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COMPUTING exp(—7A)b WITH LAGUERRE POLYNOMIALS *

BERNARD N. SHEEHAN, YOUSEF SAAD, AND ROGER B. SIDJE

Abstract. This paper discusses a method based on Laguerre polynomialsred with a Filtered Conjugate
Residual (FCR) framework to compute the product of the expialesf a matrix by a vector. The method implicitly
uses an expansion of the exponential function in a seriestbbgonal Laguerre polynomials, much like existing
methods based on Chebyshev polynomials do. Owing to the facbtthogonal polynomials satisfy a three-term
recurrence, what these series expansion methods offer tharapproaches such as Krylov subspace methods lies
in the elimination of inner products and the economy in storsigee there is no need to compute and keep a set
of basis vectors. Compared with Chebyshev polynomials tleabethogonal within a restricted interval and need
estimates of the outermost eigenvalues, Laguerre polynooffelsthe added feature that they are orthogonal on the
half real line, alleviating therefore the need to estimagervalues.
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1. Introduction. The problem of calculating expressions of the fesmp(—7A)b, where
A € R™ "™ s anon-negative definite matrix ahd= R™ an arbitrary vector, occurs frequently
in applications. The problem is equivalent, for examplehtt of finding the solution to the
system of ordinary differential equations

(1.1) y=—Ay, y(0)=b

at timer. Equation {.1), in turn, arises out of finite difference or finite elemergatetiza-
tions of thermal problems4 symmetric) or convection-diffusion and vibration probke (@
non-symmetric). Similarly, vergtiff systems of the forml(1) arise in predicting the time
evolution of electrical circuits. Another occurrence @f1j is in computing the transient
solution of Markov chainsZ2)].

The calculation of a matrix exponential times a vector caa treacherous task; sek7]
for a survey of potential difficulties. Many methods haverbpeoposed4, 6, 9, 10, 14, 16).
For very large, sparse matrices, perhaps the preferredooh§th8, 11-13, 18, 21] is to use
the Lanczos or Arnold procedure to obtain a maWix € R"*™ whose columns span the
Krylov subspacepan{b, Ab,--- , A™~1b}, and then to write

(1.2) exp(—7A)b ~ V,, exp(—7H,,)fei,

where H,, is the tridiagonal or Hessenberg matrix resulting from tleadzos or Arnoldi
process andd = ||b||2. Since H,, will normally be much smaller thaml, dense matrix
methods such as Pa@pproximations texp(¢) can be used to evaluatep(—7H,,).
Bergamaschi et al. have reported experiments that use sixpanof the exponential
function in Chebyshev polynomial&,[3]. The paper convincingly argued that Chebyshev-
based methods can give the same accuracy as Krylov teclsnigireg the same polynomial
degree, but that they can be much less expensive as theyaequinner products. The fact
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that this technique appears to be competitive witl?)(prompted us to ask whether other
choices of orthogonal polynomials might be used to good:effe

This work was initially motivated by an intriguing questiofhe use of Chebyshev poly-
nomials requires some prior knowledge of an intefwab] which contains the spectrum of the
matrix [2, 3]. In contrast, polynomials that are orthogonal on the hedf line (e.g., Laguerre)
or the whole line (Hermite) would normally require no boundi&is is an important practi-
cal advantage. For example, one can ask the quedahpossible to employ a Laguerre
series expansion to obtain an inexpensive exponentiabgajor which bypasses completely
both inner products and eigenvalue estimated® will show that if used with care, La-
guerre expansions combined with a good implementationeobtthogonal expansion can be
quite effective. On the other hand, they are as inexpensivaethods based on Chebyshev
expansions and do not require accurate eigenvalue estmBgcall that Chebyshev-based
techniques require the knowledge of an interval which iggni@ed to contain all eigenval-
ues. If the interval fails to contain all eigenvalues thénteéque will not work. A common
remedy is to take a large interval containing all eigenvgligeich as one provided by the
Gershgorin theorem, but often this yields poor convergence

The techniques we examine in this paper are based on thesiaparfc~"! as a series
of Laguerre polynomials. The filtered conjugate residilad-hlgorithm (FCR) introduced
in [20] provides a framework for exploiting least-squares polyials to solve problems as
diverse as regularization in graphics, information rettieand in electronic structure calcula-
tions. Here, we will use this framework again and show tha@R-type algorithm can also
be usefully applied to exponential propagation. At the sime, we also consider the same
framework applied to expansions in Chebyshev polynoma@li$hfe purpose of comparison.

2. Computing exp(—7A)b with orthogonal polynomials. It is possible to approxi-
mateexp(—7A)b by using either rational or polynomial approximationste(—7t). Meth-
ods based or rational approximations require solving lapgese linear systems of equations
and are not considered here. We consider methods based mxiapgtingexp(—7t) by a
polynomialp(t). Thus, a polynomiap,,, of degreen is found which approximatesp(—7t),
andexp(—7A)b is approximated by,, (A)b. Note that the matriy,,(A) is not computed.
Insteadp,,(A)b is evaluated by a series of matrix-vector multiplies usig

2.1. Orthogonal expansions forexp(—7t). As background to this strategy, we briefly
consider in this section how to expaach(—7t) in series of generalized Laguerre polynomi-
als and Chebyshev polynomials.

The generalized Laguerre Polynomi@l&(¢), » = 0,1,2,... anda > —1, are orthog-
onal with respect to the inner product

(2.1) .dla = | e tp(g(t) dt.

