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In this study, a nonlinear finite element (FE) model is proposed to investigate the behaviour and failure 
mechanism of reinforced concrete membrane structures. Proven accurate stress-strain relation is 
incorporated in the model to describe the stress-strain behaviour of the concrete under compression 
for uniaxial and biaxial stress system. The nonlinearity behaviour of the materials in the compressive 
stress field is considered for the concrete in the orthogonal directions. The effect of micro cracking 
confinement and softening on the stress-strain relationship under biaxial stresses are included by 
employing the equivalent uniaxial strain concept. Tension stiffening effect by concrete in tension is 
modelled in the ascending and descending parts. The model allows for the progressive local failure of 
the reinforced concrete materials. The applicability of the proposed FE model is investigated by 
demonstrating the nonlinear structural response and failure mechanism of a simple deep beam and 
validated with published experimental work. Good agreement is achieved between the developed FE 
model and the experimental test results which gives confidence that the approach is fundamentally 
correct. 
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INTRODUCTION 
 
Membrane structures are widely used in many 
applications such as in bunkers, water tanks, vertical 
diaphragms in bridges, retaining walls, silos, multi-
storeyed buildings, etc. The behaviour of reinforced 
concrete membrane structures is more complicated due 
to the nonlinear behaviour even in the elastic range which 
in turn makes the standard analysis and design methods 
ineffective for deep beams. These problems become 
extremely difficult in the inelastic range and mainly at the 
ultimate strength and overall collapse. 

In the last decades, finite element studies incorporating 
nonlinear material models have been vigorously used to 
determine the mechanics behaviour and to exploit the full  
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potentialities of reinforced concrete membrane elements. 
In these models, more realistic nonlinear properties have 
been incorporated based on experimental investigation 
(Vecchio and Collins, 1986; Hsu, 1Huang 988; Hsu, 1991; 
Zhu et al., 2001). Those studies have, in turn, led to the 
development of rational design models based on the strut 
and tie approach for the design of membrane elements 
(Rogowsky and Macgregor, 1986; Rogowsky, 1997; 
Zhang and Tan, 2007; Bakir and Boduroglu, 2005). The 
strut and tie model has been used in analysis and design 
of disturbed regions, beam strengthened with FRP and 
infill frames and walls in masonry and reinforced concrete 
structures (Kuo et al., 2010; He and Liu, 2010; Shah et 
al., 2011; Colotti and Swamy, 2011; Seim and Pfeiffer, 
2011; Baran and Sevil, 2010; Güney and Kurusçu, 2011). 

Despite of the large amount of research carried out on 
reinforced concrete membrane structures, there is no 
agreed rational procedure to predict the strength of these 
structures. This is mainly  because  of  the  very  complex 
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Figure 1. Comparison of test data and the best fit relation. 

 
 
 
mechanism associated with the mode of failure of these 
structures. Development of a model to simulate the rein-
forced concrete membrane structures behaviour taking 
into consideration the accurate modelling for the biaxial 
stress-strain behaviour for the concrete is essential to 
understand the structural behaviour and failure 
mechanism of the system. Even though a lot of effort will 
be paid in the micro-modelling level, yet this procedure 
reveals more accurate results. 

In this study, a two-dimensional finite element model is 
proposed and an incremental-iterative program is dev-
eloped to predict the behaviour and failure mechanism of 
the reinforced concrete membrane structures under in-
plane loading till failure. Detailed constitutive relation-
ships are proposed for the finite element model. An 
accurate equation is used in the model to describe the 
nonlinear stress-strain behaviour of the plane concrete 
material under compression for the uniaxial and biaxial 
stress states. Material nonlinearity in the compressive 
stress field is considered in the orthogonal directions and 
the effect of micro cracking confinement and softening on 
the stress-strain relationship under biaxial stresses are 
included employing the equivalent uniaxial strain concept. 
Tension stiffening effect by concrete in tension is 
modelled in the ascending and descending parts. 
Moreover, the model allows for the progressive local 
failure of the materials such as crushing, cracking and 
yielding of reinforcing steel. After cracking, a smeared 
crack concept is adopted using fixed crack model and the 
compressive strength reduction in the cracked concrete is 
considered.  
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CONCRETE MATERIAL MODELLING 
 
Stress-strain relation  
 

Using stress-strain relationship that can be described accurately, 
the behaviour of the concrete material is essential to predict the 
actual strength and deformation of the structure.  In this study, the 
best fit equation of the experimental data of concrete material under 
uniaxial compression test for both ascending and descending parts 
is adopted (Carreira and Chu, 1985; Popovics, 1973).  It can be 
expressed as: 
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where,  σ , ε are the instantaneous values of the stress and the 
strain respectively; σo , εo, the ultimate stress (peak) and  the 
corresponding strain, respectively and A, a coefficient called 
material parameter which depends on the shape of the stress- 
strain diagrams.  

