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Infectious diseases result in millions of deaths each year. Mechanisms of infection have been studied in detail for many
pathogens. However, many questions are relatively unexplored. What are the properties of human proteins that
interact with pathogens? Do pathogens interact with certain functional classes of human proteins? Which infection
mechanisms and pathways are commonly triggered by multiple pathogens? In this paper, to our knowledge, we
provide the first study of the landscape of human proteins interacting with pathogens. We integrate human-pathogen
protein-protein interactions (PPls) for 190 pathogen strains from seven public databases. Nearly all of the 10,477
human-pathogen PPIs are for viral systems (98.3%), with the majority belonging to the human-HIV system (77.9%). We
find that both viral and bacterial pathogens tend to interact with hubs (proteins with many interacting partners) and
bottlenecks (proteins that are central to many paths in the network) in the human PPI network. We construct separate
sets of human proteins interacting with bacterial pathogens, viral pathogens, and those interacting with multiple
bacteria and with multiple viruses. Gene Ontology functions enriched in these sets reveal a number of processes, such
as cell cycle regulation, nuclear transport, and immune response that participate in interactions with different
pathogens. Our results provide the first global view of strategies used by pathogens to subvert human cellular
processes and infect human cells. Supplementary data accompanying this paper is available at http://staff.vbi.vt.edu/
dyermd/publications/dyer2008a.html.
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Introduction

Infectious diseases result in millions of deaths each year.
Millions of dollars are spent annually to better understand
how pathogens infect their hosts and to identify potential
targets for therapeutics. An important aspect of any host-
pathogen system is the mechanism by which a pathogen is
able to invade a host cell. Within these complex systems,
protein-protein interactions (PPIs) between surface proteins
form the foundation of communication between a host and a
pathogen and play a vital role in initiating infection [1]. PPI-
mediated mechanisms of infection have been studied in detail
for many pathogens [2-7]. However, many questions are
relatively unexplored. What are the properties of human
proteins that interact with pathogens? Do pathogens interact
with certain functional classes of human proteins? Which
infection mechanisms and pathways are commonly triggered
by multiple pathogens? A significant hurdle to such global
cross-pathogen comparisons has been the shortage of large-
scale datasets of interactions between host and pathogen
proteins. High-throughput experimental screens have been
primarily used to identify intraspecies PPIs [8-16]. However,
recent efforts to include host-pathogen PPIs in public
databases have made it easier to acquire the data needed to
address these important questions.

In this paper, we integrate experimentally verified human-
pathogen PPIs for 190 pathogen strains from seven public
databases [17-23]. We partition the strains into 54 different
pathogen groups, where each group is made up of taxonomi-
cally related strains. We analyze the intraspecies network of
PPIs between the 1,233 unique human proteins spanned by
the host-pathogen PPIs, and find that pathogens, both viral
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and bacterial, tend to interact with hubs (proteins with many
interacting partners) and bottlenecks (proteins that are
central to many paths in the network) in the human PPI
network.

We pay special attention to two networks of PPIs between
human proteins: the proteins that interact with at least two
viral pathogen groups (see Figure 1) and the proteins that
interact with at least two bacterial pathogen groups (see
Figure 2, noting that the figure also contains human proteins
targeted by only one bacterial pathogen group). We used the
Cerebral plugin [24] for Cytoscape [25] to render these
images. We compute the Gene Ontology (GO) [26] functions
enriched in each of these two sets of human proteins. Such
enriched functions highlight human pathways that may be
involved in infection mechanisms that are common to
multiple pathogens. Examples of such processes and compo-
nents include cell cycle regulation, I-kB kinase/NF-kB
cascade, and the nuclear membrane. These functions shed
light on a number of features shared by different pathogens:
interacting with human transcription factors and key
proteins that control the cell cycle; transport of genetic
material through the nuclear membrane (in the case of
viruses) to subvert the host’s transcriptional machinery;
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triggering an immune response via toll-like receptors; and
activation of NF-«kB signaling. We discuss in detail the
importance of these and other enriched functions, as well
as the proteins they annotate and the pathogens they interact
with. Overall, these results provide the first global view of
aspects of human cellular processes that are controlled by
and respond to pathogens.

Human Proteins Interacting with Viruses

Our results should be interpreted with caution since no
single pathogen may target all the proteins and PPIs we
analyze. In addition, data for bacterial pathogens are scarce.
However, we suggest that piecing together targeted human
proteins across multiple pathogens has the potential to
provide insights into common molecular mechanisms of
infection and proliferation used by different pathogens.