The expansion of the exponential functien™ in terms of Laguerre polynomials is known
to be [L5, p. 90]

2.2 -t _ 1)-o-1 ) e .
(2.2) e (tr+1) ;<T+1) ~(t), 0<t<oo

By truncating the above summation to only terms, a polynomial of degree will be
obtained that will approximate~"* over some interval. It is also possible to use expansions
in Hermite polynomials, which are orthogonal on the wholel e with respect to the
weighte—tg, but we will not consider this in this paper.
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The Chebyshev polynomialg, (¢t), n = 0,1,2,..., are orthogonal over the interval
[—1, 1] with respect to the inner product

p(t)g(t) dt
1 V1 —¢2
In this case, it is useful to give the expansion of the expbakihat is fitted in a general inter-

val [a, b], rather than just the intervat-1, 1]. The expansion of ™ in terms of Chebyshev
polynomials ovefa, b] is given by [L, Section 9.6]

(2.3) (p,q)r =

> t—1 ,
(2.4) e =Y aTy ( 2) ., a<t<b with
k=0 h
(2.5) ap = e~ "2 I(—7ly), ap =272 (=7ly), k> 1.

Here, I;(t) is the modified Bessel function of the first kind, ahd = (b — a)/2 and
lo = (a + b)/2 are the semi-width and the midpoint, respectively, of theriral over which
the approximation is desired. For further information othogonal polynomials, the reader
is referred to [, 15].

2.2. Classical use of expansions in orthogonal polynomial§&tandard orthogonal poly-
nomials satisfy recurrence relations of the form

(2.6) Brna1Pnr1(t) = (t — an)Py(t) — v Pr—1(t), n=10,1,...,

with the convention that fon = 0 the termmyp_; is zero. Thus, Chebyshev polynomials (of
the first kind) satisfy the well-known recurren€g_ (¢t) = 2tT,,(t) — T,,—1(¢) starting with
To(t) = 1 andTy(t) = t. Similarly, the three-term recurrence for the generalizaguerre
polynomials is

—(n+1)Ly (t)=(t—a—2n—-1)Ly(t)+ (n+a)ly_(t), n=12,...,
Lyt)y=1, L{{Ht)=1+a—t

These recurrences allow one to easily generate successivdens of these orthogonal
families. Assuming:~"* has the following expansion in terms of orthogonal polyralmi

P, (t) (see £.2), and @.4—(2.5),

(2.7) e =" enPult),

n=0

the following algorithm can be used to compute an approxondb exp(—7.A4)b:
ALGORITHM 2.1.exp(—7A)b by Orthogonal Expansions
1. po=P(Ab; p1=Pi(A)Db
2. z=copo+cip1
3. Forj=1,2,...,Do:
4. pj+1 = (Ap; — a;p; — Pj-1)/Bjn
5 z=z+ Ci+1Pj+1
6 if |cji1l[|pj41ll < €, break
7. EndDo
The algorithm use<2(6) in line 4 and 2.7) in lines 2 and 5. IfA is ann x n matrix with
Nz(A) non-zeros, then Algorithrd.1 entails a computational cost of abcut + 2N z(A)
operations per pass through the for-loop. Two vectors agdeuto storg; andp;_;. These
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are exchanged to the pai;, p; ;1 in the next step, which can be carried out in a constant
number of operations by redirecting pointers rather thagpyic data. Another vector is
needed to perform the matrix-vector produtp; and another one to store the solutien
This brings the total number of vectors to four.

2.3. Filtered conjugate residual-type algorithm. An alternative way of computing
exp(—7A)b using orthogonal polynomials is based on the Filtered GgatpiResidual (FCR)
algorithm presented ir2p]. The algorithm parallels the usual Conjugate Residuadraigm
[19] except that constants; and3; are computed using an inner prodyct),, in function
space rather than by the usual vector inner product.

In order to present the Conjugate Residual method£p(—7A)b in a way that is sim-
ilar to the Conjugate Residual method for linear systemis, riecessary to reformulate the
problem slightly. We would like to approximate a functigiit) by polynomials of the form
tsy(t) wheresy, is a polynomial of degreg. In the usual context of linear systemst) = 1
and s;(A)b is the approximate solution (assuming = 0), while b — As;(A)b is the
residual. For the exponential function we will proceed iedily by instead approximating
(t) = 1 — e~ by a polynomial of the forms, (k). Thus, the actual polynomial fer "¢ is
pr(t) = 1 — tsg(t), which is the usual residual polynomial in the context oéln systems.
One notable advantage of this approach compared to thagofiim2.1is that the approx-
imation will be exact at = 0. In other wordsp;,(0) = exp(—7 -0) = 1. This property may
or may not be important depending on the situation. For eX@amghen solving ordinary dif-
ferential equations, this property is vital as it ensured the underlying integration scheme
is at least first-order accurate.

Consider the (functional) inner product

b
(P, Q) = / p(H)a(t)w(t) dt,

wherew(t) > 0 is some weight function. This inner product induces a weigit,-norm
lolle = (p,p)'/%. The goal is to find the polynomial of the forta, () which is closest to
1(t) in the sense of thid, norm, i.e., such that

Il = ts()llw = min [l¢ — ts(t)]lw-

The algorithm described ir2[] exploits an analogy with what is known when solving
linear systems. The Conjugate Residual (CR) algorithmsitinmize ||b — As(A)b||2, is as
follows:

ALGORITHM 2.2. Conjugate Residual Algorithm

0. Computery := b (starts withxg = 0), pg := 19

2. Forj =0,1,..., untl convergence Do:
3. o = (rj, Ar;)/(Ap;, Ap;)

4 Tjp1 = X +a;p;

5. Tjiy1:=T5; — OéjApj

6. Bj = <7‘j+1,A7‘j+1>/<Tj,A’I°j>

% Pj+1 = Tj+1 + 5;p;

8. EndDo

This algorithm generates a set of vect¢tdp,} which are orthogonal. Sincg; be-
longs to the Krylov subspacé&’;, one can associate canonically with the sequenca
sequence of polynomials;, wherer; is of degreej. The relation betweep; andr; is
p; = mj(A)b. The sequence of polynomia{gr;(t)} is also orthogonal with respect to
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the discrete inner producp, q), = (m,(A)b, 7,(A)b), where we have denoted hy, the
polynomial associated with the vectpin K, .