In this study, nonlinear regression analysis has been used to 
determine the material parameter (A) using the entire stress-strain 
curve (ascending and descending part) obtained from compression 
test of concrete material. This procedure yields accurate values for 
this parameter compared to different methods derived based on the 
data at the origin (Carreira and Chu, 1985; Popovics, 1973). 
Equation 1 is capable of simulating the stress-strain relation for 
different concrete materials and can be incorporated efficiently in 
the biaxial stress model. Figure 1 shows the experimental test data 
of a compression test of concrete (Alwathaf, 2006) as well as the 
best fit curve drawn by Equation 1. A comparison with the well-
known formula suggested by Saenz (1964), which is frequently 
used for simulation of compressive stress-strain curves of concrete 
under biaxial stress state (Chen, 1982), is also shown in Figure 1. 
Unlike Equation 1, Saenz's formula fails to represent the variation of 
curvatures of the stress-strain relations for different concrete 
materials which in turn makes Saenz's equation more suitable for 
macro-modelling approach. Another condition that restricts using 
Saenz's formula is the ratio of the tangential modulus of elasticity at 
the origin to the secant modulus at the peak which should be more 
than or equal to 2. 

The concept of equivalent uniaxial strain was developed in order 
to allow actual biaxial stress-strain relationships to be duplicated 
from uniaxial relationship (Darwin and Pecknold, 1977). The 
equivalent uniaxial strain for any stress is the strain corresponding 
to the stress on the uniaxial loading curve. To include the biaxial 
stress effect on the uniaxial stress-strain relation given by Equation 
1, the following procedure has been proposed to develop a more 
general expression to incorporate the biaxial effect. Rewriting 
Equation 1 in terms of equivalent uniaxial strain, εiu, we obtain (for 
i=1, 2): 
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The equivalent uniaxial strain εiu essentially removes Poisson's 
effect; whereas the strengthening due to the microcracking 
confinement in biaxial compressive stress and softening in 
compression-tension stress fields are incorporated in σip and εip, 
respectively (Darwin and Pecknold, 1977; Ayoub and Filippou, 
1998). Thus a single relation (Equation 2) can represent the infinite 
variety of monotonic biaxial loading curves (Figure 2). The strength 
is reduced when α < 0.0 whereas for α > 0.0, the strength is 
enhanced due to microcracking confinement. The maximum stress 
(peak), σip, and the corresponding strain εip will  be  found  from  the  
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Figure 2. Stress-strain relationship of concrete material in compression and tension. 
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Figure 3. Concrete material envelope for different stress states. 
 
 
 
biaxial failure criteria. The tangent moduli E1t and E2t for a given 
principal stress are found as the slopes of the σ1 versus ε1u and the 
σ2 versus ε2u curves for the current ε1u and ε2u as follows: 
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In the tension field, two relations are used for ascending and 
descending branches taking into account the tension stiffening of 
concrete (Hsu and Zhang, 1996; Wang and Hsu, 2001): 
 
σ1= Eo ε1 for  ε1≤  ε                                                                          (4) 
      
σ1= fcr (εcr/ ε1)

0.4
 for ε1> εcr                (5) 

At the linear stage of tension stress, the slope is equal to the initial 
tangent modulus (Eo) at the origin. Figure 2 depicts the equivalent 
uniaxial stress-strain curves for concrete element loaded with 
different biaxial stress ratios, α, (α= σ1/ σ2) in the compression and 
tension fields.  
 
 

Failure criteria and constitutive laws 
  
The proposed failure envelope implements the biaxial strength 
envelope shown in Figure 3 for all stress states and summarized in 
Table 1. The principal stresses in two orthogonal directions are 

denoted by σ1 and σ2 with │σ1│≤│σ2 │ (negative sign (-ve) for 
compressive stress and strain). 

