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1 Introduction
In [1], Lakshmikantham et al. developed a famous impulsive differential inequality
given as Theorem A below.

Lakshmikantham et al. assume that 0 < £y <ty <ty <..., limy_,., tx = o, R, = [0, +)
and I € R. They define PC(R,, I) = {u: R, — I; u(t) is continuous for ¢ # f;, and u(0"),
u(t, ), and u(;) exist, and u(t, ) = u(t), k=1,2,...} and PCYR,,]) = {u e PCR,, ]):
u’(t) is continuous everywhere for t # #;, and ©’(0%), ¥/(t}) and u'(t, ) exist, and
w(t)=u(t) k=1,2,...}.

Theorem A. Assume that

(Hy) the sequence {f;} satisfies 0 < ty <ty <ty < ..., limg_,.. £ = oo;

(H;) m € PCY[R,, R] and m(¢) is left-continuous at t, k = 1, 2,...;

(H,) for k =1, 2,.., t > t,,

m'(t) < p()ym(t) +4q(t), t#1u, (1.1)

m(t}) < dgm(t) + by, (1.2)

where g, p € C[R,, R], dy = 0 and by are constants.
Then,

m(t) < m(to) 1_[ dkefr;f’(s)der Z 1—[ djeft;p(s)ds b,

o<t <t lo<tp<t \le<tj<t
t (1.3)
t
+ / [] e "M g(s)ds, ¢ > to.
f s<tp<t
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Impulsive differential and impulsive integral inequalities play an important role in the
study of the theory of impulsive differential equations (see [1-4]). In recent years, many
authors have used impulsive (differential or integral) inequalities to investigate proper-
ties of solutions of various impulsive problems, such as existence, uniqueness, bound-
edness, stability, asymptotic behavior, and oscillation etc. (see, for example [5-39]).
There are many good results on the impulsive differential and impulsive integral
inequalities (see for example [40-48]). However, most of these articles deal with jump
conditions at impulse point ¢; depending on the left-hand limit m(f;) or a time-delay
value, m(t; -7), T > 0. Our main goal is to extend the theory of impulsive differential
and impulsive integral inequalities to include integral jump conditions.

In the present article, we will show that Theorem A can be generalized to obtain dif-
ferential inequalities for integral jump conditions by replacing the inequality in (1.2) by
the inequality in (1.4).

ti—0%
m(t)) < dim(t) + ci f m(s)ds+b,, k=1,2,..., (1.4)
le—Tr

where 0 < 0y < 74 <ty - 1. We note that if ¢, = 0 for all k = 1, 2,..., then condition
(1.4) reduces to condition (1.2). If dy = 0, ¢y 2 0 and 0 < Oy <7% < by ~tp1, k=1, 2,...,
then condition (1.4) means that the bound of the jump condition at #; is a functional
of past states on the interval (f; - 7, t; - 0x] before the impulse point £;. Moreover, we
establish some new impulsive integral inequalities with integral jump conditions.

At the end of this article, we will show some applications of our results to prove a
maximum principle and the boundedness of solutions for impulsive problems.

2 Main results

Denote [ = maxik: t > t;, k = 1, 2,...}. Now we are in the position to state and prove our

results.
Theorem 2.1. Let (Hy) and (H,) hold. Suppose that p, g € C[R,, R] and for k =1, 2,..., t
2 to,
m'(t) < p()m(t) +q(t), t#t (2.1)
t,—op,
m(e) < duns) +en [ m(s)ds b 22)
=T

where ¢y, di 2 0,0 < Oy < 14 < 1y - gy and by are constants.
Then,

=0
m(t)fim(m) I (dke/,;\p(s)dsﬂk / gﬁilp(f)d%)

to<tp<t ot

§—oj
+ Z 1_[ (dje/‘/l p(f)d€+c,v / ol PV g

fo<tp<t | f<tj<t P

) (d»e [ et o 2.3)

te—1

=0, s

+Cp / / q(r)e! PO% grds 4 bk)i| } ol P&

=T -1

t
+/q(5)ef:”(§]d5ds, t>to.
4
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Proof. From (2.1) we have that

t

for t € [to, t1]. Integrating (2.4) from t, to t for £ € [Z, £1], we get

t
m(t) < m(to)eff; PEME | / q(s)effﬁ(é)déds.
to

(2.4)

(2.5)

Hence (2.3) is valid on [£y, t;]. Assume that (2.3) holds for ¢ € [t,, t,] for some inte-

ger n > 1. Then, for ¢t € [¢,, ¢,,1], it follow from (2.1) and (2.5) that
t
m(t) < m(c:)eln PE)E +/q(5)ef!p(s)dsd&
Iy