If we replace the discrete inner prodyet,, ), with any inner productp, ¢).,, we will
obtain an algorithm which formally constructs a sequefige } of polynomials which are
orthogonal with respect to this inner product. The polyrairhi, (¢) which is the closest to
1) it the w-norm sense can then easily be determined:

wvtﬂ—z w

tﬂ'z; tﬂ'z w

k
min [|¢) — ts(t)[lw = [ — tsp(t)]lw  with si(t Z

s€EP

mi(t).

1=

The filtered Conjugate Residual algorithm proposed2iti computes the two sequence of
polynomials{r;}, {p,} associated with the usual CR algorithm. These would noyniel
the scalars and polynomials needed for the case whenl. They are indicated with a tilde
in the following algorithm. In addition, we will need to geaée the above quantities which
represent the expansions coefficients of the polynomidiérbasigtr; }. These are denoted
by «; in the algorithm.

Thus, the updates ts; use a different coefficient; than the coefficienéy; used to
updater;. Inputs to the algorithm are a filter functiain an inner productp, ¢).,, a matrix
A, and a vectob:

ALGORITHM 2.3. Filtered Conjugate Residual Polynomials Algorithm

0. Computa'}) Z:bfA.’Bo,po =17 ’/Toiﬁ():l;SO:O
1 Computeln,

2. Forj =0,1,..., until convergence Do:

3 G = (D ABj)w/ (ATj, AT )

4. o = (P, AT [ (AT, AT )

5. .’13]_;,_1 = CCJ —+ Otjp] 5j+1 = Sj —+ Oéjﬂ'j

6 T‘j+1 = 7'] OtjApJ ﬁjJrl = ﬁj — dj)\’/Tj
7. By = (i ADi1) w/ (B AP Jw

8 Pjt1 =T+ 0P M1 := Pjt1 + B,
9. Compute\r ;1

10. EndDo

Herer;(X), p;(A\), ands;1(A) are polynomials of degregand the vectorp;, 7;, x;
are the corresponding sequences of vectors
p; = m;(A)ro,
fj = p~j (A)’I‘o,
Tji1 = o+ sj+1(A)ro,
wherery = b — Axy.
The solution vectore;, computed at thegith step of Algorithm2.3 is of the form
Tj+1 = xo + sj+1(A)ro, wheres; is thejth degree polynomial:
(28) Sj+1(t) = Oéoﬂ'o(ﬁ) + -4 Oéj?'('j(t) .
The polynomialsr; and the auxiliary polynomialg; (¢) satisfy the orthogonality relationg(,

(2.9) (b3 (8), 6 (1)) = (75 (8), (D)) =0 fOr i £

In addition, the filtered residual polynomiel(t) — ts;(t) minimizes||¢» — ts(t)||., among
all polynomialss of degree< j — 1. Note also that ifp = 1 — ), then the polynomial
¢;(t) = 1—ts; minimizes||¢—(¢;||., among all polynomialg; (t) € P; satisfyingp;(0) = 1.
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It is worth remarking that ther; generated by Algorithn2.3 are the orthogonal poly-
nomials associated with the weigitw(t); this result follows from 2.9). When the FCR
algorithm with Laguerre polynomialsg (¢) is used, for example, then the are the gener-
alized Laguerre polynomials®*2(t). This observation will be exploited shortly.

Note that the FCR algorithm has a cost per iteration of thesor saxpy operations
and one matrix-vector multiply. All other operations arehmpolynomials and these are
usually negligible. They include two polynomial saxpyse(italculation ofs;,; on line 5
is not necessary but has been inserted for clarity), thregmpmial inner-products, and one
polynomial multiply byt. If we write ¢, 7;, andp; using as basis the orthogonal polynomials
associated withl{ , ),,, then we can evaluate a polynomial inner-product at a co2j;athe
t-polynomial multiply will also incur a cost ofj (by employing the three-term recurrence
relation for the orthogonal polynomials to express, ; in the orthogonal polynomial basis).
In short, the overall cost per loopés. + Nz(A) + 167, j being the loop index and/z(A)
the number of non-zeros iA. To add a termination test likéx,.1 — ;|| < ¢, analogous
to line 6 in Algorithm 2.1, would increase the iteration cost by another FCR requires
storage ofdn + 3; (the four vectorse;, 7;, Ap;, andp;, and coefficients for the three
polynomialsp;, 7;, tm;). Our bookkeeping suggests that Algoritt® may be marginally
faster but requires marginally more memory than Algorithriy provided; remains small
compared tou.

In order to use FCR to computgp(—7A)b, let ¢ = exp(—7t). Then, withzy = 0,
apply the FCR algorithm to gat; = {C;(l) oy, (A)b. Finally, computez; = b — Az; =
(I — As;(A))b = (;j(A)b as an approximation fop(A)b = exp(—7A)b. If one wants
the current estimate farxp(—7.A)b at each step in the iteration, one can replace line (5) in
Algorithm 2.3 by

Zjy1 = 25 — OtApj.
If A is symmetric with eigen-decompositioh= VAV T, then

exp(~TA)b — z;[l2 = [6(A)b — ¢;(A)b2
= [V($(A) ~ G(A)VTB],
< max[p(hs) — G| - [B]

The hope is that if ¢(t) — ¢;(¢)||., is small over some intervéd, b] containing the spectrum
of A, thenmax; |¢(t;) — ¢;(¢;)| will also be small, although it is hard to guarantee thissinc
|| |l is only a least squares norm.

