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The numerical computation of supercritical fluid flows is extremely challenging because of the 
complexity of the physical processes and the disparity of the space and time scales involved. 
Supercritical fluids exhibit large density fluctuations especially very close to the critical region. In this 
region, the perfect gas law is no longer valid and has to be replaced by a specific equation of state 
(EoS) as, for instance, the Altunin and Gadetskii EoS. In the present work, the problem of choosing a 
suitable numerical scheme for dense gas flow computations in a shock tube is addressed. In particular, 
the extension of the classical Roe’s scheme to real gas flows is used and its performance is evaluated 
by comparing with the analytical profile of the dimensionless density obtained by Sod in the shock 
tube problem. The application of this numerical implementation near the critical region of the fluid 
gives significant differences compared to gas dynamics and shows a relevant behaviour of the 
compressibility variation and localises an important gradient of temperature in the shock tube. 
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INTRODUCTION 
 
A supercritical fluid (SCF) may be defined as a substance 
for which both temperature and pressure are above the 
critical values. When a liquid is heated above its critical 
temperature at pressures greater than (or exceeded) the 
critical pressure, the transition from liquid to supercritical 
fluid is continuous. Close to the critical density, SCFs 
display properties that are to some extent intermediate 
between those of a liquid and a gas. For instance, a SCF 
may be relatively dense and dissolve certain solids while 
being miscible with permanent gases and exhibiting high 
diffusivity and low viscosity. In this phase domain, the 
thermal and mechanical disturbances are strongly cou-
pled. This specific behaviour of the supercritical fluids is 
of particular interest both from the theoretical point of 
view and for many industrial applications, such as the 
production of nanoparticles for medical use and the 
extraction of chemical compounds.  

A shock tube conventionally takes the form of a strong 
smooth wall steel pipe, of either circular or rectangular 
cross-section, divided into two compartments initially at 
different pressure values and separated by a  diaphragm,  
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see Figure 1. If we suppose that the viscous effects are 
negligible along the tube and we assume that the tube is 
sufficiently long enough to avoid reflections at the tube 
ends, the exact solution of the Euler equations can be 
obtained on the basis of a simple wave analysis. At the 
bursting of the diaphragm, the discontinuity between the 
two initial states breaks into leftward and rightward mov-
ing waves, separated by uniform solutions: a shock wave 
(S) followed by a contact discontinuity (C) moves to the 
low pressure region and rarefaction waves (R) move to 
the high pressure side (Sod, 1978). 

In the experimental studies, shock tubes conven-tionally 
feature a test-section, often equipped with obser-vation 
windows, in which a shock process, interaction, or other 
phenomena are studied using specific diagnostic instru-
mentation such as high-speed recording techni-ques, 
photography, etc…. Many shock tubes used in research 
studies follow the conventional simple design with lengths 
of typically a few metres and operating with compressed 
air pressures up to several atmospheres.  

From a numerical point of view, the shock-tube problem 
is a very interesting test case because the exact time-
dependent solution is analytically known and can be com-
pared with the computed solution by applying numerical 
approximations, (Arina,  2004;  Guardone  and Vigevano, 
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Figure1 - Shock tube at initial state (a:  t= 0. s; b: t >0 s). 

 
 
 
2004). The initial configuration of the shock-tube problem 
is composed by two uniform states at the same tem-
perature but at different pressure values, separated by a 
discontinuity which is usually located at the middle of the 
tube. This particular initial value problem is known as the 
Riemann problem.  

In this work we propose a numerical approach, based 
on the Roe averaged technique (Roe,  1981) written for 
real gas using the full EoS of Alunin and Gadestkii (1971) 
which is available also in the critical region. This 
approach, mainly following the Harten et al. (1986) and 
Montagné et al. (1987) algorithms, allows computing the 
distribution along the tube of the thermodynamics quan-
tities at subcritical, critical or supercritical initial condi-
tions. Here the high order of the numerical resolution is 
associated to the non linearity of the EoS where thermo-
dynamic variables are calculated through a prediction-
correction technique. Numerical validation is firstly 
reached by comparing our results with the Sod’s shock 
tube analytical solution (1978) of a perfect gas dynamic 
due to a pressure falling from 1 to 0.1 bar (Sod, 1978; 
Toro,  2005). 
 