Results/Discussion

We use the term “pathogen group” to refer to a set of
pathogen strains that are closely related taxonomically, i.e.,
they all belong to the same genus, or, in the case of viruses,
the same family. We partition the 190 strains into 54
pathogen groups: 35 viral, 17 bacterial, and two protozoan.
Nearly all of the 10,477 human-pathogen PPIs we collect are
for viral systems (98.3%), with the majority belonging to the
human-HIV system (77.9%). These human-pathogen PPIs
involve 1,233 unique human proteins, of which 1,109 are
known to interact with at least one other human protein. Of
these 1,233 human proteins, 221 interact with at least two
pathogen groups (182 with more than one viral pathogen and
20 with more than one bacterial pathogen).

Pathogens Target Protein Hubs and Bottlenecks
Researchers have argued that the degree distribution of PPI
networks is scale-free and follows the power law, i.e., the
fraction of proteins in the network interacting with k& other
proteins is proportional to k7, for some y greater than zero,
typically between two and three [27,28]. One feature of such
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Figure 1. Human Proteins Interacting with Multiple Viral Pathogen Groups
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The network of interactions between human proteins interacting with at least two viral pathogen groups. The size and color of a protein denote the
number of pathogen groups that interact with it: light blue is two, dark blue is three, green is four, yellow is five, orange is six, and red is seven.

doi:10.1371/journal.ppat.0040032.g001
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Figure 2. Human Proteins Interacting with Bacterial Pathogen Groups

The network of interactions between human proteins interacting with at least one bacterial pathogen group. The size and color of a protein denote the
number of pathogen groups that interact with it: purple is one, light blue is two, dark blue is three, and green is four.

doi:10.1371/journal.ppat.0040032.g002

networks is that they are robust in the face of attacks on
random nodes. For instance, the removal of random subsets
of nodes increases the diameter of the network only gradually
[29,30]. In this context, the diameter is defined as the average
length of the shortest paths between all pairs of proteins.
However, the selective removal of even a small number of
nodes of high degree can dramatically change the topology of
the network [29,30].

There is considerable debate on the origins of the scale-
free property and whether this property is an artifact of
experimental biases and errors [31-33]. Notwithstanding this
debate, we reasoned that pathogens may have evolved to
interact with human proteins that are hubs (those involved in
many interactions) or bottlenecks (those central to many
pathways) [34] to disrupt key proteins in complexes and
pathways. (See Methods for a precise definition of “bottle-
neck.”) Our results support this hypothesis. Figure 3A
displays the cumulative log-log plot of the degree distribution
of four sets of proteins in the human PPI network: (i) all
proteins, (ii) “Viral” set, the subset of proteins interacting
with at least one viral pathogen group, (iii) “Bacterial” set, the
subset of proteins interacting with at least one bacterial
pathogen group, and (iv) “Multiviral” set, the subset of
proteins interacting with at least two viral pathogen groups.
We did not include the “Multibacterial” set of human
proteins interacting with two or more bacterial pathogen
groups in this analysis since there are only 20 such proteins.
These plots show that across almost the entire range of
degrees, proteins interacting with viral and bacterial patho-
gen groups tend to have higher degrees than human proteins
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not interacting with pathogens. Further, proteins interacting
with at least two viral pathogens have higher degrees than
proteins interacting with one or more viral pathogens. The
betweenness centrality results display the same trend (see
Figure 3B). Across the entire range of values, proteins
interacting with viral and bacterial pathogens have higher
betweenness centrality. These results suggest that pathogens
may have evolved to interact with human hub and bottleneck
proteins, perhaps because these proteins control critical
processes in the host cell.

We used Gene Set Enrichment Analysis (GSEA) [35] to test
whether the gaps we observed in Figure 3 are statistically
significant. GSEA is a method developed to assess the
significance of the differential expression of a pre-defined
gene set in two phenotypes of interest [35]. GSEA ranks all
genes by a suitable measure of differential expression (e.g.,
the ¢-statistic) and uses a modified Kolmogorov-Smirnov test
to assess if the genes in the given set have surprisingly high or
low ranks. Since distributions of the ¢-statistics of differ-
entially expressed genes have been observed to follow a
power-law distribution [36], we reasoned that GSEA may be
appropriate to test whether the human proteins interacting
with pathogens have surprisingly high degree or betweenness
centrality.