The simplest criterion for stopping the algorithm is to measthe difference between
two consecutive iterates, so one can stop whenever; — x|z < ||zk||le, wheree is some
tolerance.

2.4. Use of modified orthogonal polynomials.As was already mentioned, an impor-
tant advantage of the procedure presented in the previatisrserelative to the straightfor-
ward procedure based on orthogonal expansions presengstiion2.2, is that it matches
exactly the exponential at= 0. The FCR procedure is rather general and has been used
for ¢ functions defined as very general spline functions. One ns&yndnether or not it is
possible to derive an algorithm that is equivalent to Altiori 2.3, but which resembles Al-
gorithm 2.1 This can be done for the exponential function by exploitimg remark made
earlier about the choice af.

In order to minimizel|) — tq(t)||o over all polynomials; of degreek, we need a se-
quence of polynomials of the specific fortp;(¢) which are orthogonal with respect to the
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inner product , ). At this point we recall an observation made earltae sequence of poly-
nomials{tL%*2(t)} is orthogonal with respect to the inner product ),. This is because

for i # j,
(LLOT2, 11072, = /0 1T LOF () LOF2 (1) di
_ / 12t [OF2(1) LOF2(1) it = ).
0

As aresult, the least-squares polynomial approximatian iogiven by

k
tsi(t) =Y ctL{T2(t) with ¢ =

=0

(1, tLET?),
(tL3F2, ¢t LeH2)

The following proposition defines a recurrence relationdmpute the coefficients.

PROPOSITION2.1. Lety(t) = 1 — e~ "¢, and let the three-term recurrence of the gen-
eralized Laguerre polynomials$*? be written in the formZ.6). Defines; = (i + a 4 2)/i
fori > 0, 0g = 1. Then the polynomial of degréet 1 of the formts(¢) which minimizes the
norm||y) — ts(t)|l, among all polynomials of degree< k is given by

k
(2.10) tsi(t) =D e tLiH3 (1),
=0

wherec; satisfies the recurrence relation

1 T Yi .
2.11 i = 5 51'_7_ iCp — T Ci— ) 20717"'7
( ) Ci4+1 Ui+15i+1 |: 0 (1—|—T)O‘+4 [e7® JiC 1 2
1 1
2.12 = 1-—
( ) €o a+2 [ (1+7—)a+2:| ’

whered;; is the Kronecker symbol and we defing_1 /oy = 0.
Proof. The least-squares polynomial approximationits given by

k -
_ o2 i _ G
tsk(t)—;cltLi (t) with ¢ = 7 and
&7;:/ t*e~tp(t) tLYT3 (1) dt, d,;:/ t*e T (tLYT3 (1)) 3dt .
0 0
Considerd; first and observe that

d; = / 12 L ()2t = | LEP (D)2
0

It is known that

L(i+a+1)

gz = =

Sod; = ||LF 2 (1)|[21, = N

il
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Next, we take up the task of calculating

(2.13) ¢ = / tT e 1 — e LY (t) dt
0

> a+2 —tl B e_Tt a+2
(2.14) = t* e fLi (t)dt.
0
There are two possible ways to proceed from here. One isémapttto calculate the above
integral. This can be done by successive integration by paihg the expression
t=* d

L?(t) = etT@ (e_tti-‘ra) .

Define the functiony, (t) = (1 — e~ 7%) /t. With this, ¢; becomes

1 [~ d? .
~Z_ _ = () — —ttz+a+2 dt .
¢ i!/o Or(t) g (¢ )

This integral can be evaluated with a succession of integrdily parts leading to results
involving successive derivatives of (¢). This yields a rather complicated expressiondor

An alternative is to exploit the recurrence relation for ¢inhogonal polynomials, which
we assume is in the forn2(6). It is more convenient to deal with the scaled quantities
directly rather than the unscalég. We begin by splitting the calculation into two parts.
From .13, we have

1 [ 1 [
== / tH et LOT2 (1) dt — - / ot le= It Lot2(1y gt = f; — g,
7 0 7 0

We seek to establish recurrence relationsgfoand f; separately. Consider the case- 0.

Fori = 0, we haveLy ™ (t) = 1, so

1 o 1 o
fo= —/ tote~tdt; go = —/ totle= 0+t gy
do Jo do Jo
Using the standard definition of the Gamma function, we riwaé tfor 3 > 0),
/ e tFdt =T'(z + 1); / e Pt = 7(2 1—1 )
0 0 B

Therefore, recalling thaty = I'(a + 3) = (o + 2)I'(a + 2), we have

1 1 1 T(a+2) 1
2.1 = T(a+2)=—r; = = :
@19 fo=g Tt =m0 9= Qa9 ar L

For a general we have forf; 1,

o0
dit1fiva =/ tt e LY (1) dt
0
1
Bi+1

Apart from the scaling by, 1, the first term on the right-hand side,

/ ot e ™ (LT3 (t) — au LY T2 () — v L9 2 ()] dt.
0

(o] (oo}
/ tot e~ LOT2 (1) dt = / tot2e Tt LOT2(¢) dt,
0 0
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is either equal td'(« + 3) = dy wheni = 0, or to zero fori > 0 by the orthogonality of the
functionsL¢" and 1. Therefore, we have:

do — apd —oidi fi — vidi—1 fi- .
d1f1:m7 dit1 fiv1 = idifi — 7 i1 for: > 0.
b1 Bit1
As a notational convenience we define= d;/d;_; and note that
Fe+a+3) (i—1)! i+a+2
2.16 ;= = i
(2.16) 7i il T(ita+t2) i
With this, the above formulas become,
1-— a; fi + B fie
f1:7040f0 ; fi+1=—4f oSt fori >0,
o151 Oit1Bi41
which we write as a single formula by using the Kronecker syhalnd settingy, /1 = 0:
1 i .
(2.17) fiy1 = ——— [@',0 —a;fi — lfi71 fori > 0.
oit18it1 of

