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1 Introduction
For a positive integer n, N denotes the set {1,2,...,n}. The set of all # x n complex matrices
is denoted by C"*” and R"*” denotes the set of all # x #n real matrices throughout.

Let A = (a;) and B = (b;) be two real # x n matrices. Then A > B (> B) if a;; > b;; (> by) for
alll <i<n,1<j<nIfOisthenullmatrixand A > O (> O), we say that A is a nonnegative
(positive) matrix. The spectral radius of A is denoted by p(A). If A is a nonnegative matrix,
the Perron-Frobenius theorem (see [1]) guarantees that p(A) € o (A), where o (A) is the set
of all eigenvalues of A.

For n > 2, an n x n matrix A € C is reducible if there exists an # x n permutation matrix
P such that

PTAP= B C,
0 D

where B and D are square matrices of order at least one. If no such permutation matrix
exists, then A is irreducible. If A isa 1 x 1 complex matrix, then A is irreducible if its single
entry is nonzero and reducible otherwise.

Let A be an irreducible nonnegative matrix. It is well known that there exists a positive
vector u such that Au = p(A)u, u being called the right Perron eigenvector of A.
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Denote by Z, the set of n x n real matrices all of whose off-diagonal entries are nonpos-
itive. A matrix A is called a nonsingular M-matrix (see [1]) if A € Z, and the inverse of A,
denoted by A}, is nonnegative. A is called an inverse M-matrix (see [1]) if A is nonsingu-
lar and A~! is a nonsingular M-matrix. If A is a nonsingular M-matrix, then there exists a
positive eigenvalue of A equal to 7(4) = [p(A™1)]™}, where p(A™!) is the spectral radius of
the nonnegative matrix A~%. 7(A) = min{|A| : > € o(A)} is called the minimum eigenvalue
of A (see [2]). The Perron-Frobenius theorem tells us that 7(A) is an eigenvalue of A corre-
sponding to a nonnegative eigenvector x = (x1,%3,...,%,)’. If, in addition, A is irreducible,
then t(A) is simple and x > 0. If D is the diagonal matrix of A and C = D — A, then the
spectral radius of the Jacobi iterative matrix /4 = D™1C of A is denoted by p(J4) (see [3]).

For two matrices A = (a;;) and B = (b;;) € C"*”, the Hadamard product of A and B is the
matrices A o B = (a;b;) € C"™". If A > O and B is a nonsingular M-matrix, then it is clear
that A o B! > O (see [1]).

Let £ (A) represent the set of all simple circuits in the digraph I'(4) of A. Recall that a
circuit of length k in I'(A) is an ordered sequence y = (i1, iy,..., k1), where iy, iy, ..., ix € N
are all distinct, i) = ix,1. The set {iy, iy, ..., ik} is called the support of y and is denoted by y.
The length of the circuit is denoted by |y | (see [4]).

For convenience, we employ the following notations throughout. Let A = (a;) € C"™*",

we denote, for any i,j € N,

R(A)=Ri= ) lajl, C(A)=Ci=) lail, R(A)=R,=) aj
j=1

joiji joiji
R; C;
0i(A)=0; = |ﬂ—‘l" 8i(A)=6; = |a—l|
un 2]

Recall that A = (a;;) € C"™" is called diagonally dominant by rows (by columns) if o; <1
(8; <1, respectively) for all i € N. If 0; <1 (§; < 1) for all i € N, we say that A is a strictly

diagonally dominant by rows (by columns, respectively) (see[1]).

2 Preliminaries
Lemma 2.1 [1] Let A = (a;) € R™" be an inverse M-matrix, then A > O.

Lemma 2.2 [5] Let A = (a;) € C™", then

(i) IfA is a strictly diagonally dominant matrix by rows, then A™ = (vyj)xn exists, and
[viil <ojlvil forallieN.