Now using (2.2) and (2.6), we have

ty—0y

¢
m(t) < | dam(tn) +cn / m(s)ds + by, ¢l PLEVE +/q(s)efstp(5)d5ds_
tn

ty—Tn

By the principle of mathematical induction, (2.7) can be expressed as

le—0%,

m() < 1do | {m(to) ] |die" "% 4 / S PENE

to<tp <ty feet

t/'—o'}'
+ Z H djefrj',l pE)E Cj ol PEE

to<tp<ty | te<tj<t, 8o
73
X dk/q(s)e.ﬂ'kp(é)déds
T—1
lp—0r S

+Ck / /q(r)effﬂ(é)dédrds + by e oy PE)E

=T lp—1

I th—0op,
+/q(s)ef;np(é)déds + ¢y / “m(to) 1_[ (dkef,k’*lp(g)dg
-1

[ Lo <lp<s

;=0

. / " | o ST (djeﬁ;] pe)s

to<tp<s | tr<tj<s

=T
tj—0j "
+Cj / eft;’q P(E)dédv dk/(i(v)efvlkp(é)dédu
-1 W
k=0, v
G f f q(r)e” "€ drdy 4 by | | 1 el PO
=Tk i1

p t
+/fi(v)€f;p(”&)d¥dv ds + b, effnf’(é)dé+fq(s)effp(é)déd&
o1 ;

n—

(2.6)

(2.7)

(2.8)

Page 3 of 11



Thiramanus and Tariboon Journal of Inequalities and Applications 2012, 2012:25
http://www.journalofinequalitiesandapplications.com/content/2012/1/25

Set

lk—0%
t 5
Ej, = dyeli PEE | o / o, PENE 5

=T

iy, ty—0r S
Gy = dy / (s)el" PEME gs 4 ¢ / / q(r)el PEE drds 1 by,
-1 le—Tk -1

Substituting (2.9), (2.10) into (2.8), we get that for t € [t,, £,,1]

m(t) < 3dn | {m(0) [] Ee+ Y. | [] EG ol P(E)E

lo<tp<ly to<tp<ty | te<tj<ty
In tp—oy
th—1 ti—Tn to<tp<$

. ;
+ Z 1_[ EGy i1 PEVE
to<tp<s | tr<tj<s
p t
+ / q(v)efvs”(g)dgdv ds + by, o PEVE +/‘q(5)effp($)déds
i1 tn

=L m@w) [T B+ > | J] EG s PEE

lo<tp<ln to<ty<ty | tr<tj<ty

tn
+d, / q(s)ef;" P(E)dE g
2

n—1

t,—oy
+ [ (m(t0)) 1_[ E, + Z l_[ EG | | f o PEE 4

to <t <ty to<tp<ty | te<tj<ty

[
h—0y § ¢
+Cn f fq(v)efvsp(‘”d‘?dvds+bn ¢/ P(E)d5+/q(s)eﬂp(é)déds
th—Tn th—1 tn

m(to) [ B+ 3 | T EGe||En+Gupelu?®%as

to <t <ty to<tp<ty | Le<tj<ty

t
+ f q(s)el PV gg
Iy

lo<tp<t to<tp<t | tp<tj<t

(2.9

(2.10)

t
m(to) [T Ee+ > | T EGr|eln%as+ / a(s)el PN g,
Ly
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Hence,
P
m(t) < {m(t0) [] dyehi O o, / i1 PEE g
to<tp<t -
t—o;

Ui s
+ | IT | detr @ 4 g / oo POV 4

to<tp<t | <<t P

Te—1

ly—0p S
*+Ci / / q(r)el PO% grds + b, ol P(EYE

le—=Tp lp—1

t
* f q(s)el "% s,

for ¢, < t < t,,;. Therefore, the estimate (2.3) holds for ¢, < ¢ < t,,,;. This completes
the proof.

Remark 2.2. If ¢, = 0 for all k = 1, 2,..., then Theorem 2.1 reduces to Theorem A.

Corollary 2.3. Let (Hy) and (Hy) hold. Suppose that p, q € C[R,, R] and for k = 1,

2y £ = Lo,
m'(t) < p(t)m(t) +q(t), ¢+t (2.11)
m(t;) < c / m(s)ds + by, (2.12)

where ¢, 2 0,0 < O < 14 < ty - gy and by are constants.

