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Dynamical systems of second order ordinary differential equations (SODEs) satisfying the 
Wünschmann-type condition are presented, with a special emphasis on SODEs provided by Euler-
Lagrange equations, particularly, geodesics on surfaces. Some remarkable facts are to be pointed: 
three of our examples are of quasi Euler-Lagrange nature; also, except one example that leads to 
classical Euclidean 2D metric, all yields a semi-Riemannian metric. 
 
Key words: Second order ordinary differential equations (SODE), semispray-metric, Hamilton-Jacobi equation, 
dynamical systems, Wünschmann-type condition, (quasi) Euler-Lagrange equation, geodesic equation.  

 
 
INTRODUCTION 
 
It is well-known that on the space of solutions given to 
some classes of second order ordinary differential 
equations (SODEs), there is a rich geometry. For 
example, Ferrand (1997) proved that the space of 

geodesics of a Hadamard -manifold is symplecto-

morphic to the cotangent bundle of the sphere ( ). 

Since the Riemannian geometry is the most used 
framework, it is natural to ask under what conditions, on 
the space of the solutions given to SODEs does a metric 
exist? 

An important step towards a complete solution of this 
problem is the paper (Garcia-Godinez et al., 2004) where 
a Riemannian or semi-Riemannian metric on the space of 
solutions for a type of scalar SODEs is determined via 
the Hamilton-Jacobi equation. The type of SODE for 
which an associated Hamilton-Jacobi relation holds is 
determined by the so-called Wünschmann-type condition. 
Invariants of Wünschmann-type were discussed in 
several papers (Crampin and Saunders, 2007; Frittelli et 
al., 2001; Gallo, 2004; Garcia-Godinez et al., 2004; 
Montiel-Piña et al., 2005; Newman and Nurowski, 2003; 
Nurowski, 2005). Also, the last two years show a flow of 
papers  towards  this   subject   (Bucataru   et  al.,   2011; 
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Crampin, 2010; Holland-Sparling 2011). 
As pointed in McKay (2001) and recognized in the 

bibliography of Frittelli et al. (2003), the Wünschmann 
reference (Wünschmann, 1905) is "almost impossible" to 
find. The present paper is devoted searching for 
examples of SODEs satisfying this condition. Our 
examples of dynamical systems are of mechanical or 
geometrical nature, but it could be of chemical or any 
other nature too as long as these systems are described 
by SODEs equations.From a unified point of view, both 
classes may be considered as originating from a 
variational principle, because the geodesics, from the 
geometrical side, are also solutions to variational 
equations (namely, Euler-Lagrange) as the trajectories of 
physical examples. 

The content of this paper is as follows. Firstly, the 
revision of Garcia-Godinez et al. (2004) in order to fix the 
terminology and notation and at the end, an example of 
SODE which coincides with associated Wünschmann-
type condition is included. This example has a special 
feature of appearing as quasi Euler-Lagrange equation 
for a quasi Lagrangian after the approach of Rauch-
Wojciechowski et al. (1999). Secondly, the physical 
oriented examples, derived from Lagrangian and 
Hamiltonian approaches of analytical mechanics. The 
main tools here are the natural Lagrangians and various 
types of harmonic oscillators. The classical harmonic 
oscillator yields the usual Euclidean 2D metric, while a 
second  quadratic  Lagrangian  generates  the Minkowski  



 
 
 
 
2D metric. The Wünschmann-type condition applied to 
the time-dependent damped oscillator produces a 
conformal equivalence with the usual harmonic oscillator. 
Thirdly, the separation of variables in the Wünschmann-
type condition. Let us point out that for Hamilton-Jacobi 
equations, there exists a proper notion of separation of 
variables cf. (Benenti, 2002). There are three cases, but 
of course the autonomous case, namely, independence 
of independent variable, is of most significance. In this 
case, we treat three types of separation, namely, 
additive, multiplicative, and Lienard-type. The classical 