(i) IfA is a strictly diagonally dominant matrix by columns, then A™" = (Vij)nxcn exists,
and

[vijl <8lvil forallieN.
Lemma 2.3 [6] Let A = (a;) € R"™" be an inverse M-matrix, let A s e then

Vii > r(A‘l) >0 forallieN.
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Lemma 2.4 (7] Let A = (a;),xn be a nonnegative matrix, then

D=

1
o(A) < = rrl;gx{aii +a;+ [(aii + a,,) +4R;R; ]

}

Lemma 2.5 [4] Let A = (a;)nxn be a nonnegative matrix, and let {(A) # ¢. Then for any
diagonal matrix D € R™" with positive diagonal entries, we have

1 1

vl Il
min R/ 1AD < p(A) < max R’ 1AD :| .
el A>[H ] Py [H

y€¢(4)

Lemma 2.6 [1] Let A € Z,, A be a nonsingular M-matrix if and only if all its leading

principal minors are positive.

Lemma 2.7 (8] Let A = (a;) € C™" and x1,%,,...,%, be positive real numbers. Then all

the eigenvalues of A lie in the region

n
||
U zeC:lz—ay| <x; Z

i=1 j=1,j#i %

Lemma 2.8 [9] Let A = (a;) € R"™*" be a nonsingular M-matrix, then 0 < t(A) < a;; for
allieN.

3 Some upper bounds for the spectral radius of the Hadamard product of

nonnegative matrices
In this section, we give some new upper bounds for p(A o B), where A and B are nonneg-
ative matrices.

In 2005, Cheng et al. [6] obtained the following result:

Let A = (a;;) € R™” be a nonnegative matrix, and let B be an inverse M-matrix, B1l=
(Wij)nxn> then

(1) If A is nilpotent, i.e., p(A) =0, then p(A o B) = 0.

(2) If A is not nilpotent, then

(A) aiji bzz
p(AoB) < (B) 1<fl<7; [(p(A) i0(B) — 1) Wu':| < p(A)lrglaS);bi,-. 1)

Next, we present a new upper bound on p(A o B), which improves the result in [6].

Theorem 3 1 Let A = (a;) € R™” be a nonnegative matrix, and let B be an inverse M-

matrix, B~ = (Wy)nxn. Then

1
p(A oB) < H}gx E {(liibii + ajjbj/ + [(diibii - ajjbjj)z

bibjj

1 1772
4y PO~ aillo(4) - 4] [W - @] [W,, - mﬂ }
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Proof Case 1: If A o B is irreducible, then A and B are irreducible, since B is an inverse
M-matrix, by Lemma 2.1 we know B > O, then by the Perron-Frobenius theorem, there
exist two positive vectors u = (uy, uy,...,u,)! and v = (v, vy,...,v,)T such that

Au = p(A)u, Bv=p(B")y,

a; + 2t _ o(4), By
>

L (B =B Y.
=L )

T p((BHT)

Since t(B™') = [p(B)]™! > 0, from the above formula we have (B™')”v is a positive vector,

then C = VB™ = (w;v;) is a strictly diagonally dominant matrix by columns, where V' =

. . _ _ bj . ..
diag(vi,va,...,v,). Notice that C1 = BV~ = (V—’/_’),,X,,, then by Lemma 2.2(ii), for i #j, we
have

n . _\ . -1
@ - Zk=1,k7{j [wii|vi ﬁ _ Zk:l,k—,»’j WiVk ﬁ _ (W/j - 17(B ))V/ ﬁ
vj WiV Vi WjVj Vi WjiVj Vi
Thus
-1
b < (wj =B )b by
j < = —g&jlij;
W]']'Vl' Vi
(w-t(B )y . . i
where g; = BT Let G = diag(g1,82,-.-,g4), by Lemma 2.3 we have G is a positive
diagonal matrix and
ganby . gabi
a“bh“ o o
a a:
B & ; 2L gyobyy - 2 Z 20
G(AoB)G " = ; ) ’
Enambm Enanm2 by annbnn

81 &2

Hence, p(A o B) = p(G(A o B)G™!), then by Lemma 2.4 we have

1  giaibic N~ G4k g
p(A o B) < max 5 {ﬂiibii +a;bj + |:(6liibii —aby)’+4 Yy S Y T i| }
7 ks 8k iy 8k

and

n

Xn: giaixbix Z giajxbjk

ki Sk iliry 8K

bi bj <
= (&‘7 Z dik”k) (g;f Z ﬂjkuk)