Then,
ty—op,
n(o) = fm(w) T] a [ hor@as
to<tp<t et
lj—oj

. /ejlp(s)ds

to<tp<t Ik<t]<t

v (2.13)
—0) S
X | ¢k / / q(r)gfrA PEVE Jrds + by e/” p(&)de
=Tk 1
t
+ / G(s)el POEGs (> .
The following corollary will be used in our examples. For convenience, we set
¢
Ay = ke (e_pﬁh _ e—Pr)z), o1

p
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l,—0p, le—Tp

Bk:;f o (t—o) / q(r)e_prdr_ep(tk_fk) / q(r)e " dr
-1 -1
oo (2.15)
- / q(r)dr | + by.
th—Tk

Corollary 2.4. Let (H,) and (Hy) hold. Suppose that g € C[R,, R], and for k = 1, 2,...,

£>to,
m'(t) < pm(t) +4(t), ¢t (2.16)
=0}
m(t;) < c / m(s)ds + by, (2.17)
=Tk

where p 2 0, ¢, 20,0 < O < 174 < &y - tyy and by are constants.
Then,

m(t) < m(to)( I Ak) )y N ( I A]-Bke”(‘_"‘)) + / q(s)e’ds,  (2.18)

to<t <t to<tp<t \ti<tj<t

for t > ty where Ay, By are defined by (2.14), (2.15), respectively.

Proof. By using Corollary 2.3 and reversing the order of double integration, we have
the required result.

Corollary 2.5. Let (Hy) and (Hy) hold. Suppose that g € C[R,, R], and for k = 1, 2,...t

> to,
m'(t) <q(t), t#t (2.19)
tp—oy
Am(ty) < cr / m(s)ds + by, (2.20)
e —Tp

where Am(t) = m(6)) — m(t), cx 2 0, 0 < Ox < 74 < ty - tyy and by are constants.
Then,

m(t)fm(t0)< I1 [1+ck(rk—<rk)])+ S TT (+g(z—o0p)

o<t <t o<t <t | tr<tj<t
le—Tp I, —0y,
x | [1 +c(tr — on)] / q(s)ds + / [1+cr(te — on — 5)]q(s)ds (2.21)
lp—1 =Tk

7% t
+ / q(s)ds + by, +/q(s)ds, t>t.
]

=0y,

Proof. By setting p(t) = 0 and d; = 1(k = 1, 2,...) in Theorem 2.1 and reversing the
order of double integration, we have the required result.

Page 6 of 11
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Next, we give an application of Theorem 2.1 to the determination of a bound for the
solutions of impulsive integral inequalities with integral jump conditions.
Theorem 2.6. Assume that (Hy) and (Hy) hold. Suppose that p € C[R,, R,] and for

k=1,2,.
t t,—0%
m() < C+ f pOmEds+ Y pomu)+ Y o / m(s)ds, ¢ to (2.22)
b to<tp<t o<n<t Yo
where o, B > 0,0 < Of < 7 < ty - ty; and C are constants. Then
tp—op
m()<C [ | +p)eh "% 4 q / el PEE go | hy POy > 4 (2.93)
fo<tp<t oy

Proof. Defining a function v(¢) by the right side of (2.22), we have
V() =pO)m(t), tFt, v(io)=C,
t,—op,

v(t;) = v(te) + Bem(te) + o / m(s)ds.

le—Tp
Since m(t) < v(t), we get
V() =p(v(t), tFt (o) =C,
t,—oy,

(i) < (1 + Bu)v(te) + o / v(s)ds.

e—Tp

Applying Theorem 2.1, we obtain

le—0%

w=c ] |a + B O o f o PEE g | e

to<tp<t
o=k le—Tp

which results in (2.23).
Theorem 2.7. Assume that (Hy) and (Hy) hold. Suppose that p € C[R,, R.], h € PC
[R,, R] and for k = 1, 2,...

t—0p

m(t) < h(t) + / p(s)m(s)ds + > Bum(n)+ Y / m(s)ds, t > to,(2.24)

to<tp<t to<tp<t ey

where oy, B > 0 and 0 < Oy < 14 < ty - ty1 are constants.
Then,

j—0j

m@) <h@+{ 3 | [1 (1+ )l POE g / oo PO

to<tp<t | tr<tj<t -1

T, t,—0) S
x ((1+/3k) / p()h(s)el PO ds + oy, / / p(r)h(r)el P drds (2.25)

th—1 te—Tk Tre—1

=0y

t
+ﬂkh(tk) + o / h(S)dS)} ] eft;P(S)dS " /p(s)h(s)eﬂ’p(s)dst, t>t.
7]

=T
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Proof. Setting

=0y,

w0 = [pemedss ¥ g+ Y a [ meas

to<tp<t to<tp<t te—Tp

and from the fact that m(¢) < k() + v(£), we obtain

v (t) < p(tv(t) +p()h(t), t#t, v(to) =0,

t,—0% l,—0%k
v(t;) < (1 + Br)v(te) + o / v(s)ds + Brh(t) + o / h(s)ds.
t—Tp =T
Using Theorem 2.1 together with m(t) < h(t) + v(t), we then obtain the estimate
(2.25).
Remark 2.8. If oy = 0 for all k = 1, 2,..., then Theorem 2.6 and Theorem 2.7 are
reduced to the Theorems 1.5.1 and 1.5.2 in [1], respectively.