Lienard equation is , but we extend 

to the form . On this way, we 

obtain a generalization of previous case, namely, 
multiplicative separation. All resulting Wünschmann 
SODEs are quasi-Lagrange equations. Fourthly, the 
study of the Wünschmann-type condition for SODEs with 

the right-hand side of third order in . As main 

examples, the equation of geodesics for metrics on 
surfaces are considered. Connections with the 
multiplicative separation case of the previous explaned 
appear, because the solutions in this case of separation 

depend on a real constant . The case  corres-

ponds to the geodesics of metric , 

while the case  is associated to the Liouville 

metric . The case  is the 

equation yielding scalar flat rotationally symmetric metrics 

on the 4-manifold . Sharpe (2000) worked on the 

Cartan's geometrization of an SODE of the form 

. 

Finally, a step towards the next class of differential 
equation, namely, third order was made. For this type of 
equations, there exists a well-known Chern invariant of 
Wünschmann-type. We present two examples. First, is a 
SODE satisfying the Wünschmann-type condition such 
that the derived third order differential equation (ODE) 
has a vanishing Chern-Wünschmann invariant. Our last 
example is related to the classical Halphen equation with 
a remarkable geometry. 

Some amazing facts are to be pointed. Except the 
Euclidean 2D metric, all resulting metrics are semi-
Riemannian. Unfortunately, the final expression of some 
of these metrics remains an open problem. Also, some 
SODEs remarkable from various reasons (physics, 
geometry, and analysis) do not satisfy this Wünschmann-

type condition or satisfy a degenerate condition ; 

therefore, without any meaning for our study. An example 
from this class is provided by Painlevé equations. 
 
 
THE WÜNSCHMANN-TYPE CONDITION REVISITED 
 
Let us consider the following SODE:  
 

                                     (1) 
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where the prime denotes the derivative with respect to 

the independent parameter . Using two different 

procedures, in Garcia-Godinez et al. (2004), it is proved 
that on the space of solutions to Equation 1 which is a 2D 
manifold parametrized by two-independent constants of 

integration , there exists a 

metric  with the expression:  

 

                                    (2) 

 
satisfying the Hamilton-Jacobi (HJ) equation:  
 

                                   (3) 

 
if and only if a so-called Wünschmann-like condition 
holds:  
 

                                    (4) 

 
The following indices denote the partial derivatives, and 

 is the total derivative with respect to . Thus, the 

condition of equation 4 reads:  
 

                       (5) 

 
and, because:  
 

, 
 
the HJ equation is:  
 

                                     (6) 

 
Using a more geometrical language, a SODE is called a 

semispray and then, the metric  given by equation 2 

shall be called a semispray-metric. 
Let us point out that relation equation 4 looks like a 

homogeneity of  with homogeneous factor . Also, 

Equation 4 is a SODE with a first integral:  
 

                                    (7) 

 

 is non-null since  appears at the denominator in 

Equation 2. For instance, if Equation 1 is a linear SODE 

, then Equation 7 gives:  

 

                        (8) 

 

where  is a primitive of . 

At   the   end   of   Garcia-Godinez   et   al.   (2004)  two  
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examples are included:  
 

 I)  yields the usual Euclidean metric 

,  

 II)  yields the 2D Minkowski metric 

. 
 

These examples follow from Equation 8 with  

and . Moreover, every SODE (Equation 8) can 

be transformed into  with the change of 

independent variable  and the 

choice . 

Subsequently, these examples are obtained from 
another unified (namely, variational) point of view. But, 
we end the Wünschmann-type condition revisited with 
another example:  
 

                      (9) 

 
which has the remarkable property that the associated 
Wünschmann-type condition coincides with the given 
SODE. A straightforward computation proves this fact. 