Y ok=lk#i T k=1,k#j

bii b
=8~ (p(A) - ﬂz‘i)uig/f (p(A) - a;)u;
]

i
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_ i — T(B)V; b (W —TB )y, by

Wit ” (,O(A) - aﬁ)ulT " (,o(A) - a,;)u,»
byibj;
= ——"(p(A) ~ ai)) (p(A) — a;) (wis = (B™)) (w; — 7 (B™))
WiiWijj
_ biby Ca N L Y SR
Wi (o@) - o) -a) <W” p(B)> <W” p(B))'

Thus, from the above two inequalities, we have

1
p(A o B) < I'Ilng 5 {ﬂiibii + djjbjj + |:(6ll‘ibii - a]'/bjj)z

biib; 1 1772
*4m["<‘*"“ﬁ”"“‘)‘”’f’f][wﬁ‘m][wﬁ‘mﬂ }
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Case 2: If A o B is reducible, then more than one of A and B is reducible. By Lemma 2.6

we know that all leading principal minors of B are positive. If we denote by P = (p;) the

n x n permutation matrix with pip = pas = -+ = p,_1,, = ps1 = 1, the remaining p;; being

zero, then, for any chosen positive real number ¢, sufficiently small such that all the leading

principal minors of (B~! — eP)™! are positive, then A + eP and (B™ — eP)™! are irreducible

nonnegative matrix and irreducible inverse M-matrix, respectively. Now we substitute

A + &P and (B! — ¢P)™! for A and B, respectively, in the previous case, and then letting

& — 0, the result follows by continuity.

O

Remark 3.1 The upper bound in Theorem 3.1is an improvement on Theorem 2 in [6]. We

next give a simple comparison between the upper bound in Theorem 3.1 and the bound

derived in (1). Without loss of generality, for i #j, assume that

123

bi 1 b; 1
aiibii + W—[,O(A) — ai |:Wii - m] > ajibj + %[P(A) - aj] |:W1‘/' - —]

i p(B)

Thus, we can write the above equivalently as

bii _ bj; _
aiibii = by + —=[p(A) = ai][wi — 7 (B7)] = —E[p(A) - aj][w; — 7 (B7) ]

ii Wi

Thus, we have

b;;bj 1 1
(aiibii - ll;ybjy)z + 4wl-,-mj; [P(A) - ﬂii] [P(A) - “1‘/’] |:Wii - @} |:W/’j - E}

b;; _
< (aibii — ajby)* + 4; [,O(A) - ﬂii] [Wii -7(B 1)] (aiibi; — a;bj)

+ 4[ﬁ[p(z4) — aii][wii - T(B_l)]]z

Wll

bi ’
= <ﬂiibii - éljjbjj + 2; [,O(A) — ﬂ[i] [W[i -7 (B_l)]> .

123
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Then we have

1
,O(A o B) < Il’llgx 5 {aiibii + ajjbjj + |:(6liil’)ii - ajjbjj)z

biby 1 L)
+ 4%[0(1‘1) —a;i][p(A) - a;] |:Wii - @] [Wii - @H }

1
< m;lx 5 tliibl'l' + tljl'bj/' + ﬂl’jbii - ﬂl‘jbﬁ
7

bi; _
+ ZE[P(A) —a|[wi — (B 1)]}

1 by _
max > {Zﬂiihii +2- [0(A) - a;][wi — (B 1)]}

123

u

_ aij Wii by;
@) pas] (1 + s 1) ot

_p(A4) ajj ) )\ bi
~ p(B) lr21?15%4[(9(1“) +wip(B) 1) Wu}

This shows that Theorem 3.1 in this paper is an improvement on Theorem 2 in [6].

max {ﬂiibii + % [p(A) - ai][wi - T(B™)] }

1<i<n

Example 3.1 Let

111 12 04 04
A=1|1 2 1], B=104 12 04],
1 1 3 04 04 12

where A is a nonnegative matrix and B is an inverse M-matrix. By Theorem 2 in [6], we
have

p(A o B) <4.3285.
By Theorem 3.1 in this paper, we get
p(A o B) <4.1524.

The example shows that the bound in Theorem 3.1 is better than the existing bound in
Theorem 2 in [6]. In fact, p(A o B) = 3.8178.