We can proceed in a similar way for:

dit19i+1 :/ faHef(HT)tL?jf(t) dt
0

- 1

Bit1

Now the (undivided) first term in the right-hand side is

oo
/ to 2e e TELOTR (1) dt.
0

/ 10 CHIL L LOV2 () — 0, LOT2(8) (1) — 7 LEH2(E)]dt .
0

Apart from a norm scaling factor, this is thith expansion coefficient of the functiem™*
in the Laguerre orthogonal sequer{de?”}, i.e., with respect to thé&h degree polynomial.
Specifically, from 2.2), we know that
<8_Tt7 L?+2>a+2 o
(LEP2 L5 ) 0 T4

Therefore,

Tdi
(14 7)otd’

(L+7)772 = (7™ LiT ) ase =

1 Tdi
dit19i+1 = —oid;gi — Yidi—1gi—1| -
+19i+1 B [(1+T)a+4 Qi@;gi — Yiti—19 1}

Finally, dividing through byl; and rearranging terms,

1 T Yi
2.18 i = — O;0; — —(g;— .
( ) Ji+1 Tie1Birt {(1+7)a+4 g aig 1]
It is now possible to combine2(18), (2.17), into a single recurrence formula fey,
recalling that that; = f; — g;:
1 5 T
Cip] = ——— |65 — ———
T B L (1 )t
whered;; is the Kronecker symbol. The recurrence can be started avith 0, with the
convention thatyyc_; = 0. The initial valuecy is known from @.15):

Vi .
— QC; — —Ci—1 ,220,1,...,
0

_ 1
co_a+2 (14 7)at2] -~
This completes the proofl
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3. Convergence and stability.

3.1. Numerical aspects.In practice, the effectiveness of the algorithms hingesheir t
stability behavior and the rate at which the underlying ogttnal series expansions converge
to the exponential function. Recall at this point that thevemtional reservation about the
Taylor series stems essentially from the fact that on onel litanconvergence may require
summing a large number of terms, and on the other hand its saynimiolve intermedi-
ate quantities of large magnitude and/or alternate signpdncing cancellation errors and
stability issues in finite precision arithmetic. Whether trthogonal series expansions are
numerically robust depends on how well they can withstamth sllawbacks. In this section,
we use a number of figures to explore these issues. We indhed€hiebyshev series in the
discussion for comparison purposes. To keep the figureshandiscussion simple, we set
7 =11in(2.2) and @.4), and denote by,,(x) the partial sum of the series ef * truncated
at lengthm. In the case of the Laguerre series (with= 0),

m

1 1
pm(x):§z2—kLk(m), 0<z < oo,
k=0

while in the case of the Chebyshev series,

i m—lg
pm(;v):kz_oaka( I >7 a<x<b,

with iy = (b—a)/2, 12 = (a+b)/2, and the coefficients;, as given earlier in1.5). We first
focus on the real case, bearing in mind that we can always agannegative definite matrix
and use a time-stepping procedure to confine the eigenvazefixed interval.

. oy max |€” - p_(x)|, Chebyshev series of degree m in [0,b]
Coefficients of Chebyshev series of & [0,b] B x0[of) m )
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FiG. 3.1. Coefficients and approximation error of the Chebyshev serie

To give the reader a sense of how well the Chebyshev serigspes; we consider differ-
ent choices of the target intenvial, b] and plot in Figure3.1the evolution of the coefficients
ay. It is seen that the coefficients decrease very rapidly innitade, and considering that
max,e(q5) | Tk (7)] < 1, we can expect the method to remain stable and convergdy&pid
anyzx € [a,b]. This is indeed what the error curves in the figure show. Tloéservations
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corroborate 3, 23]. The error curves also remind us that the target intervaltbde chosen
carefully to suit the problem at hand, because the apprdiamsmdegrade rapidly outside
their intended interval. Thus, in our matrix exponentiahtext, the eigenvalues need to be
strictly inside the interval to prevent spurious effectereasing the degree to take in more
terms does not expand the fit interval, but does improve tladitgLof fit within the target
interval. All this agrees with the theory, because the Ckkby series is, by construction,
aimed at a (fixed) given interval. Once constructed, theseloes well for any point taken in
that interval and it gets better as we use more terms in thess@ut the series is not effective
outside the target interval for which it is built. Targetiaglifferent interval requires building
another series, which is why we need an estimate of the gpéuterval for the Chebyshev
approximation to be effective.

wi L. k0{7,15,30,50,100) i max, ;o lL Xl

MaX 5 ol

1€ = p, ()], Laguerre series of degree m
10° ;

L&)
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FiG. 3.2.Laguerre polynomials and approximation error of the Lageeeries.