An incremental relationship is assumed between strains and 
stresses, which in differential form and in the principal directions 
can be written for undamaged concrete (Chen, 1982): 
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where  
 

21vvv =  and v1=v2=0.2                                      (7) 
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where E1,v1 and E2,v2 are the tangent moduli of elasticity and the 
Poisson’s ratio along the principle stress directions and G is the 
shear modulus. The tangent moduli of elasticity, E1 and E2, along 
the principle stress directions are evaluated in the compressive field 
from a nonlinear equivalent uniaxial stress-strain relation based on 
Equation 3. In the tensile field, the initial modulus, Eo, is used in the 
linear part before cracking and the secant modulus, Eis= σi / εi, after 
cracking (Figure 2). The material stiffness matrix of cracked and 
crushed concrete is   presented in   Table 2. Instead of zeros,  very  
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Table 1. Failure criteria under different stress states. 
 

Stress state Criteria 

Biaxial compression  region 
(Vecchio,1992)  
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Tension-compression  region (Cerioni and 
Doinda, 1994) 
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Table 2. Material stiffness matrix of cracked and crushed concrete 
material. 
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small values are substituted in the program to avoid singularity in 
stiffens matrices.  

Smeared fixed crack model is adopted in this study because it is 
capable of taking into account the concrete contribution, Vc (Zhu et 
al., 2001). After cracking, the tangential elasticity modulus and the 
Poisson's ratio are reduced to zero in the direction perpendicular to 
the crack direction but a reduced shear modulus, βG, is employed 
to simulate the aggregate interlock. The reduction is achieved by 
shear retention factor, β (Al-Manaseer and Phllips, 1987). Good 
results were obtained with the following shear retention factor: 
 
β=1.0 for ε1 ≤ εcr                                                                           (9a) 
 
and              

 
β=0.2 for   ε1 > εcr.                                                                        (9b)  
  
The concrete along cracks is still resisting compressive stress after 
cracking. It was found that the compressive strength of concrete 

after cracking can be significantly reduced by the tensile strain in 
the transverse direction. To account for this effect, the following 
formula is adopted to obtain σ2p after cracking (Vecchio and Collins, 
1993): 
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where εo is the compressive strain relative to the uniaxial 
compressive strength, f 'c, and ε1 is the tensile strain normal to the 
crack direction.  

An incremental-iterative 2-D nonlinear finite element code is dev-
eloped to implement the proposed constitutive model. Moreover, 
numerical procedure and solution algorithm are proposed to solve 
the nonlinear system. More details about the solution algorithm can 
be obtained elsewhere (Alwathaf, 2010). 

 
 
MEMBRANE STRUCTURE DISCRETIZATION 

 
The developed FE model was used to predict the structural 
response of a full scale reinforced concrete simple deep beam 
subjected to uniform distributed load. The properties of the concrete 
and steel used in the FE model were obtained from an experimental 
investigation reported by Foster (1992). Figure 4a shows the 
dimensions, reinforcement, and loading details of the simple deep 
beam which is simulated in this study. Moreover, the material 
properties and parameters used in the finite element analyses for 
concrete and reinforcing steel are presented in Tables 3 and 4 
respectively. The finite element mesh for the deep beam is depicted 
in Figure 4b.  

Eight-noded iso-parametric plane stress element is used to 
model the concrete characteristics and discrete two-noded iso-
parametric bar element is used to model the reinforcing bar. In the 
analysis of concrete deep beams, perfect bond was assumed 
between the reinforcement and the concrete. The stress-strain 
relationship for reinforcement was approximated by a bilinear 
function in which beyond yield point (fy), the plastic behaviour is 
reached and steel modulus Es is employed before yielding and Ep 
after yielding. The steel reaction plates were modelled using linear 
elastic plane stress element to transmit smoothly the reaction 
stresses to the concrete. 
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                       (a)                                                                     (b)  
 
Figure 4. Dimension and reinforcement arrangement (Foster, 1992) and idealization.         

 
 
 

Table 3. Material properties and model parameters for concrete. 
 

f'c (N/mm
2
) Eo N/mm

2
) ν εo A f 't (N/mm

2
) Thickness (mm) 

29.6 22200 0.2 0.002 2.8 2.18 100 

 
 
 

Table 4. Material properties for steel. 
 

Bar size mm Area  mm
2
) fy (MPa) Es (MPa) Ep (MPa) 

5 20 412.0 2.06×10
5
 5×10

3
 

8 53 412.0 2.06×10
5
 5×10

3
 

 
 
 
RESULTS AND DISCUSSION 
 
Figure 5 shows the load versus deflection at lower mid-
span point obtained from the finite element model and the 
experimental test results. The beam failed at a load of 
1101 kN which is in agreement with the test result of 
1171 kN. The discrepancy between the test and FE 
model results is about 6%. The model gives reasonably 
accurate predictions for the displacement especially at 
lower loads. At higher loads, the model shows higher 
stiffness until failure. This may have been caused by the 
geometric idealization of the beam or difficulty in the 
numerical solution process of the proposed constitutive 
relations. Another reason for the discrepancy between 
the test and FE model could be attributed to the type of 
failure of the beam in the experimental test as will be 
discussed subsequently. 

