = Cand B: C —
H be a monotone, continuous and single-valued mapping. Then (I + A(R+ B))C = H for each

A > 0. In this case, R + B is maximal monotone.

Lemma 2.18 (see [29]) Let C be a nonempty closed convex subset of a real Hilbert space H,
and g : C — RU +00 be a proper lower semicontinuous differentiable convex function. If x*

is a solution the minimization problem

g(x") = infg(),
then
[gx),x-x*)>0, VxeC.

In particular, if x* solves (OP1), then

(u + (yf— I+ MV))x*,x—x*) <0.
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3 Strong convergence theorems

In this section, we introduce and analyze an iterative algorithm for finding common so-
lutions of a finite family of variational inclusions for maximal monotone and inverse-
strongly monotone mappings with the constraints of two problems: a generalized mixed
equilibrium problem and a common fixed point problem of an infinite family of nonexpan-
sive mappings and an asymptotically strict pseudocontractive mapping in the intermedi-
ate sense in a real Hilbert space. Under appropriate conditions imposed on the parameter
sequences we will prove strong convergence of the proposed algorithm.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let N
be an integer. Let © be a bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C — R
be a lower semicontinuous and convex functional. Let R; : C — 2 be a maximal mono-
tone mapping and let A : H — H and B; : C — H be ¢ -inverse-strongly monotone and n;-
inverse-strongly monotone, respectively, wherei € {1,2,...,N}.Let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping in the intermediate sense
for some 0 < k < 1 with sequence {y,} C [0,00) such that lim,_, y, = 0 and {c,} C [0, c0)
such thatlim,_, o c, = 0. Let {T,}.°, be a sequence of nonexpansive self-mappings on C and
{An} be a sequence in (0, D] for some b € (0,1). Let V be a y-strongly positive bounded lin-
ear operator and f : H — H be an I-Lipschitzian mapping with yl < (1 + n)y . Assume that
2 := (N2, Fix(T,)) N\GMEP(®, ¢, A) N (ﬂf\il I(B;, R;)) NFix(S) is nonempty and bounded.
Let W, be the W-mapping defined by (1.4) and {«,}, {B,} and {3,} be three sequences in
(0,1) such that lim,_, o o0, = 0 and k < 8, < d < 1. Assume that:

(i) K:H — Ris strongly convex with constant o > 0 and its derivative K' is
Lipschitz-continuous with constant v > 0 such that the function x — (y — x, K’ (x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C and z, € C such that for any
y €Dy,

1 ! /
O02) + ¢(z) = 90) + ~(K'() - K'(@),2: = 9) < 0
(iii) 0 <liminf,_~ B, <limsup,_, . Bn < 1;
(iv) {Ain} Clainbi] C(0,2n,),Vie{1,2,...,N}, and {r,} C [0,2¢] satisfies

0 <liminfr, <limsupr, < 2¢.
n—>00 n—>00
Pickany xy € H and set C, = C,x1 = Pc,xo. Let {x,,} be a sequence generated by the following
algorithm:

ty =SSP = r,A)x,

Zn = JRpg g (L = ANt BN Ryt o1 I = AN-1,0BN-1) == - TRy pyy (T = A1, B1) ths
ky =8,2,+(1-18,)S"z,,

Yn =t + v (%)) + Bukn + (1= B — oty (I + V) Wyzy,

Conn={z€ Cy:llyn—zl* < llxn —2l1* + 6,},

Xn+l = Pcn+1x0; V}’Z Z Oy

(3.1)

where 0, = (g + Yn) An0 + €n0> Ay = sup{llx, — plI*> + lu+ (vf =1 - uV)p|?*: p € 2} < o0,
1

Toup, e < O If S99 is firmly nonexpansive, then the following statements hold:

and o =
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(D {x,} converges strongly to Poxo;
(IT) {x,} converges strongly to Poxo, which solves the optimization problem

1
mggwx,w + 5 e =l = h@), (OP2)

xXe

provided y, + ¢, + ||%, — v, || = olat,) additionally, where h : H — R is the potential

function of yf.

Proof Since lim,_, o o, = 0 and 0 < liminf,_,~ 8, < limsup,_, . B» < 1, we may assume,
without loss of generality, that a,, < (1 — 8,,)(1 + || V||)"L. Since V is a y -strongly positive
bounded linear operator on H, we know that

VIl =sup{(Vit,u) :u € H, |lull = 1}.
Observe that

(((1 - B —a,(l + Hv))% Lt) =1- By —a,—ayu{Vu,u)
>1-By—a,—aullV]

>0,
thatis, (1 — 8,)I — o, (I + nV) is positive. It follows that

(1= B = auT + V)| = sup{{((A = B — 0t + V)1, ) : s € H, e = 1}
=sup{l- B, — oy — ey (Vit,u) 1 u € H, ||| = 1}

Sl_ﬂn _an_anl’”;'
Put
A = TR T = XinB)R, 110 I = Aic1nBi1) -+ TRy, I = AuBi)

forallie {1,2,...,N}and n>1, and A% = I, where I is the identity mapping on H. Then
we have that z, = ANu,,. We divide the rest of the proof into several steps.

Step 1. We show that {x,} is well defined. It is obvious that C, is closed and convex. As
the defining inequality in C, is equivalent to the inequality

2 2
I [

(2(xn - Zu), Z> < 1%all” = 2l + O,

by Lemma 2.3 we know that C, is convex and closed for every n > 1.

First of all, we show that £2 C C, for all n > 1. Suppose that 2 C C, for some n > 1.
©,9)

n

Take p € 2 arbitrarily. Since p = s!
0 <r, <2¢,we have

(p — rsAp), A is ¢ -inverse strongly monotone and

® 2 2
ln = pl* = | SEEOU = rud)xn — SO - r,A)p|

= “(I_rnA)xn - (I—VnA)P||2

Page 12 of 38
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= [ Gen = p) - ru(Ax, - Ap)|®

= 1%, — pII> = 27 (%, — p, Ax,, — Ap) + 12| Ax, — Ap|)?

< %y = pII* = 21t | Ay — Ap|1* + 72| A, — Apl®

= 1% = pII* + ru(rn = 20) | A%, — Ap|)?

< llxn = pII*. (3.2)
Since p = Jr,»;,,(I = AiuBi)p, Alp = p, and B; is n;-inverse-strongly monotone, where 7, €
(0,21;),i € {1,2,...,N}, by Lemma 2.14 we deduce that

12 =PI = [Ty (I = AnnBa) ANty = T, (0 = A Br) AN |

< || = BN ANty = (1 = AuBa) AY |

= (AN u, = AN ') = An(By AN i, — By AN ) ||

< | AN w, = AN || 4 ennOorir — 200) | By AN Nty — By AN p |

< [ ANy - AY 5|

< || Qs = ASp|

= llun —pII*. (3.3)

Combining (3.2) and (3.3), we have

lzn —pll < ll%. —pIl. (3.4)
By Lemma 2.2(b), we deduce from (3.1) and (3.4) that

lew = P12 = || 8u(zn —p) + (1= 8,)(8"2 — p) |
= 8ullzn — P12 + (1= 8,)]| 20 = p||* = 841 = 8,) | 20 — 8"2u
< 8ullzy — I + (1= 8,)[(1 + v) 12 — pII?
11|20 = 8720 + cu] = 84(1 = 82) | 2 — 82|
= [1+ yu(@ = 8] 1120 =PI + (L= 8,) 0 = ) |20 = "2 * + (1 = 2)cn
< U+ yllze = pI? + (L= 8)k — 8,) 2 — "2 |* + ¢
<L+ y)lzn —pl + ca. (3.5)
Set V =1+ uV. Then, for yI < (1 + )7, by Lemma 2.1 we obtain from (3.1), (3.4), and
(3.5)
lyn - pII?