In the case of the Laguerre series, an immediate contralsttiadgt Chebyshev series is
that the Laguerre polynomials; («) are not bounded by unity, as can be seen on FigLe
even though the coefficients of the Laguerre serieslg2é+!. We may wonder if the La-
guerre series may be susceptible to numerical difficulti#fe. see from the figure that this
is unlikely because the Laguerre polynomiélg(«) do not oscillate widely with each other
in the interval[0, 20], which is an interval sufficient for practical purposes (&dering the
time-stepping strategy hinted to earlier and to be furthscussed shortly). Moreover, as
the figure shows, their maximum growth stays withi¥ in this interval, so there is no par-
ticular concern in double precision arithmetic. Regardimg speed, we see that the rate of
convergence of the Laguerre series is less than that of tabyShev series, meaning that if a
prescribed accuracy is desired, it takes more terms toaethat accuracy with the Laguerre
series. For example, comparing Figad& with Figure3.1, one must go up te» = 40 terms
in the Laguerre series to get a fit comparable to the Chebysaréss withm = 15 terms for
the interval0, 5], orm = 20 terms for the interval0, 10]. The trade-off when computing the
matrix exponential is that the Laguerre series does not aretimate of the bounds of the
spectrum as the Chebyshev series does.

As noted earlier, the FCR-based Laguerre series enforeesxdictness of the approx-
imation atz = 0. We turn our attention now to comparing it with the classicagjuerre
series.

In Figure 3.3, we can see that both series remain very close around thia,oboigt as
we move away, a difference becomes manifest. The onset aliteegence between the
two curves moves to the right as more terms are added. Slifftethces can also be seen
between the maximum error curves in Fig@r& and Figure3.3. For example in the interval
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FiG. 3.3. Variation between the classical Laguerre and FCR-Laguearel approximation error of FCR-Laguerre.

[0, 5], we can see in the former that the maximum error curverfor 20 is slightly under
1075, whereas in the latter it is slightly ové0—5. The discrepancy is a natural consequence
of using different optimality criteria for the expansionklowever, the differences are too
small to be significant in our context, and we shall use eitheiant in our experiments.

|e_Z—pm(z)|, Chebyshev series of degree m in [O(,bt;]
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FiG. 3.4. Approximation error of the Chebyshev series in the complexep

We now consider the case where the matrix involved may hawgplex eigenvalues.
Although the orthogonal series considered in this studyenearily designed to approximate
the exponential of a real variable, it is worth exploring hitvese series will behave if the real
variablez is replaced by a complex variabie This will give us a sense of how the algorithms
will behave when used with nonsymmetric matrices that arelpandefinite.

In Figure 3.4 and Figure3.5, we plot the level curves of the err¢—* — p,,(2)| in
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|e'Z—pm(z)|, Laguerre series of degree m
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FiG. 3.5. Approximation error of the Laguerre series in the complexngl

the complex plane usingr € {15,20} andb € {5,10} for the Chebyshev series, and
m € {15,20,40,50} for the Laguerre series. In the Chebyshev case in Figutewhere
m € {15,20}, the subplots (a) and (c) give the level curves at a finer uéisol, whereas
the subplots (b) and (d) aggregate the regions where theisrumder10~% and 105, re-
spectively. In the Laguerre case in Figi®, the subplots (a) and (c) use € {15,20} and
aggregate the regions where the error is urider* and10~°, whereas (b) and (d) use the
higher degrees: € {40, 50} and aggregate the regions under '2 and10~ '3, respectively.
These contour plots allow us to contrast the two methodsieitbm the perspective of equal
degree or accuracy. We can see that the observations mauerieal case apply also in the
complex case. For the Chebyshev series, the region of gaatéidds around the target inter-
val. For the Laguerre series, it is anchored at the originggadually grows toward the right
as more terms are added to the expansion. In both methodgdioe only extends slightly
in the imaginary direction, or alternatively, it takes mégems to attain a certain accuracy in
the complex case. Of note is that an accuracyOof* or 10~° can be achieved by both meth-
ods in comparable regions with the same degree 15 or m = 20, respectively. However,
the Chebyshev series is appreciably more accurate aroerrédhaxis, as is apparent in the
subplots (a) and (c) of Figurg4. On the whole, neither method is ideally suited for evalu-
ating the matrix exponential at a high accuracy when theirmhés eigenvalues with large
imaginary parts, unless a proper scaling is made to shrialsgiectrum. This is discussed
next.

3.2. Scaling and staging.This strategy is aimed not only at improving the accuracy by
confining the spectrum to a more desirable domain for a giegmek of the partial sum, but
also at avoiding numerical overflow when summing the termthefseries. It consists of
scaling the matrix by a number, say;,q., such that| 7 A|| /nstege S b, Wherel| - || is some
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norm, andb is chosen to target an appropriate interval based on ounshfn above. From
there, the calculation afkp(—7A)b is broken inton 4. Steps as described below.

ALGORITHM 3.1. Scaled and Staged Calculationeap(—7A)b

Chooseénq4. such thal|T Al /ngiage S b

T = T/nstage

A=7A

zZo) = b

Fort =1 : ngage

zt = exp(—A)zi1

EndFor
This algorithm simply amounts to a (constant) time-steg@trategy as typically used
when solving ordinary differential equations. Here, hoarewe effectivelyscalethe ma-
trix. The implication is that, first, the scalingA = 7A/nsq4. shrinks the spectrum (with
A assumed symmetric nonnegative definite) into an intdfyal; and second, subdividing
the calculations into theses.,4. Stages ensures that each stage uses an orthogonal series
approximation fore—"* that converges after relatively few terms in the partial sum