 
Governing equations 
 
Conservation law approximations 
 
Considering a non viscous flow in a tube having a 
constant section and assuming a one dimensional 
problem, the system of equations can be written as:   
  

( )UU
0

t x
∂∂ + =

∂ ∂
f

     

  ��� 
Where TEuU ),,( ρρρ=  is the vector of the 

conservative variables, TuPuEPuuf ),,( 2 ++= ρρρ  
the Euler flux vector. t and x stand for the time and space 
coordinates. ρis the density, u the velocity, E the total 
energy per unit of mass and P is the  static  pressure.  By 
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introducing the jacobian matrix of the Euler 

flux
(U)

A(U)
U

∂=
∂
f

, the system of equations can be 

written, in semi-conservative form, following: 
U U

A(U) 0
t x

∂ ∂+ =
∂ ∂

              (2)  

    
The numerical procedure is based on an approximate 
Riemann solver, following the Roe technique that needs 
to know an averaged state between the states UL and UR 
of the Riemann problem at the grid interfaces: 
 

( ) ( ) ( )LRRLLR UUUUAUfUf −⋅=− ),(ˆ   (3) 
 
To ensure conservativity and consistency, the Roe matrix 
(Â) must be evaluated by using the Roe average 
quantities [4]: 

The average density: LR ρρρ =    
  (4) 

 The average velocity 
LR

LLRR uu
u

ρρ
ρρ

+
+

=    

 (5) 

And the average total enthalpy:
LR

LLRR HH
H

ρρ
ρρ

+
+

= .

  (6) 
 
These averaged quantities are valid both for a perfect 
gas and a real fluid. The difference between these two 
cases lies in the calculation of the average of the speed 
of sound. In the case of a real fluid it is necessary to 
recognize special formulations of the pressure derivatives 
(Montagné et al., 1987). 
 
 
Boundary conditions 
 
The tube is supposed to be closed at both ends. The right 
and left boundaries of the computational domain are thus 
ideal solid walls. Since the integration time is relatively 
short, the shock and rarefaction waves never reach the 
end walls, and so, conditions at these boundaries are 
well known. Initially the fluid is at rest and its temperature 
is prescribed at T0=305 K (T0> Tc) in order to cover the 
critical region of the fluid. Pressures from both sides of 
the diaphragm are set at different levels. The initial 
values for the different test-cases can be seen in tables 
1, 2 and 3. 
  
 
Numerical methods 
 
To obtain a numerical approximation of the Euler  equa- 
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Table 1. Initial conditions of the perfect gas shock tube. 
 

Temperature (K) 
Region 

Density 
(kg.m-3) Pressure 

(bar) EoS 
(8) 

ideal 
gas 

Left 1.0 1.0 529.6 529.3 
Right 0.125 0.1 423.55 423.45 

 
 
 

Table 2. Initial conditions of the 
supercritical/subcritical shock tube 
 

Region Pressure 
(bar) 

Temperature (K) 
From  EoS (14) 

Left 75.0 305 
Right 65.0 305 

 
 
 

Table 3. Initial conditions of the near critical region shock tube. 
 