= ||05n(” + Vf(xn)) + Bukn + ((1 — B - ay ‘7) Wz, _p”2

Page 13 of 38
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= Jlotu (e + v ) = V) + Bulkis = p) + (1= B = 00, V) Wiz — )|
= (s + 7f @) = V) + auy (F(xn) = f ()
+ Balkn = p) + (L= B = @ V) (Wozw — )|
< oty (F@) = £ @) + Bulkn = p) + (L= B = V) (Woz — p) |
+ 2a,((u + yf () = V), Y — p)
< [y [ G) =F @] + Bullks = pll + | (A = B — 0 V) Wiz~ )|
+2a,((u+vf(p) - Vp),yn — p)
< [otuy Uln =PIl + Bullkn = pll + (U= B = 0t = 0t 7)| Waz — pll]”
+ 20, |u+ vf(p) - V| lly. - pll
< [oru@+ W7 1 = pll + Bullks =PIl + (L= B — (L + 1)7) 120~ pII]°
vou(|u+vf@) - Vo[ +lyu - pI?)
< (L + )7 1% =PI + Bullks —pI> + (1= B — au(L+ 1)7) 124 — pII?
van(u+vf®) = Vol + lya—pI?)
<oy + W7 1%: =PI + Ba((L+ vu)llzn — pII* +cn)
+ (1= B =l + )7 llzw — pI + (|1 + v @) — V|| * + lyn — pI)
< @y + )P lxn = plI* + Bu(A + v)lzu — pII* + cn)
+ (1= By —an@+ W 7) (A + )z =PI +cn)
vau(utvf@) = Vol + lya—plI?)
= a1+ @7 lwn = pl* + (1= 0u@ + 1)7) (L + v) 2 = pII* + cn)
vau(u+vf®) = Vol + llya—pI?)
< (L + )7 (L + v 2 = I + )
+ (1= an(@+ w)7) (1 + yu) 1% — I + cn)
vou(|u+ v @) - Vo[ +lyu - pl?)

= (L+ y)l%n =PI + € + (| + vf ) = Vp||* + lyu = p1%),

which hence yields
1+y, « — 2
190 = pI> < —= % = pI> + —— |u+ yf(p) - V| + Cn
1-a, 1-a, 1-a,
oy + Y o ) 1
=\ 1+ == )lxa = pI* + ——lu+ yf () - Vp|" + e
l-«o, l-«w, l-«o,

n

oy + Y, oy + Y, -2 1
<1+ —=)lIxu—pII> + =—=|u+yf() - Vp| " + Cn
l-« 1-a, 1-a,

1

= =PI + S (o, = pIP + e+ vf @) = V) + T,
—ay 1
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~ 2
< llxn = pI? + (et + v)o (I = pI* + |lu+ vf(p) = Vi [") + 0cs
< |l%x —P||2 + (o0, + yn)AnQ + Cn0
= 10 = pI* + 6,y (3.6)
where 0, = (@ + Yu) Au0 + €405 Ay = sup{llx, — plI> + |u+ yf(p) = Vpl* : p € 2} < 00, and
0= m < 00 (due to {«,} C (0,1) and lim,,_, » ¢, = 0). Hence p € C,,1. This implies
that £2 C C, for all n > 1. Therefore, {x,} is well defined.
Step 2. We prove that ||x, — k,|| — 0 as n — oco.
Indeed, let v = Poxy. From x,, = Pc,x0 and v € £2 C C,,, we obtain

[l = xoll < [lv —xol|. 3.7)

This implies that {x,} is bounded and hence {u,}, {z,}, {k,}, and {y,} are also bounded.
Since x,,,1 € Cyi1 C Cy, and x,, = Pc, %0, we have

[l = %ol < %41 —x0ll, Vm>1.

Therefore lim,_, o [|%, — 0|l exists. From x, = Pc, %0, %41 € Cy1 C C,, by Proposi-
tion 2.1(ii) we obtain

%1 = %ull® < %0 = %uaI” = [l%0 — %1%,
which implies

im0 = = 0. (3.8)
It follows from x,,,; € Cy41 that ||y, — %1112 < 1%, — %441 [|? + 6, and hence

2 2 2
len = yull” < 2(”xn = %1 |7 + %041 = Yull )
2 2
=< 2(||xn - xn+l|| + ”xn - xn+l|| + 071)

= 2(2”9@, _xn+1||2 + en)-
From (3.8) and lim,,_, o, 6,, = 0, we have
lim (%, -y, = 0. (3.9)
n—0Q
Also, utilizing Lemmas 2.1 and 2.2(b) we obtain from (3.1), (3.4), and (3.5)

Iy = pII?
= [lotn (e + yf @) = VWii2,) + Bulk = p) + (1= B)( Wiz, — p) |
< || Bulkn = p) + (1= B) Wiz = p)||* + 200a{t + v @) = V Wiz 3 — )
= Bullkn = pII* + (L = B Wiz — plI* = Bu(1 = )1k — Winzull®

+ 200, ||t + v f(6n) = VWozu | lyu - pll
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< Bullkn =PI + (1= B)llzw — pII* = Bu(L = B) 1k — Wiz ||®
+ 20t |1t + v (%) = V Wz || Ilyn - pll
< Bu(W+ v)llzn = pII* + ) + (1= B)llzu — P11 = Bu(l = Bu) 1k = Winzull®
+ 200 ||t + v f (6n) = VWozu |y — pll
< Bu(@+ v)llzn =PI + cu) + A= B) (L + va) 2w — pII* + 1)
= Bu(1 = Bk = Wouzull® + 20 |1+ v () = V Wz | lyw — pl
= L+ y)llzn = pII* + cu = Bu(1 = Bu) 1Ky = Wonzall®
+ 20t |1 + v (%) = V Wz || Ilyn - pll
< L+ y)llxn =PI + ¢ — Bu = Bo)llkn = Wz,

+ 20, ”u +yf(xn) - ‘_/ann ” Iyn = pll>
which leads to

ﬂn(l - ﬁn)”kn - ann”2
< 1% = pII* = llyn = pI* + Yullxn — pII* + ¢4

+ 20 ||t + v f (6n) = VWozu | lya - pll
= “xn _yn”(”xn —P|| + ”yn —P||) + Vn”xn —P||2 +Cn

+ 20t ||t + Y (x0) = V Wz | Ilyn = pII.

Since lim,,_, o @, = 0,1im,,_, o, ¥, = 0, and lim,,_, o, ¢, = 0, it follows from (3.9) and condition
(iii) that

Jim Ik, — Wz, = 0. (3.10)
Note that

Vi —kn =t (6 + yf(0) = VWozu) + (L= Bn)(Wozn — k),
which yields

”xn - kn” = ”xn _yn” + ”yn _kn”
< 1% = yull + ”0{,,(14 +yf () = ‘_/ann) + (1= Bu)(Wazy — k) ”
< 1% = yull + atn ”u +yf(xn) - ‘_/ann ” + (1= B Wz — kall

< 1% = yull + otn ”u +yf(xn) - V Wz, “ + | Wz — kil
So, from (3.9), (3.10), and lim,,_, &, = 0, we get

lim [|x, — k|l = O. (3.11)
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Step 3. We prove that |lx,, — u, || = 0, ||up —2z4]| = 0, ||z, — Wz, || = 0, and ||z, — §"z,|| —
0 asn— oo.