Theorem 3.2 Let A = (a;) € R and B = (b;) € R"™" be nonnegative matrices, then

1
p(AoB) < max o {aibi + ayby + [(aibi — a;by)*

(ST

+ 4oy ify ((A) - ai) (p(A) - a) ((B) - bi) (0(B) - by)]*]

b

where a; = maxyi{|ail|}, Bi = maxis{|bil} (i € N).
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Proof 1t is easy to see that conclusion in Theorem 3.2 holds with equality for n = 1. Next,
we assume that # > 2. Two cases will be discussed in the following.

Case 1: If A o Bis irreducible, then A and B are irreducible. Since A > O and B > O, then
there exist two positive vectors ¢ = (£,£2,...,t2)T and f = (f2,f2,....f*)T such that

At = p(A)t, Bf = p(B)f.
Hence, we have
¢ 2 _ 2 ¢ 2 _ 2
Z a;t; = [P(A) _ﬂii]tl' ) Z sz}; = [,o(B) —biilﬂ .
J=Lj#i j=1j#i

Let or; = maxg{|ai|} and B; = maxs.;{|bi|} for all i € N. Define a positive diagonal matrix
W =diag(tif, tofa, - - - » Lyfn), then

anbptrfs Anbintnfn

anbn ~h T T an
1 ih

anbynfi Arybyy - a2nb2ntnfn
tf 0f2

Wl AoB)W =

ambmtfi  ambmtrh o g
tufu tnfu mn=nn

Since p(A o B) = p(W(A 0o B)W), let C = W1(A o B)W, then C is a nonnegative matrix,
by Lemma 2.4 we have

1
p(A o B) <max - {ﬂiibii + ajibj
i 2

1
"\ axbut - ikbjkt ’
i ]

k=Lk+i k=1k+

and

2”: abitifi Z ajcjtifi

k=Lk#i tfi k=1,k%j 4y

(54 (5

k=Lk# i k=1,ki

% n ﬂ2t2 % n bZ]J‘Z %
(54)(£%)
]

k=1k#j ] k=1,k+j

1

n ﬂl‘kt]% n hlkf}(z n d‘kt/% n bkf}(z 2
<o ( 3 ) (30 (3 o) (30
k=Lk#i i k=Lk+# Ji k=Lkzj k=Lk#j 7

= [(ic;BiB) (p(A) — ait) (0(B) — bii) (p(A) — a7) (0(B) — by) ] 2,

Thus, from the above two inequalities, we have

1
p(AoB) < max 5 {aibii + agby + [(aibi — azby)®

[T

+ afaiyif (p(A) - ai) (p(A) - a) ((B) - ba) ((B) - by)]?]

).
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Case 2: If A o B is reducible, then more than one of A and B is reducible. If we denote by
P = (p;) the n x n permutation matrix with p1p = pa3 = - - = py_1,» = pu,1 = 1, the remaining
pij being zero, then, for any chosen positive real number &, sufficiently small such that
A + ¢P and B + ¢P are irreducible nonnegative matrices. Now we substitute A + ¢P and
B + ¢P for A and B, respectively, in the previous case, and then letting ¢ — 0, the result

follows by continuity. O

Example 3.2 [10] Let

4 1 0 2 1111
1 005 1 1 1111
A= . B=
0 1 4 05 1111
1 05 0 4 1111

It is easy to verify that A and B are nonnegative matrices. By Theorem 4 in [11], we have

p(A o B) <17.1017.

By Theorem 4 in [10], we have

p(A o B) < 11.6478.

By Theorem 3.2 in this paper, we get

p(A o B) < 6.7123.

The example shows that the bound in Theorem 3.2 is better than the existing bounds in
Theorem 4 in [11] and Theorem 4 in [10] in some cases. In fact, p(A o B) = 5.7339.