The case  in Equation 9 will be recast in Equation 

43 with the same choice  and it was analysed at 

the end of Example 7. The solutions of Equation 9 are:  
 

                     (10) 

 
and the associated semi-spray metric:  
 

                                 (11) 

 

is semi-Riemannian. 
In Rauch-Wojciechowski et al. (1999), the quasi-

Lagrangian systems, that is, dynamical systems 

generated by a function  are treated via the 

quasi Euler-Lagrange equations:  
 

                     (12) 

 
In the following, we study if Equation 9 is of Equation 11-
type with:  
 

                      (13) 
 

Because:  
 

 

 
 
 
 
we obtain:  
 

         (14) 

 
and a comparison with equation gives:  
 

 
 
with solution:  
 

 
 
In conclusion, Equation 9 is exactly the quasi Euler-
Lagrange equation for the quasi-Lagrangian:  
 

                      (15) 

 
 
SEMISPRAY-METRICS FROM LAGRANGIANS 
 
A remarkable class of SODEs is provided by the Euler-
Lagrange equation:  
 

                                   (16) 

 

for a Lagrangian . A useful type of 

Lagrangian is given by natural Lagrangian  = kinetic 

energy - potential energy:  
 

                                               (17) 

 
for which:  
 

                       (18) 

 

Searching for  in equation 4, we get:  

 

                                                (19) 

 
with solution, a quadratic potential:  
 

                      (20) 

 

Here,  is a constant and from the presence of 

  in  Equation  2  it follows that . 



 
 
 
 

Also, because  and  do not appear in the 

expression of metric (Equation 2) in what follows, we will 

consider . The corresponding  

and  equations are:  

 

                       (21) 

 
which implies two situations: 
 
 

Example 1:  with solution to : 

  

 
Comparing the second derivative of this expression with 

 results that . In conclusion, we have the 

solutions:  
 

                                  (22) 

 
of, 
 

                       (23) 

 
for the natural Lagrangian with potential:  
 

                                               (24) 

 
which is the Lagrangian of the harmonic oscillator. 
 
 

Example 2:  with solution to 

  

 

A similar analysis yields  and solutions:  

 

                       (25) 

 
for, 
 

                                  (26) 

 
The aforementioned cases I) and II) are exactly the 
examples from the Wünschmann-type condition revisited. 
The dual point of view of the Lagrangian approach is the 
Hamiltonian framework in which the Lagrangian is 

replaced with a Hamiltonian  and the 

 equation with Hamilton equations:  
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                    (27) 

 
 
Example 3: Time-dependent damped harmonic 
oscillator 
 
The Hamiltonian of the one-dimensional time-dependent 
harmonic oscillator with damping forces linear in velocity 
is (Struckmeier and Reidel, 2002):  
 

                     (28) 

 

and let . The associated  equations are:  

 

        (29) 

 
which yields (Struckmeier and Reidel, 2002):  
 

                                 (30) 

 
Searching in Wünschmann-like condition for 

 we get:  

 

                                                (31) 

 
with solution:  
 

                                               (32) 
 

and then, the Hamiltonian becomes:  
 

                                  (33) 

 

which is a conformal deformation, with time-dependent 

conformal factor  of the Hamiltonian for the 

harmonic oscillator of Example 1. 
 
 
Example 4: Time-dependent anharmonic undamped 
oscillator 
 

The Hamiltonian for one-dimensional time-dependent 
anharmonic oscillator without damping is (Struckmeier 
and Reidel, 2002):  
 

        (34) 

 
The Hamilton equations:  
 

     (35) 

 

yields the SODE:  
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        (36) 

 

Because , an immediate analysis gives that the 

Wünschmann-type condition is not satisfied; so, it is 
explained further in case II of separation of variables in 
the Wünschmann-like condition. 
 
 
SEPARATION OF VARIABLES IN THE 
WÜNSCHMANN-LIKE CONDITION 
 
The analysis of semispray-metrics from Lagrangians has 

as a special feature the separation of variables  and 

 in the expression of . Inspired by this remark, we 

discuss, returning to general SODE (Equation 1), three 

particular variants for :  

 

Case I:  is not important from the point of 

view of semispray-metrics, because the expression of 
Equation 2 has no meaning. Also, the relation of Equation 
4 is a degenerate identity.  

 Case II: , the condition of Equation 4 reads 

 with general solution  which 

yields exactly the results of Wünschmann-type condition 
revisited. 
 