N OAWNR

4. Numerical results. In this section we apply the FCR approach described above to
some sample calculations efp(—7A)b. All the codes are implemented in MATLAB. We
run the series until two consecutive estimates satigfy,; — zx||. < TOL, with preset
values of the accuracy paramefBOL. We compare with a Krylov method (thexpv.m
function from the Expokit packag@1]), which implements Arnoldi’'s Full Orthogonalization
Method (FOM), and we sett5 as the dimension of the Krylov basis. This is referred to as
Krylov(15) and it does not use the staging-and-scaling describeceaitice it has its own
built-in time-stepping strategy. Keep in mind, therefdtegt the variableu,.,;. reported in
the tables has no bearing in the Krylov method. We supplydh@esaccuracy paramef€OL
for the error control criteria there; sel] for more details. Since the codes are implemented
in MATLAB and are not optimized for speed, exact timings ac¢ decisive. Instead, we
report the number of matrix-vector products used. (For tmp@se of the experiments, we
added a counter to that effect in Expokigspv.nfunction.) We check the achieved accuracy
by reportingeray = [|Zkry — ZLagll2 @Ndecher = ||ZKry — ZChes|l2, Wherezg,, is the
solution computed by the Krylov method that we use as a neéerewhilez cpe, andzpq,
are the approximations obtained by the Chebyshev and Lagmethods respectively.

4.1. Dielectric waveguide.The matrix used here comes from the Matrix Market collec-
tion. It results from a finite difference discretization betHelmholtz equation that governs
a dielectric channel waveguide problem, which arises inynir@iegrated circuit applications.
The matrix in the example is of order= 2048 with 10, 114 non-zero elements. Its sparsity
pattern and spectrum are given in Figdré. The spectrum includes complex eigenvalues,
but with small imaginary partgfm()\)| < 10~2). The spectrum extends slightly past the ori-
gin, suggesting we take, b] = [—1, 1] in the Chebyshev method. Also, taking;,. = 1 is
suitable for both the Chebyshev and Laguerre methods. Rdeuthis example are reported
in Table4.1with 7 = 1, b = (1,--- ,1)7 andTOL ranging from10~2 to 10~%. We see in
this example that Expokit’s Krylov(15) detected that omegistep was enough to achieve the
desired accuracy. It also appears that the smalef. did not induce further computations
because the Krylov(15) solution was already more accuhate tequested. For the orthog-
onal expansion methods, we see that Chebyshev perfornesweiit Laguerre achieved the
desired accuracy, albeit with more iterations. This agreids our earlier analysis in Sec-
tion 3.
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FIG. 4.1. Sparsity pattern and spectrum of the Waveguide example.

Matrix-vector productsi{s¢qge = 1) Errors

Krylov(15) Laguerre Chebyshey ejq, € Cheb
TOL in[—1,1]
102 16 16 6 3.3e-03 1.3e-03
10—3 16 19 7 3.9e-04 7.5e-05
10~4 16 22 7 4.1e-05 7.5e-05
107° 16 26 8 3.5e-06 7.0e-06
10=6 16 30 9 3.8e-07 4.2e-07

TABLE 4.1

Results for the Waveguide example. Hegg,,e = 1 everywhere.

Spectrum Scaled by nstage =160
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FIG. 4.2. Sparsity pattern and spectrum of the Boeing 767 example.

4.2. Boeing 767 matrix. This is an illustrative example irL[]]. It arises from modeling
a Boeing 767 aircraft with the aim of optimizing its designstgppress flutter of the wings.
This involves a nonsmooth, nonconvex optimization mettocstabilize a nonsymmetric ma-
trix A that models the aircraft at flutter condition. The resulsitapilized matrix only barely
has its spectrum lying in the negative plane. The orderdis 55 and the eigenvalue closest
to the imaginary axis haBe(\) = —0.0788, while the eigenvalue with largest modulus has
|A| = 103. Figure4.2depicts the sparsity pattern and the spectrum, showingftisds a chal-
lenging example because it has complex eigenvalues witk targe imaginary parts. Even
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more, these eigenvalues are almost purely imaginary, tlakénmg the problem highly oscil-
latory and difficult for polynomial methods. In additionetimatrix has|A||; = 1.69 - 107
and||Al|; = 1.6-107, so that attempting to infet..;. using either norm would be very
restrictive. The figure shows that a scaling valuewgf,;. = 160 is suitable to shrink the
spectrum to fit our orthogonal expansion methods.

Since A is stable, we do not need to negate it. Welset [1,---,1]T and simply
computeexp(7A)b using Algorithm3.1 with, respectivelyr = 1,0.1,0.01 andngeqe =
160,16, 1. We target two values ¢fOL, 102 and10~°. Results are reported in Tade2
with n,.q1 in parentheses. As can be expected, we observe thatwheh Chebyshev and
Laguerre struggle to cope with this pathological problemt #e table shows better results
with reduced values of since they further shrink the spectrum and make the problene m
amenable to the polynomial expansion methods.

Matrix-vector products and ;. Errors
TOL = 1072 [ Krylov(15) Laguerre Chebyshey €Lag € Cheb
T in [0, 10]
1 944 5394(160) 2562(160) 9.4e-03 4.4e-02
0.1 144 533(16) 264(16) | 2.8e-03  7.9e-03
0.01 48 34(1) 19(1) 2.7e-03 8.4e-04
TOL =106
1 1552 6880(160) 3218(160) 2.0e-04 2.2e-04
0.1 224 688(16) 339(16) | 1.2e-04 1.1e-04
0.01 48 43(1) 24(1) 7.1e-05 6.3e-05
TABLE 4.2

Results for the Boeing example WillOL = 10~3,10~% andr = 1,0.1,0.01.

4.3. 3D diffusion-convection equations.As a concluding example, we consider the
problem of exponential propagation for a discretizatiothefsystem

4.1) Up = Ugg + Uyy — PUg — YUy, (z,y) € Q.