Our GSEA results support the conclusions we draw from
Figure 3 that pathogens preferentially interact with human
protein hubs and bottlenecks: for each of the three sets of
proteins plotted in Figure 3, GSEA yields a p-value of at most
33X 107° (degree) and 2.3 X 107* (centrality). To alleviate the
concern that the observed patterns may be artifacts of
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Figure 3. Degree and Centrality Distributions

Centrality of Human Protein in Human PPI Network

Cumulative log-log distributions of (A) node degrees and (B) centralities for four subsets of nodes in the human PPI network: (i) red pluses are the set of
all proteins in the network; (ii) green squares correspond to the viral set; (iii) blue crosses are for the bacterial set, and (iv) magenta squares are for the
multiviral set. Numbers in parentheses represent the number of proteins in each set. The fraction of proteins at a particular value of degree or centrality
is the number of proteins having that value or greater divided by the number of proteins in the set.

doi:10.1371/journal.ppat.0040032.g003

experimental biases or errors in the human PPI network, we
repeated each of the analyses using two subsets of the human
PPI network: a network composed of 13,324 PPIs detected
only by high-throughput studies [14,15,37] and a network with
59,396 PPIs constructed using only manually curated inter-
actions [20,23]. The top half of Table 1 summarizes these
results. For all three networks, the viral set, the bacterial set,
and the multiviral set are significant at the 0.05 level for both
degree and centrality, with the exception of the multiviral set
in the high-throughput network. Since 77.9% of the human-
pathogen PPIs are for the human-HIV system, we repeated
these analyses for each network after removing all human-
HIV PPIs and obtained similar results (see the bottom half of
Table 1). In Text S1, we discuss three analyses that show that

the consistency in the GSEA results for degree and for
centrality are unlikely to result from any correlation that may
exist between a protein’s degree and its centrality (Figure S1
and Table S1 accompany the discussion in Text S1). We note
that Tables S2 and S3 of the supplementary data contain
detailed information on the GSEA results for the groups in
Figure 3 and for individual pathogen groups.

Functions Enriched in Proteins Interacting with Pathogens

We computed over-represented GO terms in 58 sets of
human proteins: the bacterial set, the viral set, the multi-
bacterial set, the multiviral set, and the 54 sets of human
proteins interacting with each of the 54 pathogen groups.
Overall, we found 404 unique GO terms enriched in these

Table 1. GSEA Results

Network Protein Set Number Proteins Degree Centrality
in Group ES p-Value ES p-Value
All Human-Pathogen PPIs w Virus 1,029 0.79 <1x10° 0.83 <1x10°
Multivirus 182 0.84 <1x10°° 0.86 12 x 107
Bacteria 108 0.76 3%x107° 0.89 23 X 107
HT Virus 466 0.68 <1x10°° 0.82 1.5 X 1072
Multivirus 98 0.65 0.03 0.82 0.1
Bacteria 43 0.79 2x10° 0.89 0.02
MC Virus 958 0.78 <1x10° 0.80 <1x10°
Multivirus 174 0.83 <1x10°° 0.82 19 X 107°
Bacteria 100 0.73 34 x10°* 0.85 92 x 1074
Without Human-HIV PPIs w Virus 499 0.80 <1x10° 0.85 <1x10°
Multivirus 81 0.83 <1x10° 0.88 36 X 1073
HT Virus 267 0.70 1X10° 0.84 6.12 X 107*
Multivirus 46 0.72 0.02 0.86 0.07
MC Virus 958 0.78 <1x10°° 0.80 <1x10°
Multivirus 174 0.83 <1x10° 0.85 13 X 103

Summary of GSEA results with and without human-HIV interactions for three networks: Whole human PPI network (W), the human PPI network yielded by High-Throughput experiments
(HT), and the human PPI network consisting only of Manually Curated PPIs (MC). We report p-values only for the sets of human proteins in Figure 3. The “number of proteins in group”
column displays the total number of human proteins in that group. The “ES” column displays the enrichment score calculated by GSEA.

doi:10.1371/journal.ppat.0040032.t001
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sets. A complete list of enriched GO terms with images of the
sub-networks spanned by the human proteins annotated with
each term is available on the supplementary website.

We identified at least one enriched function in 21 pathogen
groups. Analysis of these data identified 91 biclusters (see
Methods for details), each containing between two and seven
pathogen groups and between two and 40 enriched GO
functions. We focus on two of the biclusters below. The
biclusters demonstrate that our analysis can group different
enriched functions together even if the effects of the
interactions on the host cell or the participating host
proteins are different.