 
Example 5: Painlevé equations 
 
In Bordag’s (1997) Theorem 2, it is proved that all six 
well-known Painlevé equations can be reduced to the 

form ; obviously, for us, more interest are 

the real versions of these equations. These six 
expressions are different from the previous linear one 
and in conclusion, the Painlevé equations do not satisfy 
the Wünschmann-type condition. 
 

Case III: , that is, the SODE (Equation 1) is 

time-independent or autonomous. We study three 
particular cases of separated variables, namely: additive 
separation, multiplicative separation, and Lienard-type 
expression. 
 
 

Additive separation:  

 
The Wünschamnn-type condition (Equation 5) is:  
 

                      (37) 

 
and again there are three situations:  
 

IIIi)  and  is arbitrary. Then,  

and we obtain the case I.  

 
 
 
 

IIIii) , but  which implies 

. Then,  and 

 implies . From the point of view of 

semispray-metrics, we may suppose  and the case 

II is obtained.  

IIIiii)  which requires . The 

relation of Equation 37 reads:  

 

                       (38) 

 

which implies the existence of a constant  such 

that:  and . Integration gives: 

 and  with 

constants . Since  has a multiplicative rôle, we 

suppose  and  which gives the final form:  

 

                                  (39) 

 
The associated semispray-metric is:  
 

                       (40) 

 

and from  it results that  is semi-Riemannian. 

In order to solve equation 39, let  as a 

new unknown function; then:  

 

                       (41) 

 

which, using notation , becomes:  

 

                       (42) 

 
The last equation is a linear one with solution:  

 

                     (43) 

 

with  the first constant of integration. We get:  

 

                      (44) 

 
and we have two subcases: 
 

1) ; then Equation 44 becomes:  



 
 
 
 

                                 (45) 

 
with the solution:  
 

                   (46) 

 

where  and  is the second constant of 

integration. Let us remark that in the survey (Hardt, 1997) 
there are some pointed connections between the function 

 and the harmonic maps, a class of functions satisfying 

remarkable SODEs. 
 

2) . Equation 44 is:  

 

                                 (47) 

 
A long but straightforward computation gives the solution: 
 

        (48) 

 
We study if Equation 29 is of quasi Euler-Lagrange type 
for the quasi-Lagrangian:  
 

                     (49) 

 
From:  
 

 
 
it results that:  
 

 
 
and a comparison with Equation 39 gives:  
 

                                    (50) 

 
with the solution:  
 

 
 
In    conclusion,    Equation   39    is   exactly    the   quasi  
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Euler-Lagrange equation for the quasi-Lagrangian:  
 

 
 
 
Multiplicative separation 
 

, and the Wünschmann-type condition 

becomes:  
 

 
  
which can be put in the form:  
 

 
 

Again, it results that there exists a constant  such 

that:  
 

                                   (51) 

 

Searching Equation 51 (2) for a solution , we 

get:  and . In conclusion, the solution of 

Equation 49 is:  
 

                                   (52) 

 

with  a real constant. The SODE (Equation 1) is:  

 

                                    (53) 

 
with general solution:  
 

                     (54) 

 
From Equations 53 and 54:  
 

                      (55) 

 
and then the semispray-metric is:  
 

                      (56) 

 
which is again a semi-Riemann metric. 
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Let us remark that Equations 9 and 53 can be treated 
in an unitary way, namely, for the SODE:  
 

                                              (57) 

 
the Wünschmann-type condition reads:  
 

 
 

with solutions . But Equation 57 for  

is Equation 9 and for  is Equation 53.  

Let  be a real open interval and the rotationally 

symmetric metric  on . In 

Petersen (1998), the equation:  
 

 
 
appears as necessary and sufficient condition in order to 

have a scalar flat metric for . For  we obtain 

exactly Equation 53 with . 
 