For our test problemA is obtained by dividing a square domdinto a uniform500 x 500
mesh and then applying the standard 5-point diffusion-eotiwn discretization

du; ; 1 Box Box
TR {4“1'0' - <1 - 2) Uikl (1 * 2> Ui-1j

0 0

Taking 8dz/2 = 0.2 and~dy/2 = 0.4 and writing the right hand side ofl(2) as a matrix
times a vecton = w;; yields a250,000 x 250,000 non-symmetricA. The b vector is
chosen as the initial shape ;(0) = z;(1 — 2;)y; (1 — y;).

This matrix hag|A||; = 8 and its eigenvalue of largest modulus Has < 8, while
its spectrum does not extend too far in the imaginary dioecti/m()\)| < 0.5). Hence,
takingn,,qe = 1 is suitable, as well as keepirg, b] = [0, 10] in the case of the Chebyshev
method as done earlier. Results for this example are repor{Eable4.3, with TOL ranging
from 1072 to 10-%. We see in the example that, owing to its automatic step sieeton
mechanism, Expokit's Krylov(15) uses two steps, which igwk number of matrix-vector
products is about twice the size of the Krylov basis (thesegtoducts occurred there as part

(4.2)
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Matrix-vector productsi(s¢qge = 1) Errors

Krylov(15) Laguerre Chebyshey er,, € Cheb
TOL in [0, 10]
102 32 20 10 5.4e-05 5.2e-03
1073 32 24 11 4.8e-06 1.1e-03
10~ 32 28 13 4.0e-07 4.0e-05
1075 32 31 14 6.0e-08 6.9e-06
106 32 35 15 4.7e-09 1.1e-06

TABLE 4.3

Results for the diffusion-convection matexgiven by ¢.2). Herengiqge = 1 everywhere.

of the error estimation). As in the first example, it also appehat the smallérOL did not
induce further computations because the two-step soltligra was already more accurate
than requested. For the orthogonal expansion methods, evéhae Chebyshev performs
quite well. Laguerre achieved the desired accuracy witheniigrations, as expected from
our earlier analysis in Sectidh For both of the methods, choosing,,. is critical to their
efficiency. A largeng,.,. would mean that it takes many more steps to completion than
necessary, whereas a smaflgf,,. could mean that the actual polynomial approximation to
zi = exp(—7A)z;—1 in Algorithm 3.1 turns out to be of much higher degree than optimal
for the job. An optimal choice is that which shrinks the spect into a reasonable domain
in a way that ultimately leads to an overall small number ofriravector products. This

is a problem-dependent issue reminiscent of that arisif@& solvers where one needs to
account for stiffness while attempting to use as few stegasible.

5. Conclusion. Matrix exponential algorithms based on approximating(—7t) by a
suitable polynomiap(t) have several advantages. Becadsenly occurs in matrix-vector
products, algorithms are matrix-free and can be made inksre of the data structure chosen
for A; the user can ‘ownA’s data structure, so to speak, and does not even have tcidypli
storeA as a matrix. Further, restricting to matrix-vector multiplies makes it easy to exploit
A’s sparsity; no fill-in occurs; and memory usage is capped’sstorage plus a few vectors.

All these advantages accrue to Algoritiril and Algorithm2.3. They accrue also,
however, to explicit integration schemes like forward E(kE), which solvesX.1) by time-
stepping with

t+h
(5.1) y(t+h)=y(t) — /t Ay(r)dr = (I — hA)y(t).

The drawback of FE and other explicit integration schemésparse, is that the time-step
h must be taken very small whed is stiff. In the framework of polynomial methods, FE is
based on the approximation

(5.2) e Tt (1 —1t/n)",

wheren is the number of time steps taken to integrate ftom0 to ¢ = 7. The left hand side
of (5.2) is stable only ifh = 7/n is taken small enough thitl — 7¢/n)"| < 1.

The question arises whether the more sophisticated poliahomethods we have studied
in this paper escape the stability issue faced by explitégiration methods when too large a
time-step is taken. Using orthogonal polynomials to corepup(—7A)b can be thought of
as a semi-implicit method for integratingy. ().

Unfortunately, as we have seen, the FCR method has the pydpat the number of
iterations or stages increases with,,..., where\,, ... is the eigenvalue of largest modulus.
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Even when the contribution ef "*=« to the final answer is entirely negligible, the presence
of a large\, ., in A’s spectrum forces FCR to iterate more. Thus, semi-impiiethods
still suffer from the bane of stiffness.

Viewed differently, all polynomial methods require one ppeoximatez (¢) = exp(—7t)
by a polynomial over the interval or region that contains $pectrum ofA. The larger
that region is, the more difficult it is (i.e. the higher theytee of polynomial required) to
adequately fit:(¢) over that regionStagingcan be thought of as a way to make that region
smaller by replacing each eigenvaligby \; /nstage-

With suitable scaling and staging, we have seen that €&@Randle quite stiff systems of
ODEs (large spread in eigenvalues) as well as exponenfiafssgmmetric matrices. Clearly,
scaling and staging are an essential part of the FCR method.

We examined the performance of FCR with the Laguerre and y3hely systems of
orthogonal polynomials and compared them with the Krylothuod. In theory, Chebyshev
expansions converge within an ellipse in the complex plaaguerre expansions, within a
parabola; and Hermite expansions, over the entire plaheHecause the individual terms
in the series4.2) and @.4) can be quite large in magnitude but alternate in sign, ong ma
experience significant loss of precision and even numeoigaliflow as one tries to compute
such expansions with finite-precision arithmetic. Howegenling and staging allow us to
overcome these difficulties.

In our tests, we found that Chebyshev usually performecdebéttn Laguerre, though
this requires that we be able to localize the spectrum to tmval [a,b]. Laguerre does
not have this requirement, but one still needs to make alsensoice ofng. for both
methods.
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