Indeed, taking into consideration that 0 < liminf,_, o 7, <limsup,,_, . 7, < 2¢, we may

assume, without loss of generality, that {r,} C [c,d] C (0,2¢). From (3.4) and (3.5) it follows
that

(I —19||2 = [1 +yu(l - 5,,)] [ _p”2 +(1=38,)(k =8,) Hzn - 8"z, ||2 + (1= 3du)cn
< llzu = I* + Yullzu = pII* + cu

=< “Zn_p||2+yn||xn_p||2+cn' (3~12)
Next we prove that
lim ||%, — ]| = 0. (3.13)
n— 00
For p € 2, we find that
. o 2
i = pII* = [ SO = ryA)x, — SO - r,A)p|
2
E ” (I - rnA)xn - (1 - VnA)P”

= ”xn —p —ra(Axy, —AP)||2

< llxn _p||2+rn(rn_2§)”Axn_Ap”2~ (3.14)

By (3.3), (3.12), and (3.14), we obtain

2 2 2

k. = plI* < 2w = pII= + Yullxn — pII* +cn
2 2

< lletw =PI~ + yullxn = plI© + ¢

< % = pI? + 1alrn = 201 A%, = AplI> + yullxs =PI + c

which implies that

c(2¢ - d)|Ax, - Apll* < ru(2¢ — 1) Ax, — Ap|)?
< 1% = pI* = Ik = pII* + vl = p1I* + s

< 1% = kall (126 = 1l + 1k = p1I) + Yalln = pII> + 5.
From lim,,_, » ¥, = 0, lim,_, », ¢, = 0, and (3.11), we have
lim [[Ax, — Apl| = 0. (3.15)
n—00
By the firm nonexpansivity of S(,,(;)"p) and Lemma 2.2(a), we have

2
lln = pI

= ||S(rf"”)(1 —r,A)x, — Sﬁ?"")(l - r,qA)pH2
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<((I = ryA)x, = (I = r,A)p, un — p)
= U= rdym, ~ =, 0|+ 1~ pI?
~ U = raA)xs — (I = ruA)p ~ (s~ p)|*]
< 5 [ = I + = I = [y = 16y~ A~ 4|

1
= = [lln =PI + st = P11 = ot — w1 + 27, (A%, — Ap, 2, — 1)

2
-2 Ax, - Apll*),

which implies that

= pI* < 1% = pII* = 1% = |I* + 2, [| A, — Al | — . (3.16)

Combining (3.12) and (3.16), we have

2 2 2
k. = plI” < 2w =PI + Yullx, — pII” +cn
< _ 2 _ 2
< Nwn = oI~ + Vullxn —pII” +cu

2 2 2
< xn = pII" = I — vnll” + 274l A% = APl 1560 = tall + Yullxn =PI + Cas
which implies

6 = 142
<l = pI* = llkn = pII* + 27| Axs — Apl 1% = ]| + Yullxn = pII* + €1
< 1% = Kl (I = pIl + ki = PII) + 27ull A%y, = Apl 12 — 24
+ Vallxn =PI + ¢
From lim,, . ¥, = 0, lim,,_, o ¢,, = 0, (3.11), and (3.15), we know that (3.13) holds.
Next we show that lim,—. o, || B; A% u,—B;pl| = 0,i=1,2,...,N.It follows from Lemma 2.14
that
| At = p|* = o (I = XinB) AL sy~ Ty, (U = i Bi)p |
< U= 2inB) AT 0 — (1= 2iB)p |
< ||A2_1Mn —17”2 + AN — 2771‘)\\31'/1;_1”;1 —BiPH2
< llttn = PI* + Aihin = 20) | Bi AL s — Bipﬂz

i 2
< 1% = pI* + Ainhiw — 21) || BiA} ey — Bip |~ (3.17)
Combining (3.12) and (3.17), we have

2 2 2
ke — Pl < llzw = pII* + Yullxn = pII" + ¢y

< || Abs = p|* + vallzn =PI + s
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<% = pII* + Ain(hi — 2m:) | BiAL —BiP||2

+ Yl %y —19||2 + Cus
together with {A;,} C [a;, b;] C (0,2n;), i € {1,2,...,N}, implies

i 2 i 2

a;(2n; = b)) || Bi ALy — Bip||” < hin(2ni = Ai) | BiA)  un - Bip |
< Nxn = pII* = Ikn = pII* + Vull%n — pII* + ca

< 1%n = Kl (%60 = pIl + 1k = pII)

+ Yull%n _P”2 + Cy.
From lim,,_, oo ¥, = 0, lim,,_, o ¢, = 0, and (3.11), we obtain
lim |B;AL'u, —Bip| =0, i=1,2,...,N.
n—00
By Lemma 2.14 and Lemma 2.2(a), we obtain

i 2
JRipin I = 2inBi) A, U, — TRy = AiuBi)p ||

E <([ - }\i,nBi)qu_lun - (I - }‘i,nBi)p» Ailun _p>

[ s~ =|

1 ) )
= (0= 3B Ay = 0 = B0 + | A~
= 2B AT = 2 BOp ~ (At~ p)|)
| ,
<5 (145 we=p" + | Ajes = [

A5y — Aty — (B, ~ Bp) |

IA

(e Vo

Ay~ Aty — i (B, ~ Bip) |

IA

(=1 + | Aoy ]

A = Aty = g (Be - E) ),
which implies

| Aa = |
< ltw =PI = | Aty = Al = 2 (Bi Ay — Bip) |
= lln =PI = | A} sty = Aytan|* = 22, | B} 10, — Bip |
+ 20 Ay — A, Bi AL 4y — Bip)
< % = pI? = | At — Alt|®

+ 2 | ALy = Al ||| BiAY 1 — Bip|).

(3.18)

(3.19)

Page 19 of 38


http://www.journalofinequalitiesandapplications.com/content/2014/1/462

Ceng et al. Journal of Inequalities and Applications 2014, 2014:462
http://www.journalofinequalitiesandapplications.com/content/2014/1/462

Combining (3.12) and (3.19) we get

Ik = P11 < 2w =PI + Vulltn — pII* + ca
< | At = p|” + vullau — pI* + i
< ot = pI% = | ALty — Al ]®
+ 2| Ay st = A | BiA} i~ Bip)|

+ Vaull%n _P||2 + Cn»
which implies

| A, — Al |
<% = pI* = lkn =PI + 2240 | AL 1ty — Al ||| B:AY 1 = Bip |

2
+ Yullxn = pII” + ¢

< 1% = Kl (I = Il + 1k = PI) + 2240 | AL 1 — Al ||| B AL s - Bip|

+ Vull%n —P||2 + Cpe
From (3.11), (3.18), lim,,_, o ¥, = 0, and lim,,_, o, ¢, = 0, we have
lim | A w, - Alu,| =0, i=1,2,...,N.
n—0oQ
From (3.20) we get

ot = zall = || ASs8s — AN |

< | ASun = A | + | At = At | + -+ + || AN s — AN 1|

— 0 asn— oo.

By (3.13) and (3.21), we have

1% =zl < Ml — i ll + 1221 = 2|

— 0 asn— oo.

From (3.8) and (3.22), we have

1Zns1 = Zull < NZns1 = Xnsrll + (%1 = xall + 1% =zl

— 0 asn— oo.

By (3.11), (3.13), and (3.21), we get

1k — zull < ki = Xull + 1% — |l + N2y — 24

— 0 asun— oo.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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We observe that

ky—2z,=(1- 8,,)(S”zn - 2Zy).
From 8, <d <1 and (3.24), we have

lim Sz, — 2, = 0. (3.25)
We note that

||Snzn - S;len || =< ||Snzn —Zp || + ”Zn - Zn+1|| + ||Zn+1 - Sn+lzn+1 ||

+ HS””Z,,+1 _ Sn+12n || .
From (3.23), (3.25), and Lemma 2.4, we obtain

lim || S"z, — $""'z,| = 0. (3.26)

n—00

On the other hand, we note that
20 = Szull < |20 = S"2| + || 20 = S™ 2| + || S"* 20 — Sz .

From (3.25), (3.26), and the uniform continuity of S, we have
lim ||z, — Sz,|| = 0. (3.27)
n— 00

In addition, note that
Iz — Wzull < llzw — kull + |k = Wzl + | Wiz — Wz,||.