In 2013, Guo et al. [9] obtained the following result:
Let A = (a;) € R™", B = (b;) € R”*” be nonnegative matrices, then

n
b
(A o B) < max :ﬂl‘ibii +S; Z il }, ()

I<izn . m;

j=Ljgi
where

|

Tl

= (I#10), ri=max{r;} (i€N),
laul = 3 et i 1| B
r,» if }”/ 7/0,

L= . 0 . = .= . ','GN'
Sji |6ljt|m1 m; {1 if}"/ -0, Sj H}SX{S"} (l] )

But the result in the above formula does not apply for all spectral radius of the Hadamard

product of nonnegative matrices. There is a counterexample as follows.
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Example 3.3 Let

6 4 4 1 11
A=14 2 4], B=]1 11
4 4 2 1 11

It is easy to verify that A and B are nonnegative matrices. By Theorem 2.1 in [9], we have

n
by
p(AoB) < F;@gﬁlidiibﬁ +8; Z —} =2.

1

Butin fact, p(A o B) = 11.6569. So inequality in (2) does not hold in this example. Thus the
upper bound in (2) does not apply for all spectral radius of the Hadamard product of non-
negative matrices. Since the proof in Theorem 2.1 in [9], i.e., mainly applied Lemma 2.7,
and r; < 0 (I # i) when |ay| — Z,’;Lk#i |ai| < 0, which does not confirm that conditions
X1,%2,...,%, are positive in Lemma 2.7.

Next, we present a new upper bound on p(A o B), which improves the result in (2).

Theorem 3.3 Let A = (a;) € R"*" and B = (by) € R**" be nonnegative matrices, related
expressions the same as to (2), if r; > 0 for all i € N, then

1

n b 12

AoB) < iibii + 8 - .
R |

iy R
Proof Case 1: If A o B is irreducible, then A and B are irreducible, since p(A o B) = p((A o
B)T). Let S = diag(s1,82,...,84), then S is a positive diagonal matrix, then

R;(S_I(A © B)TS) = aiibii +S; Z aLbﬂ

jogi Y
n
< aibi; +s;
J=Lj#i
n
= a;ibii +s; Z @

j1ji "

ﬂj,’bﬁ

|aji|m;

By Lemma 2.5, we have

1
7]

n bl

= e

Case 2: If A o B is reducible, then more than one of A and B is reducible. If we denote by
P = (p;) the n x n permutation matrix with p1p = pa3 = - -+ = py_1,, = pu1 = 1, the remaining
pi; being zero, then, for any chosen positive real number ¢, sufficiently small such that
A + ¢P and B + ¢P are irreducible nonnegative matrices. Now we substitute A + ¢P and

Page 9 of 14
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B + ¢P for A and B, respectively, in the previous case, and then letting ¢ — 0, the result
follows by continuity. O

Remark 3.2 The upper bound in Theorem 3.3 is an improvement on Theorem 2.1 in
[9]. We next give a simple comparison between the upper bound in Theorem 3.3 and the
bound in (2). In fact, it is easy to see

1

n b Iyl
AoB) < max a;bi; + s; L
plAdoB) = ye{(AoB)|:1_[< Z >:|

m
iey jeL#

L

n b v
1
< max max | a;b; +s; E -
y€¢(AoB) | ~ > 1<isn = m;
icy j=Lj#i
n b
= max (a,-ib,»,» +8; E l)
1<i<nm m;
jelj=i
This shows that Theorem 3.3 is an improvement on Theorem 2.1 in [9].

Example 3.4 [9] Let

= O N B
= s N O
U w O O

1
3
1
0

N e
S O = =

1
1
4
1

= N Ol =

It is easy to verify that A and B are nonnegative matrices and r; > 0 for all i € N. By Theo-

rem 4 in [9], we have
0(A o B) <25.5364.
By Theorem 4 in [10], we have
p(A o B) < 25.3644.
By Theorem 2.1 in [9], we have
o(A o B) < 24.
By Theorem 2.2 in [9], we have
p(A o B) < 22.1633.
By Theorem 3.3 in this paper, we get
p(A o B) < 21.9773.
The example shows that the bound in Theorem 3.3 is better than the existing bounds in

Theorem 4 in [11], Theorem 4 in [10] and Theorems 2.1, 2.2 in [9]. In fact, p(A o B) <
20.7439.
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4 Upper and lower bounds for the spectral radius of J,
In 2008, Huang [2] obtained the following result:
Let A = (a;) € R™" be a nonsingular M-matrix, then

min <1— T(A)> < p(J4) < max (1— T(A)). (3)

1<i<n ii 1<i<n aii

In 2010, Liu et al. [3] improved the bounds in (3) and obtained the following result:
Let A = (a;) € R”" be an irreducible nonsingular M-matrix, then

min\/(l—r(A))<l—ﬂ>S,O(fA)fmax\/<l—ﬂ><l—ﬂ). (4)
i a; a; i Qi @jj

Next, we present some new upper and lower bounds for p(J4), the bounds improved the
results in (3) and (4).