Our first example is a bicluster spanning the three pathogen
groups Adenovirus, HIV, and Papillomavirus and 23 GO
functions. GO biological processes in the bicluster include
“cell cycle process” and “regulation of cellular process.” GO
cellular components in the bicluster include “membrane-
enclosed lumen” and “pore complex.” The membrane-
enclosed lumen is the space within a sealed membrane or
between two sealed membranes. Proteins annotated with
these functions include KPNAZ2, a karyopherin, the histone
deacetylases HDAC1 and HDACZ2, and a number of Tran-
scription Factors (TFs). KPNA2 plays an important role in
both the import and export of material through the nuclear
membrane. Interactions with KPNA2 enable a virus to enter
the nucleus and take over the host’s transcriptional machinery
[38-41]. HDACGCs play an important role in silencing gene
expression by removing acetyl groups from histones, thus
causing them to wrap more tightly around DNA and block the
binding of TFs. The role played by pathogen-HDAC inter-
actions varies among pathogen groups. In the case of
Adenovirus, it has been suggested that the pathogen protein
E1B interacts with HDAC1/SIN3 to produce an enzymatically
active complex that may be capable of repressing the
transcriptional activity of the human TP53 protein in order
to block apoptosis [42]. In contrast, the E7 Papillomavirus
protein binds to the HDAC complex to promote cell growth,
eventually leading to cervical cancer [43].

The second example is a bicluster containing a virus (HIV)
and three bacteria (Chlamydia, Neisseria, and Escherichia coli).
This bicluster contains 11 GO functions including the
biological processes “immune response,” “response to
> and “cytokine production.” Although these four
groups of pathogens interact with proteins belonging to the
same pathways, the functions of the interactions are differ-
ent. In the case of the bacteria, these functions annotate
such proteins as toll-like receptors (TLRs) and interleukin
receptor-associated kinases (IRAKs), which are special
classes of host proteins responsible for recognizing foreign
material and activating an immune response. There are no
reported interactions with these proteins and HIV, although
some researchers suggest that the single-stranded RNA of
HIV-1 may encode many TLR7/TLR8 ligands [44]. In
contrast to the bacteria in the bicluster, HIV uses host

stimulus,’

proteins involved in immune response such as CD4, CCR5,
and CXCR4 to gain entrance to the cell. HIV attaches to the
host protein CD4, a T cell glycoprotein, and subsequently to
host chemokine receptors CCR5 and CXCR4. These binding
events cause conformational changes to host proteins that
allow the membrane of the virus to fuse to the host cell
membrane [1].

@ PLoS Pathogens | www.plospathogens.org
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The Network of Proteins Interacting with Multiple
Pathogens

The biclustering analysis of the previous section suggests
that specific sets of pathogen groups might trigger or target
the same human pathways and processes. Encouraged by
these data, we asked if there are infection pathways
commonly targeted or triggered by at least two viral or
bacterial pathogen groups. To answer this question, we
constructed two networks of human proteins: one where
every protein interacts with at least two viral pathogen
groups and the other where every protein interacts with at
least two bacterial pathogen groups. In each network, we
included every PPI connecting two proteins in the network.
Figures 1 and 2 display these networks. (Note that Figure 2
also contains human proteins that interact with only one
bacterial pathogen group.) We computed the enriched GO
functions in these two networks. We group and highlight
some of the enriched functions and relevant sub-networks
below. Throughout our discussion, we will refer to the
localization of proteins in the four main regions of Figures
1 and 2: extracellular, the cell membrane, the cytoplasm, and
the nucleus. For every GO function that we discuss, we
mention its p-value and rank in the sorted list of all functions
enriched in the corresponding network.

Human Proteins Targeted by Multiple Viral Pathogens

Our analysis highlights a number of important mechanisms
that viral pathogens use to manipulate the human cell: (i)
control the host cell cycle program to ensure the tran-
scription of viral genetic material; (i) utilize human TFs to
promote the transcription of viral genetic material; (iii) target
key human proteins that regulate critical cellular processes
such as apoptosis; and (iv) subvert host machinery for
transporting material across the nuclear membrane.