So, from (3.10), (3.24), and Remark 2.3 it follows that
lim ||z, — Wz,| = 0. (3.28)
n—00

Step 4. we prove that x, — v = Ppx as n — 00.

Indeed, since {x,} is bounded, there exists a subsequence {x,,} which converges weakly
to some w. From (3.13) and (3.20)-(3.22), we see that u,, — w, At = W, and z,, — w,
where m € {1,2,...,N}. Since § is uniformly continuous, by (3.27) we get lim,_, o ||z, —
8"z, = 0 for any m > 1. Hence from Lemma 2.6, we obtain w € Fix(S). In the meantime,
utilizing Lemma 2.13, we deduce from (3.28) and z,, — w that w € Fix(W) = (2, Fix(T})
(due to Lemma 2.12). Next, we prove that w € ﬂj,\,,lzl 1(B,;, R,,). As a matter of fact, since B,
is n,,-inverse-strongly monotone, B,, is a monotone and Lipschitz-continuous mapping. It
follows from Lemma 2.17 that R,, + B,, is maximal monotone. Let (v,2) € G(R,, + B,,,), i.e.,
g — Byv € Ryv. Again, since Au, = Jr,, 5, — AmnB) Ay, n > 1, m € {1,2,...,N},
we have

ATy = DB ATty € (I + ApyuRon) Ay,
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that is,

(A2 — ALty = AyuBin Al 1) € Ry Al 1ty

m,n

In terms of the monotonicity of R,,;, we get

1
<v— Ay, g — By — .

m,n

(A — Ay — xm,anA;”-lun)> >0
and hence

(v—ATu,,g)

> <v — AUy, By + (A;”‘lu,, - Ay, — )Lm,,,BmA;”‘lu,,)>

m,n

1
= <V — AUy, BV — By Aty + By AT thy, — By A7y, + - (A2 u, — A,’fun)>

mn

> (v— AL, By Al thy = By A 1) + <v - Au,, (A7 u, — A;"u,,)>.

)\m,n

In particular,
(v—Alun,g) = (v— Althy By A, = B Ay 1ty

1

+ <v - Ay, — (A:l",’luni - Afuni)>.
i )\'m,ni i i

Since || A" u, — A" u,|| — 0 (due to (3.20)) and ||B,, A7u,, — B,y A u,, || — 0 (due to the

Lipschitz-continuity of B,,), we conclude from A}'u,, — w and {A;,,} C [a;, b;] C (0,21,),

ief{l,2,...,N} that

lim <V - A:,",u,,’.,g> =(v-w,g)>0.
i—00 t
It follows from the maximal monotonicity of B,, + R,, that 0 € (R,, + B,)w, i.e, w €
I(B,, R,). Therefore, w € ﬂzﬂ I(B,1, Ryn).
Next, we show that w € GMEP(®, ¢, A). In fact, from z, = Sﬁn@"p)(l - r,A)x,, we know
that

1 ! !
O, y) + 9(¥) — @(u) + (A%, y — 1) + T(K (n) = K'(xn),y —un) >0, VyeC.

n

From (H2) it follows that

o) — (un) + (Axp, y — up) + rl<1(/(un) - K'(%n),y - un) >0O©,u,), VyeC.

n

Replacing n by n;, we have

K (1) = K ()

s

i

(p(y) - (/J(My,i) + (Axn,’)’_ um) +< P un,‘> = @(y’ Mni)!

VyeC. (3.29)
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Putu,=ty+ (1 —t)wforall £ € (0,1] and y € C. Then, from (3.29), we have

(uy — unpAut)
= (Mt - un,-rAut> - (p(ut) + §0(Mn,-) - (ut - uni’Axn,—>
<I(/(un,-) _I(/(xl’l,')

T,

y Ut — uni> + @(M[, Mn,‘)
> Uy — Wy Aty — Atty)) + Uy — U, Ak, — Ay) — o(ute) + 0 ()
<I(/(un,-) _I(/(xl’li)

T,

y U — ul’ll‘> + @(utv Mn,')'

Since | u,, — %4/l = 0 as i > 0o, we deduce from the Lipschitz-continuity of A and K’
that [|Au,, — Ax,,|| — 0 and ||K’(u,,) — K'(x4,)]| = 0 as i — oco. Further, from the mono-

tonicity of A, we have (u; — u,,, Au; — Au,,,) > 0. So, from (H4), we have the weakly lower
K (un;)-K' (xn;)
Tn;

semicontinuity of ¢, — 0 and u,, — w, then we have

(uy — w,Aug) > —@(ug) + o(w) + O (uy, w), asi— oo. (3.30)
From (H1), (H4), and (3.30) we also have
0 = O(uz, uy) + @(ur) — (uyr)
<tO(u,y) + 1 =)0 (ur, w) + to(y) + (1 - )p(w) — p(ur)
=t[O(uny) + 9(») — o(u)] + 1 = 1) O (ur, W) + (W) — (W) — (1) ]

<t[Ous,y) + 9() - ()] + (1= 1) (ur — w, Auy)

O wny) + 0(y) — ()] + (1 - ey — w, Auy),

and hence
0<O(un,y) + o) — o) + 1 - 1)y — w, Auy).
Letting ¢t — 0, we have, for each y € C,

0<OW,y) +0®) —eW) + (Aw,y — w).

This implies that w € GMEP(®, ¢, A). Therefore,

00 N
w e [\Fix(T,) N GMEP(©, ¢, A) N (ﬂ I(Bi,Ri)> N Fix(S) := £2.

n=1 i=1

This shows that w,,(x,) C £2. From (3.7) and Lemma 2.10 we infer that x,, — v = Poxy as
n— oo.

Finally, assume additionally that y, + ¢, + ||x, — ¥ || = o(,). Note that V is a y-strongly
positive bounded linear operator and f : H — H is an [-Lipschitzian mapping with y/ <

(1+ w)y.Itis clear that

(Va—(u+yf@)) - (Vy—(u+yf()),x—y) = (1+w)y -yl lx-yI> VxyeH.
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Hence we deduce that Vx — (« + yf(x)) is (1 + u)y — yl)-strongly monotone. In the
meantime, it is easy to see that Vx — (u + yf(x)) is (|| V|| + yI)-Lipschitzian with constant
|Vl + y1> 0. Thus, there exists a unique solution p in §2 to the VIP

(Vo—(u+yfp),u-p)>0, Yueg.

Equivalently, p € £2 solves (OP2) (due to Lemma 2.18). Consequently, we deduce from
(3.9) and x,, — v = Poxo (n — o0) that

limsup((u + yf(®)) = Vb, yu - p)

n—00

=limsup(((« + vf () = Vp,xu = p) + (1 + 11 ) = V.9~ 52))

n—00

=limsup((u + yf(p)) - Vp, %, - p)

n—00

=((u+vf) - Vp,v—p) <0. (3.31)

Furthermore, by Lemma 2.1 we conclude from (3.1), (3.4), and (3.5) that

Iy - pII?

= ot (e + vf () = V) + oty (F®n) —f(P)) + Bulkn — p)
+ (1= B~ V) (Wozy — )|

< oty (F@) = £ @) + Bulkn = p) + (L= B = V) (Wozs — p) |
+ 20,((u + vf(p) = V), yu — p)

< [y [fGn) =F @) + Ballks =l + | (A = B — 0u V) Wiz — p) | ]
+20,((u + vf(p) = V), yu — )

< [y % = Pl + Ballkn = pll + (1 = By — @y — ctut )| Wiz — p |
+2a,((u+ yf () = VD), yu - p)

< [otuy Uitn = pll + Ballkn = pll + (1= B — (L + )7 ) 20 — P11 ]
+ 20,((u + vf(p) = V), yu — )

= [an(1+M)J7~ %0 = pIl + Bullkn = pl

yl
A+ )y
2
+ (1 — ,3” — C(y,(l + M)f)”zn —P||]

+20,((u+ vf(B) - Vp), 30 - )

(y)?