3 Some examples
In this section, two applications of impulsive differential and impulsive integral
inequalities with integral jump conditions are given.
Corollary 3.1. Assume that u PCl[], R] satisfies
u'(t) —Mu(t) +a(t) <0, t#t, te]=[0T],
u(tf) < [} u(s)ds,  k=1,...,n, (3.1)
u(0) =u(T) + A,
where M > 0,ae C[R,, R,], 0 <ty <ty < .. <t,, <T. ¢t >20,0< 0x <13 < by - b1, k =
1, 2,., n
Suppose in addition that
c
O T, Az(efakM — e M) < o MT,

(D7)
t—Tr U, —0p
ete—m)M / a(r)e™rdr + / a(r)dr

l—1 I —Tp

ly—0p
< el / a(e™dr, k=1,2,...,n,

le—1
(D) & < [ a(s)eMT=)ds.

Then u(t) < 0 for t € [0, T].
Proof. By Corollary 2.4 for t € [0, T] we can write that

t

u(t) < U(O)( H Ak) M Z l_[ A BkeM(l—Ik) _ /.a(s)eM(t_s)dS,

to<tp<t to<ti<t \te<tj<t Y
where

koM M
Ap= (e —e ™) >0,
I ( ) >
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and
th—Tk th—0%
Ck _ _
Bk:A/; elt—m)M / a(r)e ™M dr + / a(r)dr
-1 =Tk
tp—oy

_e([k—ak)M / a(r)e_Mrdr , k= 1,2,...,n.

lr—1

Condition (D,) implies that B, < 0 for k = 1, 2,..,, n. Then, it is sufficient to show
that #(0) < 0. For ¢ = T we have

T

u(T) < u(0) (ﬁAk> ML, Z l‘[ Aj BkeM(Tffk) _ /a(s)gzvt(ﬁs)d&
k=1

to<tpe<T \t<tj<T L
n

By the conditions (D;) and (D3), we see that

T

u(0) |:1 — (ﬁAk> eMT:| <A+ Z H Aj BjeM(T=4) — /a(s)eM(T’s)ds

k=1 to<te<T \te<tj<T 0

<0,

which implies that #(0) < 0.
Corollary 3.2. Let v e PC'[R,, R] such that

V() =f(tv(1), tF b tE[to,00),
Aq@)=u(ﬁﬁ$u@mg, k=1,2,..., (3.2)
v(to) = vo,

where fe C(R x R, R), [ e C(R, R), 0 < ty <t} <ly < ..., limy_,e, £ = 00, 0 < Of < 74 <
ti- tr1, k= 1, 2,.... Assume that
(D4) there exists a constant N > 0, such that

fv(®)| =Nvu()| for t>to,
(Ds) there exist constants L; > 0 such that

[e(x)| < Lelxl, xeR k=1,2,....

Then the following inequality is valid

L, _, _ _
[v(®)] < Ivol 1_[ [1 + N(e N _ e T”N)]e(t N > . (3.3)
to<tp<t
Proof. The solution v(¢) of problem (3.2) satisfies the equation

l,—0y,

v(t) =v(t0)+/f(s,v(s))ds+ Z Iy / v(s)ds

to<tp <t
0 <!k e—The



Thiramanus and Tariboon Journal of Inequalities and Applications 2012, 2012:25 Page 10 of 11
http://www.journalofinequalitiesandapplications.com/content/2012/1/25

From the hypothesis (D,), (Ds) it follows for t > £, that

t ty—oy
[v(®)| < Ivol + / f(svis))|ds+ Y |I / v(s)ds
to o<ty <t Tk
t t,—oy,
< |v0|+/N‘v(s)‘ds+ Z Ly, / |v(s)| ds.
fo to<tp<t te—Tp
Hence Theorem 2.6 yields the estimate
t,—o},
[v(1)] < ol l_[ elt—t-ON L p / e t-1N g | o(t=tN
to<tp<t tee T

Therefore, the inequality (3.3) holds for ¢ > ¢, and the proof is complete.
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