Control the host cell cycle program. Many viral pathogens
are known to manipulate host cell cycle processes [45-47].
Our enrichment results reflect these findings. Our analysis
identifies a sub-network of human proteins targeted by
multiple viral pathogen groups enriched in the biological
process “cell cycle” (p-value 6.2 X 107°, rank 21/89). Figure 4
displays this network. In this figure, we used GO annotations
to clarify in which phase of the cell cycle each protein
participates. The proteins in this figure are scattered through
the cytoplasm and nucleus regions of Figure 1.

Two stages of the cell cycle are enriched in our analysis:
“Gy phase” (p-value 0.004, rank 52/89) and “Interphase” (p-
value 0.01, rank 60/89). Images for these functions are
available on the supplementary website. G, is the initial stage
of the cell cycle. In this phase, a number of proteins needed
for DNA replication are transcribed and translated. A direct
link between pathogen interference and the G; phase has
been established for HIV [48]. The HIV TAT protein
elongates the G; phase in order to promote viral gene
expression. Of the 13 human proteins in Figure 4 that
participate in G4, ten are known to interact with TAT. One of
these interactions is with the human protein RBI, a
retinoblastoma-associated protein and a known tumor
suppressor, which can repress genes transcribed by the E2F
family of transcription factors that are required for entering
the S phase of the cell cycle [49]. RBI interacts with five
pathogens in total: Adenovirus, Herpesvirus, HIV, Papillo-
mavirus, and Simian virus [5b0-54]. In the case of HIV, the
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Figure 4. Human Cell Cycle Proteins Interacting with Multiple Viral Pathogen Groups

Enriched network of human proteins annotated with “cell cycle.” The subset of proteins labeled as “Non-specific” are those not annotated with any
function more specific than “cell cycle” in GO. If a protein participates in multiple phases, then it appears in each phase. An edge connecting two
proteins denotes a known interaction in the human PPl network. Human proteins highlighted in red are those known to be involved in the induction of

apoptosis.
doi:10.1371/journal.ppat.0040032.9004

TAT protein interacts with the human RBI protein to
manipulate normal cell cycle conditions and promote viral
gene expression. The HIV long terminal repeat (LTR) is
responsible for integrating viral DNA into the host genome
and also acts as a promoter and enhancer of viral proteins.
The LTR is most active in the early G; phase and the activity
of the LTR diminishes as the cell progresses through the G,
phase and enters the S phase [48]. Therefore, the extension of
the G; phase may increase activity of the LTR and the
eventual production of more viral proteins. In the case of
Papillomavirus, the VE6 protein in Papillomavirus has been
shown to manipulate the cell cycle by altering mitotic
checkpoint fidelity through its effect on CDC2 activity and
inactivation of TPb3 [55]; it interacts with ten human
proteins in Figure 4.

The human DLG1 protein is a “discs large homolog” that is
essential for the transition from the G, to S phase of the cell
cycle. This protein interacts with three pathogens: Adenovi-
rus, Papillomavirus, and T-lymphotrophic virus [56,57]. The
direct interaction of Papillomavirus proteins with human
DLG1 has been implicated in development of HPV-related
cancer [58].

Our analysis also identifies a network of human proteins
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enriched with the GO function “transcription regulator
activity” (p-value 3.22 X 1077, rank 15/89) (see supplementary
website for image). The portion of Figure 4 corresponding to
the G, phase includes the transcription factors E2F1, E2F4,
and TAF1. Each of these proteins plays a key role in normal
cell cycle progression from G; to S phase. E2F1 and E2F2
interact with two pathogens, HIV and Papillomavirus
[48,59,60]. TAF1 interacts with three pathogens, Adenovirus,
HIV, and Papillomavirus [61-63]. By blocking the interaction
of RB1 and various transcription factors, viral pathogens are
able to prevent the cell from advancing into the S phase. This
event extends the G; phase of the cell cycle and allows the
transcription of viral genetic material.

Regulate apoptosis. An important step in viral patho-
genesis is the regulation of host cell apoptosis. During the
initial process of infection, prevention of apoptosis is
important to allow the replication of viral genetic material.
However, promotion of apoptosis has been implicated in the
progression of infection. Our results underscore both
phenomena. Several host proteins involved in the control of
cellular apoptosis are targeted by viral pathogens (human
proteins highlighted in red in Figure 4). One of the key
regulators of apoptosis, and perhaps the most studied human
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Viral Pathogen Groups