<ol )y s = oI+ Bullk =

+ (1= Bn—an@+ W)7)2u — pI* + 20n((u + v/ (®) = VD), 90 — p)

(r0?

<a,(l+up)y- T+ 02

(B —19||2 + ,Bn((l + V)l Zn —P||2 + Cn)
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+ (1= Bu— @+ W)7)llzn — pI* + 2au(( + £ (p) = VD), yu — p)

(y1)?
SOy Wy

B —P||2 + ,Bn((l + V) l|zu —P||2 + Cn)

+ (1= Bu—an@+ W 7) (A + vz — I +cn)
+ 2a,,((u +yf(p) - \_/p),y,, —p)

w (y0)?
A+ p)y

+20,((u+ vf(B) = Vp), 30— p)

(v0)? 2
<7 (@ + y)llxn = I + cn)

+ (1= au@+)7) (L + v lln — I + €n) + 2au(( + vf (B) = VD), 30 — p)

_ (1 1+ w3y = (vl
- _an—_
1+wy

s = plI* + (1= @+ )7 ) (A + )l 2n =PI + 1)

)((1 + V) %0 —P||2 + Cn)

+20,((u + vf () = Vp),yu - p)

- (1 o L - (D)
L+ )y

+ 200 (et + v (0) = V), yn =),

)len — I + Vullxn =PI + ¢y

which hence yields
1+ w)*y? = (yD)? )
—————|lxx - pl
L+ p)y
I — 2> = lyn = pI*  Vall®n —pI* + cn _
< a 2 + - +2((u+vf() - VD), yu—p)
e = Yl Vn + Cn
= S (= 1+ D= pl) + P (5, I +1)

+2((u + vf(p) = V), yu - p).

Since y, + ¢, = o(@y), 1% — Yull = 0o(@y), and x, — v = Pox, we infer from (3.31) and 0 <
yl< 1+ u)y thatas n — oo

@+ p)?*p* - (y1)?

— lv-pl* <o0.
L+ p)y

That is, p = v = Poxy. This completes the proof. d

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
©® be a bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C — R be a lower
semicontinuous and convex functional. Let R; : C — 2" be a maximal monotone map-
ping and let A: H — H and B; : C — H be {-inverse strongly monotone and n;-inverse-
strongly monotone, respectively, for i =1,2. Let S: C — C be a uniformly continuous
asymptotically k-strict pseudocontractive mapping in the intermediate sense for some
0 <« <1 with sequence {y,} C [0,00) such that lim,_, y, = 0 and {c,} C [0,00) such
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that lim,_, o ¢, = 0. Let {T,,}°, be a sequence of nonexpansive self-mappings on C and
{1} be a sequence in (0, b] for some b € (0,1). Let V be a y-strongly positive bounded lin-
ear operator and f : H — H be an [-Lipschitzian mapping with yl < (1 + pn)y. Assume
that §2 := (2, Fix(T,,)) N GMEP(®, ¢, A) N 1(By, Ry) N I(By, Ry) NFix(S) is nonempty and
bounded. Let W,, be the W-mapping defined by (1.4) and {a,.}, {Bn}, and {5,} be three se-
quences in (0,1) such that lim,_, o, o, = 0 and k <8, < d < 1. Assume that:

(i) K:H — Ris strongly convex with constant o > 0 and its derivative K' is
Lipschitz-continuous with constant v > 0 such that the function x — (y —x, K’ (x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C and z, € C such that for any
y ¢ Dy,

O, zx) + ¢(z:) — () + %(K’(y) - K'(x),2: - y) < 0;

(iii) 0 <liminf,_ B, <limsup,_ . Bn < 1;
(iv) {Ain} Claibi] € (0,2n;) fori=1,2, and {r,} C [0,2¢] satisfies

0 <liminfr, <limsupr, < 2¢.
n—00 n—00

Pickany xo € H and set C, = C, %1 = Pc;xo. Let {x,} be a sequence generated by the following

algorithm:

Uy = S5O = 1, AN,

Zn = IRy pau (I = A2,nB2) Ry (L = A1,nB1) ki,

ky =8,2,+(1-18,)S"z,,

Y =t + Y (%)) + Bk + (1= B — (I + V) W2y,
Cun ={z€Cy: llyn —2l* < lxn — 2II* + 6.},

(3.32)

Xptl = PC,/Hle) Vn > 0,

where 6, = (@, + ¥u) A0 + €40, Ay = sup{llx, — plI* + lu + (vf =1 = uV)pl*:p € 2} < o0,
1
l—supnzlan
(I) {x,} converges strongly to Poxo;

and o = <oo.If S99 s firmly nonexpansive, then the following statements hold:

(IT) {x,} converges strongly to Poxo, which solves the optimization problem

Y
mn —

1
min = (Vx,x) + E||x—u||2 - h(x), (OP3)

xef2

provided y, + ¢, + ||%, — yu || = olat,) additionally, where h : H — R is the potential
function of yf.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let © be
a bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C — R be a lower semicontinuous
and convex functional. Let R : C — 2M be a maximal monotone mappingandlet A : H — H
and B : C — H be ¢ -inverse strongly monotone and &-inverse-strongly monotone, respec-
tively. Let S : C — C be a uniformly continuous asymptotically k-strict pseudocontractive
mapping in the intermediate sense for some 0 < k < 1 with sequence {y,} C [0, 00) such that
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lim,_, o0 Yu = 0 and {c,,} C [0,00) such thatlim,_. c, = 0. Let {T,}'°, be a sequence of non-
expansive self-mappings on C and {1} be a sequence in (0, b] for some b € (0,1). Let V be a
y -strongly positive bounded linear operator and f : H — H be an [-Lipschitzian mapping
with yl < (1+ p)y. Assume that $2 := (-, Fix(T,,)) N GMEP(®, ¢, A) N 1(B, R) N Fix(S) is
nonempty and bounded. Let W, be the W-mapping defined by (1.4) and {a,,}, {B,}, and
{8,,} be three sequences in (0,1) such that lim,_, o, o, = 0 and k < §,, < d < 1. Assume that:
(i) K:H — R s strongly convex with constant o > 0 and its derivative K' is
Lipschitz-continuous with constant v > 0 such that the function x +— (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;
(ii) for each x € H, there exist a bounded subset D, C C and z, € C such that for any
y & Dy,

O, z:) + ¢(zx) — () + %(K/(y) —K'(x),2¢ — y) < 0;

(iii) 0 <liminf,_ s B, <limsup,_, o Bn < 1;
(iv) {pn} C la,b] C (0,28), and {r,} C [0,2¢] satisfies

0 <liminfr, <limsupr, < 2¢.
n—00 n—00

Pickany xy € H and set C, = C, %1 = Pc,xo. Let {x,} be a sequence generated by the following

algorithm:

ty = SO = 1, A,

kn =84IR pp (I = puB)tty + (1 = 8,)S"J o, (I — puB)th

In = ot + Yf (xn) + Bukn + (1= B — o, (L + uV))WoJR p, (I = 04 B)y, (3.33)
Cu={z€ Cy: lyn —2lI* < lxn — 2II* + 6.},

Xni1 = Pc,, %0, Yn >0,

where 0, = (aty + Yn) AnQ + €n0> Ay = sup{llx, — plI* + lu+ (vf =1 — uV)p|* : p € 2} < o0,
1
1-sup;,>1 an

(1) {x,) converges strongly to Poxo;

and o = <oo.If S99 jg firmly nonexpansive, then the following statements hold:

(IT) {x,} converges strongly to Poxo, which solves the optimization problem

.M 1 2
min = (Vx, ) + 5 llx — 2]|* = h(x), (OP4)

provided y, + ¢, + ||%, — ¥, || = olat,) additionally, where h : H — R is the potential
function of yf.