Contours of compressive stresses (σ2) for the finite 
element model are shown in Figure 6 at different loads 
(448, 640, 896, and 1101 kN). A compressed strut is 
developed clearly after concrete cracking (when the load 
is higher than 448 kN). As shown in the figures, the 
concrete strut transmitting the load to the support is 
clearly shown. At the same time, the steel reinforcing 
bars at the bottom act as a tie. Higher compressive stress 
occurred at the support region which is the bottom end of 
the strut and the stress became uniform at the middle 
and the top of the strut. As shown in Figure 6, the 
bandwidth of the strut is quite large and it becomes 
narrow at the middle due to the nature of loading and the 
aspect ratio of the beam. This is not identical to deep 
beams loaded with concentrated load which show 
relatively a small and uniform bandwidth all over the strut 
(Foster, 1998; Zhang and Tan,  2007). Therefore, for  this  
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Figure 5. Load versus deflection at the midspan. 
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Figure 6. Compressive stresses distribution at different loads. 
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Figure 7. Strain in x-direction along the wall height at mid-span. 
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Figure 8. Strain in y-direction along the wall height at mid-span. 

 
 
 
type of deep beam, the width of strut at the middle should 
be taken for any design consideration when using strut 
and tie method.  

Figures 7 and 8 show the strains distribution in x and y 
directions (εx and εy) at mid-span along the height of the 
wall. As shown in the figures, nonlinear strain distri-
butions along the height of the wall are realized in x and y 
directions. It can be seen that the strain (εx) inverted 
many times and  multiple  neutral  axes  were  developed. 
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Figure 9. Strain in x-direction along the wall height near support.  
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Figure 10. Strain in y-direction along the wall height near support.  

 
 
 
This proves that deep beams are a special case of the 
conventional beams and it is difficult to apply the 
conventional beam theory in this case. The strain distri-
butions near the support along the wall height are also 
shown in Figures 9 and 10. Even though the bottom part 
of the beam near the support reached to the crushing 
failure (as will be shown later), it can be observed that the 
compressive strain is still less than crushing strain of the 
unaxial state (Table 3). This is because this part actually 
is under biaxial compression-tension stress and in this   
case,  the  tensile  stress  decreases  the  capacity  of the  



 
 
 
 

             (a) Crushing                                 (b) Cracking 
 

 
 
Figure 11. Crushing and cracks pattern at failure. 

 
 
 
the orthogonal compressed direction and developed 
softened strut (Bakir and Boduroglu, 2005).  

The predicted crushing and cracks pattern of the beam 
is shown in Figure 11. As shown in the figure, the failure 
of the finite element model was due the crushing of the 
concrete in the vicinity of the support. This is not 
consistent with the observed experimental results where 
the failure due to the crushing of the concrete at the 
support because of the specimen preparation (Foster, 
1992). Because the studied beam can be considered as 
non-flexural member due to the aspect ratio, it did not fail 
by the yielding of steel at the bottom or crushing of 
concrete at the top in the mid-span and instead it failed 
by the crushing of compressed strut at the vicinity of the 
support.  
 
 
Conclusions 
 
A detailed micro-model for reinforced concrete mem-
brane structures has been proposed. An effort has been 
paid to simulate the nonlinear stress-strain behaviour of 
the concrete materials in the orthogonal directions 
employing an accurate stress-strain relation for stress 
states and equivalent uniaxial strain concept. A finite 
element program code has been developed to implement 
the proposed model.  

The comparisons between the finite element analysis 
results   with   the   experimental  test  show  that  a  good 
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simulation has been achieved for the structural behaviour 
of the simple deep beam. The model gives reasonably 
accurate prediction of the load carrying capacity, de-
formation and failure pattern of the beams. On the other 
hand, overestimation of stiffness of cracked concrete has 
been observed in the load-deformation curves.  

It can be concluded also that the reinforced concrete 
element under shear is actually subjected to a biaxial 
stress condition. The strength in the principal 
compression direction was found to be softened by the 
principal tension in the perpendicular direction and 
softened strut with varied bandwidth is developed. 
Moreover, the compressed strut is developed clearly after 
concrete cracking and failure is caused by crushing of the 
strut near the support. 
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