Enriched network of human proteins annotated with “nuclear transport”
(blue), “nuclear membrane part” (green), “protein import” (orange), and
“nuclear pore” (red). An edge connecting two proteins denotes a known
interaction in the human PPI network.
doi:10.1371/journal.ppat.0040032.g005

protein, is TP53. TP53 interacts with seven viral pathogens:
Adenovirus, Hepatitis, HIV, Papillomavirus, Polyomavirus,
Sarcoma virus, and Simian virus [20, 64-70]. Interactions with
Adenovirus, Hepatitis, and Papillomavirus are responsible for
preventing apoptosis of the infected human cell. Adenovirus
EIB and E4 proteins bind with and inactivate TP53 [71,72].
The human Survivin protein is an apoptosis inhibitor that is
repressed by TP53 [73]. The repression of Survivin is
necessary for the human cell to activate apoptotic program-
ming. Another study shows that the HIV VPR protein can
directly upregulate the human Survivin protein [74]. These
studies suggest a common mechanism for viral inhibition of
apoptosis of the host cell. TP53 interacts with a number of
Hepatitis proteins including the Core protein; Core has been
shown to augment TP53’s transcriptional activity during
infection to promote production of viral proteins and
deregulate cell cycle checkpoint controls and block TP53-
mediated apoptosis [75,76]. Papillomavirus VE6 interacts with
human TP53 to promote degradation of TP53 and prevent
apoptotic programming of the infected cell [77]. In contrast
to these phenomena, the viral HIV protein TAT has been
shown to assist in the progression of HIV infection by
attaching to uninfected host T cells and triggering cell death
via apoptosis [78,79].

Transport viral material across the nuclear membrane.
Since viruses lack the machinery needed to replicate their
genomes, viral genetic material must first cross the barrier
from the cytoplasm into the nucleus in order to make use of
the host’s transcriptional machinery. Our analysis identifies a
subset of human proteins enriched in four GO functions
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related to this important step: “nuclear transport” (p-value
2.32 X 1075, rank 24/89), “nuclear membrane part” (p-value
5.61 X 107°, rank 28/89), “protein import” (p-value 0.001, rank
41/89), and “nuclear pore” (p-value 0.018, rank 69/89). Figure
5 displays this network. The layout in Figure 1 displays these
proteins both in the region labeled “cytoplasm” and in the
region labeled “nucleus.”

The nuclear pore is a large protein complex that spans the
nuclear membrane and allows for the transport of molecules
across the nuclear envelope including proteins and RNA.
There are ten human proteins that are part of the nuclear
pore and targeted by multiple pathogens. These are the nodes
containing a red section in Figure 5. Although smaller
molecules may freely pass through the nuclear pores of the
nuclear envelope, larger macromolecules require the assis-
tance of karyopherins. Karyopherins may act as importins or
exportins. Karyopherins bind to their cargo; after they cross
the nuclear envelope, an interaction with the human RAN
protein releases the bound partner. Figure 5 contains five
human karyopherin proteins (KPNAI, KPNA2, KPNBI,
RANBP5, TNPO1) as well as the human RAN protein, which
interacts with five pathogens: Adenovirus, HIV, Influenza,
Papillomavirus, and Sarcoma virus [20,80]. The human
protein KPNB1 interacts with four pathogens: HIV, Papil-
lomavirus, Influenza, and Simian virus [20,39,81,82]. In the
case of HIV, one of the interacting partners of the human
KPNB1 protein is REV. KPNB1 binds and mediates the
nuclear import of the HIV REV protein. Once inside the
nucleus, REV binds to unspliced viral mRNA and exports it
from the nucleus to be translated [6]. REV is able to move
between the nucleus and cytoplasm because it contains both a
nuclear localization signal and a nuclear export signal. The
human RANBP5 protein interacts with three pathogens: HIV,
Hepatitis, and Papillomavirus [83-85]. The Hepatitis inter-
actor for RANBP5 is the viral 5A protein. While little is
known about the RANBP5 protein, studies suggest that the
viral BA protein may interact with RANBP5 and block
secretion of cytokines produced in response to a viral
infection [83]. This network highlights the ability of viral
pathogens to make use of host machinery in order to
translate their own genetic material and at the same time
prevent the activation of a viral immune response.

Human Proteins Targeted by Multiple Bacterial Pathogens

Although the number of human-bacteria PPIs gathered in
this study is small (only 174), our methods identified an
important subset of human proteins enriched for functions
involved in immune response and interacting with multiple
bacterial pathogen groups. Figure 6 displays a subset of the
multibacterial set that is enriched in four GO functions:
“immune system process” (p-value 1.397 X 107°, rank 1/28),
“response to wounding” (p-value 3.93 X 107, rank 8/28),
“immune response” (p-value 0.002, rank 14/28), and “I-xB
kinase/NF-kB cascade” (p-value 0.012, rank 18/28). The
proteins contained in this image are located in the top-right
corner of Figure 2.