4 Weak convergence theorems

In this section, we introduce and analyze another iterative algorithm for finding common
solutions of a finite family of variational inclusions for maximal monotone and inverse-
strongly monotone mappings with the constraints of two problems: a generalized mixed
equilibrium problem and a common fixed point problem of an infinite family of nonex-
pansive mappings and an asymptotically strict pseudocontractive mapping in the inter-
mediate sense in a real Hilbert space. Under mild conditions imposed on the parameter
sequences we will prove weak convergence of the proposed algorithm.
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Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let N
be an integer. Let © be a bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C — R
be a lower semicontinuous and convex functional. Let R; : C — 2 be a maximal mono-
tone mapping and let A: H — H and B; : C — H be {-inverse-strongly monotone and
n;-inverse-strongly monotone, respectively, where i € {1,2,...,N}. Let S : C — C be a uni-
formly continuous asymptotically k-strict pseudocontractive mapping in the intermedi-
ate sense for some 0 < k <1 with sequences {y,} C [0,00) and {c,} C [0,00). Let {T,,}>°,
be a sequence of nonexpansive self-mappings on C and {A,} be a sequence in (0,b] for
some b € (0,1). Let V' be a y-strongly positive bounded linear operator and f : H — H
be an I-Lipschitzian mapping with yl < (1 + p)y. Assume that $2 := (-, Fix(T,)) N
GMEP(®, p,A) N (ﬂﬁ.\il I(Bi, R;)) N Fix(S) is nonempty. Let W, be the W -mapping defined
by (1.4) and {,}, {B,} and {8,} be three sequences in (0,1) such that 0 <k +& <8, <d < 1.
Assume that:

(i) K:H — Ris strongly convex with constant o > 0 and its derivative K' is
Lipschitz-continuous with constant v > 0 such that the function x + (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C and z, € C such that for any
y €Dy,
1
Oy, z:) + (zx) — p(y) + ;(K’(y) - K'(x),2: —y) < 0;
(i) Y02 (e + Yu + €u) < 00 and 0 < liminf,_ oo By < limsup,_, o By <1;
(iv) {Ain} Clai,bi]l C(0,2;),Vie{1,2,...,N}, and {r,} C [0,2¢] satisfies

0 <liminfr, <limsupr, < 2¢.
n—00 =00

Pick any x; € H and let {x,} be a sequence generated by the following algorithm:

wy = ST - 1,A)x,,

Zn = JRpg g (L = ANt BN Ryt o1 T = AN-1,0BN-1) == - TRy py (T = A1, B1) s
ky = 8,2, +(1-18,)S"z,,

X1 = (U + Y[ (%)) + Bukin + (L= Bl — (I + nV)Wyzy, Vn=1.

(4.1)

Si("),go)

Then {x,} converges weakly to w = lim,_, .o Pox,, provided is firmly nonexpansive.

Proof First, let us show that lim,,_, , [|%,, — p|| exists for any p € 2. Put
Ay = TRoin T = XinBi) R iy I = XicuBict) + Jrig, (= AuBi)

foralli € {1,2,...,N},n > 1,and A% = I, where [ is the identity mapping on H. Then we see
that z, = ANu,,. Take p € §2 arbitrarily. Similarly to the proof of Theorem 3.1, we obtain

It — pll < ll%n = pll, (4.2)
Iz — pll < lltn — pll, (4.3)
ety = pII* < 1% =PI + 1l — 20) | Ax, — Apl%, (4.4)
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s = pI* < 120 = pII* = 12 = 4 |I* + 2| A, — Apll 1|2, = (4.5)

2
)

| ALt = p||* < 160 = DI + A i = 200 | Bi AL 1, — Bip
i€f{1,2,...,N}, (4.6)
| At = p|* < 120 = pI? = | A 11— Abaa |

+ 20| AL 1wy — Al ||| BiAY 1wy — Bip

’

ie{l,2,...,N} (4.7)
By Lemma 2.2(b) we get

1 — plI*
= ||8u(zn — p) + A = 8,)(S"24 — p)

= 8ullzn = pI? + (1= 58,)|S"2s = p||* = 8,1 = 8,) |20 = "2 |*

I

< 8ullzn —pI* + (1= 8)[(+ ylzn — pI* + & | 2 — $"2a])* + c4]
—8,(1=8,) |24 = 8"z

= [1+4 vl = 82) ]2 — pI* + (1= 8)(k = 8,) |20 — Sz
+(L=8n)cy

< @+ ylizn—pIP + A= 82)(k = 8, 20 — "2 | +

< @+ ya)lza = pl* + o (4.8)
Repeating the same arguments as in the proof of Theorem 3.1 we have

”(l_ﬁn)l_an(["'ﬂv)” <1-Bu—an—auuy.

Then by Lemma 2.1 we deduce from (4.2), (4.3), (4.8), and 0 < y/ < (1 + u)y that

1 — pII?

= | (u + vf () = VP) + any (f®4) = f () + Bulkn — p)
+ (1= B~ V) (Wozy — )|

< ey (FG) = £ ©)) + Bulks =) + (1 = B — 0 V) Wiz — p) |
+ 20, ((u + yf () = V), Xui1 - p)

< [ouy [ @) = £ @] + Bullkn = pll + [ (A= B~ V) (Woizu — )| ]
+ 20, ]| u+ yf(p) - Vp| % - p

< [oruy Uln = Pl + Ballkn = pll + (U= B — s = et 7)| Wozo Il
+ 20t ||+ v (p) = V| %01 - Pl

< [on@+ w7 1% = pll + Bullks = Pl + (1= Bu = (1 + 12)7) 120~ pII]°
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+ 20, |u+ yf(p) - V|| |16 - pll
< ay(L+ W7 %0 = pI* + Bullkn = pII* + (1= B = a1 + )7) 2 - pII?
+ 20, |u+ yf(p) - Vp|| 1% - pll
<oy + W7 1% = I + Ba((L+ vu)llzn — pII* +¢n)
+ (1= Bu =L+ 1)) 20 = pII* + 20 |+ v (0) = V|| 101 - Pl
<au(L+ WPl = I + Bu((L + y) lxn = pI* + cu)
+ (1= Bu = au@+ )7 ) 1% = pII* + 20| e + v () = V|| 1961 = I
<@y + )7 (A + vl =11 + ¢n) + Bu (A + ) % = pII* + )
+ (1= By — (L + )7 ) (A + vl = pII? + c1)
+ 20, |u+ yf(p) - Vp|| |6 - pll
= (L+ y)lln = pII* + c + 20| e + vf(p) = V| %1 - pl

<@+ v = plI? + cu+ (| + v ®) = V| + 1% - 211%),

which hence yields
%01 — pII?
1+y, o - 2
< — i -pl*+ ——u+yf) - Vp|" + e
1—0[,, 1—0[,, 1—0[,,
oy + Y, o _ 2 1
=\ 1+ = )l —pl* + —— |u+yf@) - Vp|" + e
l-o, l-«, l-o,
- 2
< [1+ (e + vu)o]llxn = pII* + ano|u+ vf(p) - VP |~ +ocn (4.9)

1
1-supy> an
from Y7 (ot + vy + €4) < 00 that lim,,_, oo ||, — p|| exists. Thus {x,} is bounded and so are

where g = < 00 (due to {a,} C (0,1) and lim,,—, », ¢, = 0). By Lemma 2.8, we see

the sequences {u,}, {z,}, and {k,}.
Also, utilizing Lemmas 2.1 and 2.2(b) we obtain from (4.2), (4.3), and (4.8)
%501 = pII?