 

Lienard-type expression  
 
The Wünschmann-type condition for 

, is:  
 

 
 
and identification:  
 

 
 

yields  and then Equation 

1 is:  
 

                       (58) 

 

which gives Equation 53 for . This SODE 

is a quasi Euler-Lagrange equation for Equation 49 since 
a comparison with equation 50:  
 

 

 
 
 
 

gives . 

 
The open problem is to connect the aforementioned 
solutions from additive and multiplicative separation and 

Equation 10 with  equation! 

 
 
WÜNSCHMANN-TYPE CONDITION FOR 

 

 
It is obvious that the simplest SODE has the form 

. After a general transformation belonging to the 

pseudogroup of point transformation:  
 

                      (59) 

 
we get the SODE (Bordag, 1997): 
 

  
                                                                                (60) 

 
Then, we search the Wünschmann-like condition for the 
equation:  
 

        (61) 

 
for which:  

 

        (62) 

 
 
Example 6: Geodesic curves on surfaces 

 

Consider the surface  with coordinates 

 and metric . The system of 

differential equations for the geodesics of  can be  

 
transformed into the SODE:  
 

                    (63) 

 
where:  

 

                  (64) 

 

with  the Christoffel symbols. 

The case  corresponds to the 

metric:  



 
 
 
 

                     (65) 

 
with:  
 

                                  (66) 

 
Recall that two metrics with the same geodesics are said 
to be projectively equivalent. Then, because the 
geodesics of Equation 65 are straight lines, this metric is 
called the projective Euclidean metric. 

Another case which is out of our interest is when 

, because  from Equation 62 (2). For 

example, if  is the usual plane, from 

 we arrive at 

. This example leads to the 

following. 
 
 

Example 7: Metrics in geodesic polar coordinates 
 
Let us suppose:  
 

                                (67) 

 
The Christoffel symbols are:  
 

                    (68) 

 
and then:  
 

                    (69) 

 

Let us notice that the semispray-metric (Equation 2) is 
exactly of Equation 67-type. Supposing that in Equation 

67 we have , the only non-vanishing 

coefficient is  and then the SODE of Equation 

63 reads:  
 

                                              (70) 

 

or 
 

which can be integrated: 
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From , we get an implicit solution:  
 

                                  (71) 

 

For example, the SODE oe Equation 53 with  

which is Equation 68  from the work of Garcia-Godinez et 

al. (2004) is of this type with . Therefore, the 

equation of geodesics for the metric 

 satisfies the Wünschmann-type 

condition. 
 
 
Example 8: Liouville metrics 
 
Let us consider a Liouville metric 

, hence:  

 

 
 

 
 

Let us study if the SODE (Equation 53) with  is of 

this type. From , we get that  and from:  

 

 
 

we must have  and . It results in the 

Liouville metric . 

 
 
CHERN-WÜNSCHMANN INVARIANT FOR THIRD-
ODEs 
 
For the general third-order ODE:  
 

                                   (72) 

 
Chern (1978) introduced a Wünschmann-type invariant:  
 

    (73) 

 

For the geometrical significance of relation . 

Theorem 1  from the work of Frittelli et al. (2003) and also  
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Crampin and Saunders (2005). 

Firstly, we give an example of SODE satisfying the 
Wünschmann-type condition such that the derived third-

ODE also satisfies . Namely, a direct computation 

shows these facts for:  
 

                                             (74) 

 
with derived third-ODE:  
 

                                   (75) 

 
Equation 74 is of Euler type and the well-known change 

 gives  which is example II from the 

Wünschmann-type condition revisited. Moreover, the 
solutions of Equation 74 are:  
 

                                  (76) 

 
while the solutions to Equation 75 are:  
 

                                  (77) 

 
Since in the cited papers (Chern, 1978; Frittelli et al., 
2003) there are no examples of equations satisfying 

, we end this paper with such an example. In 

Banaru (1996) the geometry associated to the following 
equation of fifth-order is considered:  
 

 
 

With notation , we obtain:  

 

                                   (78) 

 
for which a straightforward verification gives 

 yielding the vanishing of .  

 
The solutions of Equation 78 are:  

        (79) 
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