 
Region Pressure 

(bar) 

Temperature 
(K) 

EoS (14) 
Left 55 Subcritical 
Right 50 
Left 75 Critical 
Right 70 
Left 105 Supercritical 
Right 100 

305 

 
 
equation (1), we use a numerical scheme based on Roe 
Riemann solver (Montagné et al., 19878]. The scheme 
used is based on a Finite-Volume approximation. It is of 
high resolution, that is, it recovers a second order 
accuracy away from discontinuities. It however satisfies 
the Harten’s Total Variation Diminishing (TVD) con-
straints to avoid the spurious oscillation in the vicinity of 
the discontinuities. A stability condition is required and, 
assuming a constant grid size (∆x), the time step (∆t) is 
calculated by using: 
 

( )
CFL

i

N x
t

max
∆∆ =
λ

,    (7) 

Where ( )imax λ  is the maximum wave speed and NCFL 

the required Courant (CFL) number. 
 
 
Equation of state 
 
The development of equations of state (EoS) and their 
applications to the correlation and the prediction of phase  

 
 
 
 
equilibrium properties is an important field of research. 
The Altunin and Gadetskii EoS was given to describe the 
thermodynamic properties of the pure carbon dioxide. 
Following this specific EoS, the behaviour of supercritical, 
liquid or gas states of carbon dioxide are accurately fitted. 
As all thermodynamic properties divergence in the vicinity 
of the critical point (mainly the compressibility factor), the 
Altunin and Gadetskii EoS needs other corrective terms 
to more accurately fit the singular behaviour and to 
increase the robustness in the calculation of the thermo-
dynamic functions as, for instance, the specific heat at 
constant volume, the pressure and the speed of sound.  

The original equation proposed by Altunin and Gadetskii 
describes with a great accuracy the carbon dioxide 
behaviour in the regions far from the critical region. 
However, to supply the Altunin and Gadetskii EoS in the 
vicinity of the critical point, one must used a special EoS 
obtained by digitalizing corrective abacus given in the 
literature (Angus et al., 1976). This work is followed by a 
numerical estimation of different thermodynamic 
functions as Cv, in the vicinity of the critical point, using 
series expansion techniques (Ksibi and Moussa, 2005).  
 
The analytic Altunin and Gadestkii EoS is written as:  
 

( ) ( )��
= =

−ρ−τρ+=
ρ

=
9

0i

6

0j

i

r

j

ijr

A 11b1
RT
P

Z    

  (8) 
 
Where ρr=ρ/ρc and τ=Tc/T. Z is the compressibility factor 
and R is the perfect gas constant. The subscript “c” 
indicates values at the critical point. The bij coefficients 
can be found in the IUPAC tables, (Angus et al., 1976). A 
separate EoS was needed for the critical region within 
about  ± 5 K of the critical temperature. This equation is 
expressed in terms of the polar coordinates, r and θ, in 
the phase plane, centred on the critical point, Schofield et 
al (1969). The distances to the critical value for the 
density and the temperature are expressed following: 
 
 

( ) ( )22

c

c b1r
T
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−
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θ=
ρ

ρ−ρ
=ρ∆ βgr

c

c     (10) 

 
The pressure in the vicinity of the critical point (PS) is 
deduced from the previous equations by the following 
parametric equation: 
 

( )2)1(

c

cS 1arTc)(qr
P

PP
P θ−θ+∆+θ=

−
=∆ βδ+δβ       (11) 

Where q is a function of θ, given by: 



 
 
 
 

 
 
Figure 2- Numerical validation of the shock tube problem for sub-critical 
conditions, at a dimensionless time t = 0.2 s 
 
 
 

42 66053.560796.8298893.36)(q θ+θ−=θ  (12) 
 
The complete EoS is obtained through the combination 
between equations (8) and (11) by using a switch 
function f(r), depending on the distance to the critical 
point: 
 

[ ] SA P.)r(f1P).r(fP −+=    (13) 
 
Where f(r) is expressed by: 
 

n n1 2( 0,01/ r) ( 0,05/ r)f (r) 1 1 e . 1 e− −� � � �= − − −
� � � �

   (14) 

 
And PA is the analytic pressure deduced from equation 
(8). 
Values of different constants needed to evaluate the 
pressure at the critical region PS are: 
 
n1=3/2  ; n2=3; a=0.065; β=0.347; δ=4.576; g=1.491, 
b²=1.4402.  
The value of the parameter “c” depends on the relative 
temperature (T/Tc); i.e. for T>Tc,  
c= 240.435 and for T�Tc, c= -58.383. 
 