= [lown (1 + v @) = VWii2,) + Bullis = ) + (L= B)(Woz =)

< Btk =) + A= B)(Wozu = p) |
+ 20, (1 + Y (%) = VWoizy, %041 — )

= Bullky = pI1> + (L= B) | Wozn = pII* = Bu(1 = Bu) 1Ky — Wiz, |1
+ 200 [+ yf (6n) = VWozu | |01 — P

< Bullkn = pII* + (L= Bi)llzn = pII* = BuL = Bu) 1K = Wiz
+ 20 ||+ yf(xn) = V Wz || %001 - pll

< Bu(A+ v)llza = pI* + ca) + (1= Bo)llzs - plI®

- :Bn(l - ,Bn)”kn - annnz
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+ 200 ||+ v f (60) = VWozu | %001 — P
< Bu(@+ y)llzn = pII* + ¢a) + A= B)(A + v)llzu — pII* + cu)
= Bl = Bk = Wzall®
+ 20t |1t + Y (%n) = V Wz | 1%041 = Pl
<@+ y)llzn = pI* + cn = Bu = Bl kn — Wiz
+ 20t |1t + v (%n) = V Wz | 1%041 - Pl
< @+ v)llon = I + en = Bul = Bu) 1k — Wz

+ 20[,, ”Lt + yf(xn) - ‘_/ann H ”anrl —P”» (410)
which leads to

Bu(L = B)lkn — Wiz 1?
< ll%n = pI* = %011 =PI + Vullw — I + ca

+ 20, ”u +yf(xu) - V Wz, ” %41 = pII-

Since lim,_, o @, = 0, lim,, . ¥, = 0, and lim,,_, - ¢, = 0, it follows from the existence of
lim,,—, ||, — p|l and condition (iii) that

Jim Ik, — Wz, | = 0. (4.11)
Note that

Kns1 = kn = ot (0 + Y (60) = VWoz) + (1= B)(Woz — k),
which yields

%01 — Kkl <ty ”u +yf(xn) - ‘_/ann ” + (1= B Wz — kall

< dtl|u+ vf (xn) = VWozn| + | Wazn — kall.
So, from (4.11) and lim,,_, @, = 0, we get
nlgrolo %041 = Kull = 0. (4.12)
In the meantime, we conclude from (4.2), (4.3), (4.8), and (4.10) that

%01 = plI?
< Bullkn =PI + (1= B)llzu = pII* = Bu(1 = B)llkn = Wirzl|®
+ 200 ||+ yf (60) = VWozu | 1001 — P
< Bullkn = pI1* + (1= B)llzw — pII* + 20| e + v () = VW2 | %1 =

< B[ L+ vlzo = pI? + (1= 8,)(c = 8,) || 20 — Sz || + €]
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+ (1= Bi)llzu — I + 2a || 1t + [ (xn) = V Wiz | 16001 = Pl
< Bl + )iz —pIP + A= 8,)(k = 8,) |20 — §"24|” + c1]
+ (L= B)((L+ y)llzw = pII* + cn)
+ 200 ||+ yf (60) = VWozu | 1001 — P
< @+ y)llzn =PI + Bul = 8,k = 8,) |2 — "2 + cs
+ 20t ||t + v (%) = V Wz | [1%001 — Pl
< U+ y)l1n =PI + Bl = ) = 84|20 — §"2a | + i

+ 20{;1 HM + Vf(xn) - ‘_/ann || ||xn+1 —P||:
which, together with 0 < x + € <4, <d <1, implies that

(1 -d)epy ||Zn -8z, H2 < Bu(1=6,)(3, - K)Hzn - 8"z, ||2
<l —19”2 = l%n41 —P||2 + Yull®n —17”2 +Cn

+ 20 ”u +yf(xn) - ‘_/ann “ %41 = PII-

Consequently, from lim,,_, o @, = 0, lim,, 0 ¥, = 0, lim,,_,» ¢, = 0, condition (iii), and the

existence of lim,_, « [|%, — p||, we get

lim |z, — 8"z, = 0. (4.13)
Since k,, — z, = (1 - 68,)(S8"z,, — z,,), from (4.13) we have

Jim Ik, —z, || = 0. (4.14)
Combining (4.4), (4.8), and (4.10), we have

[%s1 = PII* < Bu (L + vu)llzn =PI + cn) + (1= Bo)llzw =PI = Bu(1 = Bu) Ik = Wiz
+ 20 ||t + Y f (6n) = V Wz | 1001 — P
< Bu(@+v)llzn = pI* + ca) + (L= B (A + vl 2w — pII* + c)
+ 20 | + v (%) = V Wz || %1 — P
= (L+ yu)llzn = pII® + cn + 20 |t + v (%) = VW2 || |51 — p
< Nlttn = PI* + Vull%n =PI + i + 200 || 16 + v %) = V Wiz || %31 — Pl
< 1o = pII* + ru(r = 20) || Aty — AplI* + yaullxn — pII> + cs

+ 200 |+ (%0) = VWozu | 1801 - 2,
which implies
(28 = 1,) | A%y, —AP||2

2 2 2
< xn = pI° = l%ps1 = PI° + Vullxn = pII° + ¢y

+ 20, ||M +yf(xn) - ‘_/ann “ 1041 = pII-
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From condition (iv), lim, . o, = 0, lim, .« ¥, = 0, lim,_, o ¢, = 0, and the existence of

lim,,, « [l%, — pll, we get
lim ||Ax, — Ap|| = 0. (4.15)
n— o0
Combining (4.5), (4.8), and (4.10), we have
%1 =PI < 1120 = PII* + Vullzu =PI + €1
+ 20 ”u +yf (%) - ‘_/ann ” lns1 = plI
< |lu, —P||2 + Yullxn _p||2 +Cn
+ 20ty ”M +yf(xn) - VW,z, ” 141 = Pl
=< l%n _P||2 = ll%n = l’ln”2 + 21y |Axy, — Ap|l 1% — un |

+ Vn”xn —P||2 +¢n+ 20y HM + yf(xn) - ‘_/ann H ||xn+l —P”:
which implies
o= 10012 = [ = I = Wt = P+ 20, Ay — Apll s = 1
+ Vnll%n —P||2 + ¢+ 20 Hu +yf (%) = ‘_/ann ” %241 = Pl

From (4.15), lim, oo, = 0, lim,_ 0¥y = 0, lim, ¢, = 0, and the existence of
lim,,—,  ||%, — p|l, we obtain

lim ||x, — u,|| = 0. (4.16)
Combining (4.6), (4.8), and (4.10), we have

%41 — pII*
< lzw = PI* + Yullzw = PI* + €u + 200 |t + £ (60) = VWoiz | 1001 — P
< || At = p||* + Villzw = DI + € + 200 |16+ () = VWi, | |21 = 2
< (1% =PI + i i — 200 | BiAL 1 = Bip|* + yulln = pII* +

+ 20 ||+ yf(xn) = V Wz %001 = P,
which implies
Nin(hin = 203) | Bi Ay ay — BLPHZ

2 2 2
< % = pII° = %01 = PI° + Vaullxn =PI + c

+ 20 ”Lt +vf(xn) - ‘_/ann ” %41 = PII-

From {A;,} C [a;b;] C(0,2n;),i € {1,2,...,N},lim,_, o &, = 0,1im;, .0 ¥, = 0,lim,,, oo ¢, =
0, and the existence of lim,,_, o, [|%,, — p||, we obtain

lim |BiAL'u, —Bip|| =0, i€{l,2,....N}. (4.17)
n— 00
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Combining (4.7), (4.8), and (4.10), we get

%1 = pII>
< lzw = PI* + Yullzu = PI* + €u + 20t |t + ¥ f (60) = V Wiz | 16001 — P
< | ALt = || + vlln = DI + Cu + 200 |1 + Y () = VWi || 12601 — 2
< 5= I — A5t = A+ 20 15— K| B850, - B

+ Vull%n =PI + €u + 200 |1 + f (60) = VWoiz | 16001 — pI,
which implies

| A, = Alw,|?
=< “xn —P||2 - ||xn+1 —P||2 + 2)\i,n H Ai,_lun - quun H HBiAi,_lun —BzPH