These functions are tied together by the Toll-Like
Receptors (TLRs) and the protein IRAK1 found in the
network in Figure 6. TLRs are a special class of cell-surface
proteins that play a role in recognizing the presence of a
pathogen and activating an immune response against the
pathogen. The TLR/IRAK complex stimulates the activity of
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Figure 6. Human Immune System Proteins Interacting with Multiple
Bacterial Pathogen Groups

Enriched network of human proteins annotated with “immune system
process” (red), “response to wounding” (orange), “immune response”
(green), and “I-kB kinase/NF-kB cascade” (blue). The proteins in the
black box form a dense network of PPIs; we have left these out for clarity.
An edge connecting two proteins denotes a known interaction in the
human PPI network.

doi:10.1371/journal.ppat.0040032.9006

NF-xB [86-88], a complex of proteins that act as a TF for
activating the production of a set of proteins in response to
stimuli such as stress, cytokines, and bacterial or viral
antigens.

The human TLRs and IRAKI1 protein interact with the
pathogen proteins FLIC (E. coli), HSP60 (Chlamydia), and PIB
(Neisseria) [20]. FLIC is a flagellin protein. TLR4 and TLR5
contain a specific innate immune receptor for recognizing
bacterial flagella [5,89]. HSP60 is a heat-shock protein that
stimulates an immune response via TLR2 and TLR4 [90]. PIB
is an outer membrane protein that is known to be recognized
by TLR2, TLR4, and TLR9Y [7].

Another human protein included in this network is HLA-
DRA, which is part of the major histocompatibility complex
(MHC). The MHC plays an important role in the immune
system. HLA-DRA belongs to the class II MHC; proteins in
this class belong to the lysosomal compartment of the cell,
which contains digestive enzymes that kill engulfed foreign
particles such as viruses or bacteria. The two bacterial
partners for HLA-DRA are Mycoplasma and Staphylococcus
[91,92]. In the case of Mycoplasma, the interacting partner is
the MAM superantigen, which is known to contribute to
autoimmune disease by activating proinflammatory mono-
kines such as interleukin 1p and the tumor necrosis factor o

[93].

Other Highly Targeted Human Proteins

The networks in Figures 1 and 2 contain a number of other
human proteins targeted by more than two pathogen groups.
We discuss two of these proteins—STAT1 and EP300.

Viral pathogens also interact with other human proteins
involved in immune response pathways that are not included
in the network in Figure 6. An example is the human protein
STATI1. When the cell recognizes the presence of foreign
material, it activates an immune response as a defense
mechanism to either remove the foreign material or cause
the cell to undergo apoptosis. During this process, STAT1 is
tyrosine- and serine-phosphorylated and forms a homodimer
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known as IFN-y-activated factor (GAF). GAF migrates to the
nucleus where it binds to specific cis-elements to drive the cell
to produce interferons, agents that inhibit viral replication
within other cells of the body [94]. STATI1 interacts with
Adenovirus, HIV, and Hepatitis [95-97]. Hepatitis POLG is
part of the pathogen core complex that allows the virus to
avert host antiviral response by binding to host STAT1 and
inhibiting its activity [98].

Within the nucleus, we see pathogens target the human
protein EP300, a histone acetyltrans-ferase that regulates
transcription via chromatin remodeling. EP300 interacts with
Adenovirus, HIV, Papillomavirus, and Polyomavirus [99-102].
The pathogen Adenovirus targets human EP300 via E1IA. E1A
is an oncoprotein that stimulates cell growth and inhibits
differentiation by binding to the EP300/CBP complex and
deregulating cellular transcription programs [103]. Papillo-
mavirus protein VE7 shares many functional and structural
similarities with E1A and is an interacting partner of human
EP300. The disruption of normal growth conditions brought
about by the EIA-EP300 interaction leads to the development
of cervical cancer [104]. In the case of HIV, the viral TAT
protein targets human EP300. The resulting complex regu-
lates TAT transactivating activity and may assist in the
integration of viral genetic material into human DNA [105].