 
Numerical results and discussions: 
 
Numerical validation 
 
The validation of the numerical code is performed by 
comparing the numerical solution with  the analytical  one  
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proposed by Sod and established for a perfect gas (air) 
flow in a shock tube. The initial conditions are sum-
marized in table 1 where the temperature is obtained by 
using both the Altunin and Gadestkii and the ideal gas 
EoS. At the initial state, a diaphragm, located in the 
middle of the shock tube, separates the carbon dioxide 
considered as a perfect gas at two different states from 
both sides of the diaphragm. The density and pressure 
jumps are chosen so as to recover the three types of 
wave (shock wave “S”, contact discontinuity “C”, and 
rarefaction waves “R”) in the tube. 

The pressure on the left side of the diaphragm is 10 
times higher than the one on the right side. At time t = 0 
when the diaphragm is broken, the discontinuity between 
the two initial states leads to leftward and rightward 
moving waves, separated by uniform states. A shock 
wave moves to the low pressure region (toward the right 
side) followed by a contact discontinuity moving at the 
local speed of the flow. Expansion waves move to the 
high pressure side (toward the left side). Since the 
computation stops before the waves reach the end-walls 
of the shock tube, the boundary conditions are trivial at 
both ends of the shock tube. The simulations are 
performed by using a CFL number equal to 0.2. 

In these calculations, we have used a regular grid with 
100 grid-nodes. From Figure 2, we show that the present 
code has captured with accuracy the jumps across 
discontinuities. The velocities of discontinuity propa-
gations have also been accurately computed. When the 
simulation is performed on the sub-critical conditions (T 
>Tc and ρ <ρc), differences with the exact ideal gas 
solution are noticeable on the constant states around the 
contact discontinuity. We must also notice that the 
velocity of the contact discontinuity is slightly more 
important than in the case of an ideal gas. These 
differences are only due to the thermodynamic behaviour 
of the fluid within the sub-critical region (EoS (8)) which 
induces a higher flow velocity than the ideal gas confi-
guration between the last expansion wave and the shock 
wave. 
 
 
Shock tube at high pressure initial conditions 
 
Numerical simulations are also performed by considering 
the carbon dioxide at supercritical state on the left side, 
whereas the carbon dioxide is set at subcritical condi-
tions, on the right side (see table 2). Numerical results 
greatly improve the accuracy of the capture of 
rarefaction, contact discontinuity, and shock waves.  

In Figure 3, the dimensionless density of the carbon 
dioxide is depicted along the tube axis at the several 
times. We show that at every time, S, C and R waves are 
well captured along the tube. During time, shock wave 
(S) reaches the left side tube while keeping a constant 
density behind the shock. The contact discontinuity is 
captured at the half of the tube for the different cases. At  
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Figure 3- Dimensionless density profiles along the shock tube for 
different time steps. 
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Figure 4- Temperature profiles along the shock tube for different time 
steps. 
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Figure 5. Velocity profiles along the shock tube for different time steps. 
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Figure 6. Pressure profiles along the shock tube for different 
time steps. 

 
 
 
the other side, the rarefaction wave R reaches the right 
side while keeping a constant density at the right end of 
the tube. 

The temperature evolutions are shown on figure 4. 
Regarding the temperature amplitudes in the shock tube, 
it is solicited to an important thermal gradient (about six 
degrees). In the left compartment, the bursting of the dia-
phragm involves a local expansion upstream of the wave 
C that generates a fall of temperature. Whereas, the con-
tribution of the matter implies a local compression down-
stream of the wave C which generates an elevation of the 
temperature.  This behaviour is supported by the hyper 
compressibility of the carbon dioxide in the vicinity of its 
critical point.   