Theorem 4.1 Let A = (a;) € R"™" be a nonsingular M-matrix, then

, (A)\ " 2(A)\
Vgg}x)[ll;I(l_ aij )] Sp(]A)EVIg(IJ);)I:E(l_ aj; ):| ’

Proof Case 1: If A is an irreducible nonsingular M-matrix, then A~! > 0, then there exists

a positive vector u = (uy, uy, ..., u,)T such that Au = t(A)u. Thus, for all i € N, we have

Do il

T(A) = /il
Ui
ie.,
S lalu
ay—t(A)= AT
Ui
Let U = diag(uy, uy, ..., u,), then U is a positive diagonal matrix, then
Do il (A
R ) = 2Ry T

aiil; Aij
By Lemma 2.5, we have
€L €L

min)[ll;I(l— TS )]y < p(a) < max [H(l— T:;j))}y.

ii yesa) iey

Case 2: If A is reducible, by Lemma 2.6 we know that all leading principal minors of A
are positive. If we denote by P = (p;;) the #n x n permutation matrix with piy = py3 = --- =
Pn-1,n = P = 1, the remaining p;; being zero, then, for any chosen positive real number ¢,
sufficiently small such that all the leading principal minors of A — ¢P are positive, A — &P
is an irreducible nonsingular M-matrix. Now we substitute A — ¢P for A in the previous
case, and then letting ¢ — 0, the result follows by continuity. d
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Remark 4.1 The bounds in Theorem 4.1 are sharper than those in Theorem 1 in [2]. In
fact, by Lemma 2.8, we have 1 — 4 > 0 forall i € N, then

ajj

and

1

p(Ja) = min)[ll:)!(l - T;f))] v

resUa
(4)\]™ (4)
T v T
> min |:1_[ min <1— )i| = min (1— )
r€¢Ua) i 1<i<n a;; 1<i<n a;;

This shows that Theorem 4.1 is an improvement on Theorem 1 in [2]. The bounds in
Theorem 4.1 are sharper than the bounds derived in Theorem 1 in [3]. Without loss of
generality, assume that two circuits y' : gy — hy — -+ - by —> Iy (k>2)and &' : z; —

Zp—> > (t32)1n]A such that
1 1

6] = e [116-=2))

i=h iey

and

VN L T(4)\ 1%
|:l_[<1_ ai; ):| :}’21&14)[1_)!(1_ aij >:| '

i=z1

respectively. Since
hig 27k
-2 [ 206 22) - (-2
: aji Ay Ahyhy Any_1hy_q
() -]
Ay by, Ay Ahyhy
ky 1
A=) )
i7 Aij ajj
= max(l - T(A)> (1 - ﬂ),
i ai; 611'1'

then

max [H(l - r(A))]V = max\/(l - I(A)) (1 - ﬂ)
yeeUa) - ajj i# i ajj
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Similarly, we can prove that

min [H(l - r(A))]y > min (1 - T(A)> (1 - w)
vet(a) i i# aij ajj

iey

This shows that Theorem 4.1 is an improvement on Theorem 1 in [3].

Example 4.1 Let

2 -1 -1
A=]|-2 3 0
-1 0 4

It is easy to verify that A is a nonsingular M-matrix. By Theorem 1 in [2], we have
0.6072 < p(J4) < 0.8036.

By Theorem 1 in [3], we have
0.6694 < p(J4) < 0.7701.

By Theorem 4.1 in this paper, we get
0.6694 < p(J4) < 0.6985.

The example shows that the bounds in Theorem 4.1 are better than the existing bounds
in Theorem 1 in [2] and Theorem 1 in [3]. In fact, p(J4) = 0.6770.
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