+ Vull%n —P||2 +Cn + 20 ”M +yf (%) - ‘_/ann ” %41 = pII-

From (4.17), lim, o0, = 0, lim, .oy, = 0, lim,_.c, = 0, and the existence of

lim,,—,  ||%, — p|l, we obtain
lim || AL w, — ALuy| =0, i€{1,2,...,N}. (4.18)
n—00

By (4.18), we have

lotn = Zull = || Aprn — AN 1
< || A — A | + || Aptn — At || + -+ + | AN s — ANy

— 0 asn— oo. (4.19)
From (4.16) and (4.19), we have

”xn _Zn” = ||xn - un” + ”Mn _ZVIH

—0 asn— 0. (4.20)
By (4.14) and (4.20), we obtain

”kn _xn” = ”kn _Zn” + ”Zn _xn”

—0 asun— o0, (4.21)
which, together with (4.12) and (4.21), implies that

19521 — Zull < %1 — Kl + 1k — % |

—0 asun— oo. (4.22)
On the other hand, we observe that

||Zn+1 - Zn” =< ||Zn+1 _xn+1|| + ||xn+1 _xn” + ”xn _ZVI”'
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By (4.20) and (4.22), we have
lim ||z,41 — 24 = 0. (4.23)
n—00
We note that
20 = Szull < 2n = Zusr | + |Zn1 = S 2w | + | 8" 201 — "2,
+ ||S”+lz,, -8z, ||
From (4.13), (4.23), Lemma 2.4, and the uniform continuity of S, we obtain
lim |z, — Sz,|| = 0. (4.24)
n— 00
In addition, note that
”Zn - Wzn” = ”Zn - kn” + ”kn - ann” + ” ann - WZ,,”
So, from (4.11), (4.14), and Remark 2.3 it follows that
lim ||z, — Wz,| = 0. (4.25)
Hn—>0Q

Since {«,} is bounded, there exists a subsequence {x,,} of {x, } which converges weakly to w.
From (4.20) and (4.21), we have z,, — w and k,, — w. From (4.24) and the uniform con-
tinuity of S, we have lim,,_, o ||z, — $”z,|| = 0 for any m > 1. So, from Lemma 2.6, we have
w € Fix(S). In the meantime, by (4.25) and Lemma 2.13, we get w € Fix(W) = ﬂi‘il Fix(T,)
(due to Lemma 2.12). Utilizing similar arguments to those in the proof of Theorem 3.1, we
can derive w € GMEP(®,¢,A) N (ﬂﬁl I(B;, R;)). Consequently, w € §2. This shows that
wy(x,) C £2.

Next let us show that w,(x,) is a single-point set. As a matter of fact, let {%;} be another
subsequence of {x,} such that Ky — w'. Then we get w € 2. If w # w/, from the Opial
condition, we have

lim ||x, —w|| = lim |x,, — w||
n—0o0 11— 00
< lim |, = w/|
11— 00
= lim ||x,, —-w ||
n— 00
- tim [, |
< lim ||x,,}. —w|l
J—> 00
= lim |x, —w|.
n—0o0

This attains a contradiction. So we have w = w. Put v, = Pox,,. Since w € §2, we have

(% — Vi, vy — w) > 0. By Lemma 2.9, we see that {v,} converges strongly to some wg € §2.
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Since {x,} converges weakly to w, we have
(w—wo,wo —w) > 0.
Therefore we obtain w = wy = lim,,_, o, Pox,,. This completes the proof. O

Corollary 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let ®
be a bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C — R be a lower semicon-
tinuous and convex functional. Let R; : C — 2! be a maximal monotone mapping and
let A: H— H and B; : C — H be ¢-inverse-strongly monotone and n;-inverse-strongly
monotone, respectively, for i =1,2. Let S: C — C be a uniformly continuous asymptoti-
cally «-strict pseudocontractive mapping in the intermediate sense for some 0 < k <1 with
sequences {y,} C [0,00) and {c,} C [0,00). Let {T,}2, be a sequence of nonexpansive self-
mappings on C and {),} be a sequence in (0,b] for some b € (0,1). Let V be a y-strongly
positive bounded linear operator and f : H — H be an I-Lipschitzian mapping with yl <
(1 + p)y. Assume that §2 = (-, Fix(T,,)) N GMEP(®, ¢, A) N 1(By, Ry) N 1(By, Ry) NFix(S)
is nonempty. Let W,, be the W -mapping defined by (1.4) and {o,,}, {Bn}, and {5,} be three
sequences in (0,1) such that 0 <k + & <6, <d < 1. Assume that:

(i) K:H — Ris strongly convex with constant o > 0 and its derivative K' is
Lipschitz-continuous with constant v > 0 such that the function x +— (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C and z, € C such that for any
y €Dy,
1
O,z:) +9(z:) — () + ;(K’(y) - K'(x),2: —y) < 0;

(i) Y _o2i(@n + Vu + €u) <00 and 0 < liminf,_, o B, < limsup,_, . B, <1;

(iv) {Ain} Claibi] € (0,2n;) fori=1,2, and {r,} C [0,2¢] satisfies

0 <liminfr, <limsupr, < 2¢.

n—00 H—> 00

Pick any x, € H and let {x,} be a sequence generated by the following algorithm:

wy = ST - 1,A)x,,

Zn = JRypa I = A Bo) Ry, (I = A B1) i,

ky = 08,2, + (1 =8,)S"z,,

X1 = (U + Y[ (%)) + Bukin + (L= B — (I + nV)Wyzy, Vn=1.

(4.26)

Then {x,} converges weakly to w = lim,_, o, Pox, provided S99 s firmly nonexpansive.

Corollary 4.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let ©® be
a bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C — R be a lower semicontinuous
and convex functional. Let R : C — 2 be a maximal monotone mappingandletA: H — H
and B: C — H be {-inverse-strongly monotone and &-inverse-strongly monotone, respec-
tively. Let S : C — C be a uniformly continuous asymptotically «-strict pseudocontractive
mapping in the intermediate sense for some 0 < k <1 with sequences {y,} C [0,00) and
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{cn} C [0,00). Let {T,,}32, be a sequence of nonexpansive self-mappings on C and {X,}
be a sequence in (0, D] for some b € (0,1). Let V be a y-strongly positive bounded linear
operator and f : H — H be an I-Lipschitzian mapping with yl < (1 + )y . Assume that
2 := (N, Fix(T,)) N GMEP(O, ¢, A) N 1(B, R) N Fix(S) is nonempty. Let W, be the W -
mapping defined by (1.4) and {a,}, {B,}, and {8,} be three sequences in (0,1) such that
O0<k+¢&<$6,<d<]l. Assume that:

(i) K:H — R s strongly convex with constant o > 0 and its derivative K’ is
Lipschitz-continuous with constant v > 0 such that the function x — (y — x, K’ (x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C and z, € C such that for any
y & Dy,

00,2 + 9z~ 00) +  (K'0)~K ()2 ~7) < 0,

(i) Y07 (@ + Yu + €u) < 00 and 0 < liminf,— oo B < limsup,_, o By <1;
(iv) {pu} C la,b] C(0,2¢), and {r,} C [0,2¢] satisfies

0 <liminfr, <limsupr, < 2¢.
n—>00 n— 00

Pick any x; € H and let {x,} be a sequence generated by the following algorithm:

Uy = S5O = 1, A),,
kn = 8JR o, (I = puB)tty + (1 = 8,)S"J o, I = puB)thy,
Xni1 = (U + yf (%) + Buky + (1= Bu)l

-yl + uV)I)Wirp, (I = puB)uy, Yn>1.

(4.27)

Sg-@’(p)

Then {x,} converges weakly to w = lim,_, o Pox, provided is firmly nonexpansive.
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