 Concerning the speed profile along the tube (figure 5) 
the initially stagnant fluid, moves abruptly in the both 
sides of the tube when the diaphragm is burst. At t = 
0,66s, the fluid has practically a constant speed along the 
tube (about 9 m/s) except at its end walls where no 
motion conditions are imposed, the fluid velocity exceeds  

Similarly to the density profile, figure 6 shows the 
pressure behaviour in the tube for the different shocks 
waves S, C and R at different time steps. We note that 
the depressurisation goes proportionally to time in the left 
side which involves a compression of the fluid inside the 
right compartment.   
 
 
Shock tube behaviour at critical initial conditions 
 
In order to show the importance of the Sod problem 
modelling in the vicinity of the critical region, numerical 
implementations are selected so as to cover different 
regions of the phase diagram of the carbon dioxide, 
mainly: the subcritical zone (T>TC and P<PC); the critical 
zone and the supercritical zone (T>TC and P>PC).  



 
 
 
 

 
 
Figure 7. Temperature profiles along the shock tube for different 
expansion ratios (effect of the critical region behaviour). 

 
 
 
 

 
 
Figure 8. Dimensionless density profiles along the shock tube for 
different expansion ratios (effect of the critical region behaviour) 
 
 
 
In these three test cases, the pressure jump (PL-PR) 
between the left and the right sides of the tube is kept 
constant and equal to 5 bars. The initial temperature is 
considered constant along the tube and set at 310 K.  

On the Figure 7, we illustrate the profile of the tempe-
rature along the shock tube at t = 0.28 s. The tempe-
rature is maintained constant at the end-walls. We initially 
distinguish an anti symmetry of the temperature variation 
compared to the position of the diaphragm (x = 0.5).  The 
subsonic case (expansion from 55 to 50 bars) provides a 
small variation in the temperature of 0.5 K. This 
amplitude climbs to  4 K  in  the  supercritical  case  (from  
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Figure 9. Density falls under the action of the various shock waves (S, 
C, R). 

 
 
 

105 to 100 bars) and generates mainly a strong gradient 
making it possible to induce in a relevant way a thermal 
transfer in the shock tube. 

Concerning the variation of the carbon dioxide density 
along the shock tube, it varies by marking the various 
waves C, R and S in different ways relating to the pres-
sure level.  Indeed, the variation of � in the supercritical 
case (PL=105 and PR=100 bars) implies a fall of this one 
on three various levels similarly with the case of shock 
tube of a perfect gas, (Figure 8).  Nevertheless, the state 
being dense like a liquid, the variation of � remains tiny 
and lower than 2.5%. In the subcritical case (PL=55 and 
PR=50 bars), the density follows the same profile and 
locates the waves C, R and S correctly. Moreover, we 
notice that the dimensionless density variation becomes 
more amplified.     

Applying a pressure level around the critical one (Pc= 
73.8 bars), the variation of the density appears exactly as 
the last two cases but a significant decrease of the den-
sity is reached (about 20%). Here, the high compres-
sibility of the state implies a non linearity of the density 
falls with the pressure level differently to the temperature 
oscillations as described before. Indeed, figure 9 shows 
this singular behaviour of the dimensionless density 
values across different waves in the shock tube. For the 
same difference in pressure (PL - PR), the variation of the 
density is very significant while passing by the critical 
region, compared with the subcritical and supercritical 
cases.  
 
 
Conclusion 
 
This paper discusses the propagation of shock waves 
through a shock tube containing initially supercritical fluid. 
It was found that the numerical calculations give similar 
results presented by several authors for a perfect gas. 
Applications of the supercritical state by using a specific  
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EoS, valid near and far from the critical region, in a shock 
tube problem give similar profiles of density, pressure 
and velocity to that of perfect gas. Nevertheless, 
computing the shock tube problem at high pressure 
levels shows a particular behaviour of the fluid density 
near the critical region and an important thermal gradient 
in the shock tube.  
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