Conclusions

We have provided a general overview of the landscape of
human proteins interacting with pathogens and demonstra-
ted that pathogens preferentially interact with two classes of
human proteins: hubs (i.e., proteins that interact with many
other human proteins) and bottlenecks (i.e., proteins that lie
on many shortest paths) in the human PPI network. We
identified GO functions over-represented in human proteins
interacting with pathogens. Biclustering analysis demonstra-
ted that many sets of pathogen groups target the same
processes in the human cell, even if they interact with
different proteins.

We constructed networks of PPIs between human proteins
that interact with at least two viral pathogen groups and with
at least two bacterial pathogen groups. Consideration of the
GO functions enriched in these networks provided insights
into numerous pathways targeted or triggered by multiple
pathogens: control and deregulation of the cell cycle; import
of pathogen proteins into the nucleus in an attempt to
subvert the host’s DNA replication and transcription machi-
nery; manipulation of host cellular programs such as
apoptosis; immune response and activation of NF-xB path-
ways via the TLRIRAK complex.

A striking aspect of this network is that human proteins
that mediate pathogen effects are often proteins in cancer
pathways (e.g., RB1, TP53, and STAT1). We note that only
some of the pathogens targeting such proteins are known to
cause cancer themselves (e.g., Herpesvirus and Papillomavi-
rus). In fact, a number of parallels are becoming evident
between infection and cancer; for instance, in the part that
TLRs play in angiogenesis and their potential as targets for
therapeutics [106,107] and the role that viruses may play in
the development of inflammatory diseases and cancer [108].
Cell cycle regulators and many TFs have been extensively
studied in the context of mediating tumor formation. Our
observation that they are also communication vehicles for
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Table 2. Interaction Method and Support Summary

Support Method

Interaction Count Fraction of Interactions

Reactome curated

Not specified

Yeast two-hybrid

Pull down

Coimmunoprecipitation

Other technology

Observed by multiple methods
Described in one paper

Described in two papers

Described in more than two papers

Experimental methods

Literature support

7,229 0.69
2,305 0.69
419 0.22
314 0.04
210 0.03
210 0.02
260 0.02
9,810 0.94
198 0.02
469 0.04

Summary of experimental methods and literature support for the host-pathogen PPIs in our dataset. The experimental group “Not specified” denotes that there was no observation
method listed in any database. Note that every interaction in this study must have at least one piece of literature support.

doi:10.1371/journal.ppat.0040032.t002

pathogens suggests that the link between pathogen infection
and cancer may be worthy of further experimental studies.

An important outcome of such a comparative study is the
identification of human proteins to target experimentally for
developing therapeutics. We provide a file on the supple-
mentary website that contains the degree, centrality, the
number of pathogen interactors, and the most specific
annotations in each of the three GO hierarchies for each
human protein that interacts with at least one pathogen
protein. We provide this data as a resource for researchers
interested in prioritizing antiviral and antibacterial targets.

We reiterate that our results should be interpreted with
caution since no single pathogen may target all the proteins
we analyze. As interactions between host and pathogen
molecules are discovered on genome-wide scales [109],
computational analyses such as those presented in this paper
may provide a more detailed understanding of the landscape
of host pathways and processes that pathogens target.

Methods

Datasets used. We downloaded all datasets used in this study in
August 2007. We gathered 10,477 experimentally detected and
manually curated protein-protein interactions (PPIs) between human
and pathogen proteins and 75,457 experimentally verified PPIs
between human proteins from primary literature [109] and seven
databases: the Biomolecular Interaction Network Database [21], the
Database of Interacting Proteins [19], the Human Protein Reference
Database [23], IntAct [18], the Molecular INTeraction database [17],
the Munich Information Center for Protein Sequences [22], and
Reactome [20]. Table 2 contains statistics on the experimental
methods that yielded these PPIs and the literature support for the
PPIs. These interactions cover 190 different pathogen strains. Two
pathogens—HIV and Hepatitis—account for 88.4% (9,268) of the
human-pathogen PPIs. To mitigate this bias, we merged pathogen
strains into 54 groups based on taxonomic similarity: each group
contains pathogens belonging to the same genus, or, in the case of
viruses, the same family. The 54 pathogen groups contain 35 viral, 17
bacterial, and two protozoan groups. We constructed lists of unique
human proteins interacting with each group. Table 3 summarizes the
number of interactions acquired for each pathogen group. For some
analyses, we consider a human PPI network assembled from unbiased
high-throughput experiments [14,15,37] and a network constructed
from only manually curated human PPIs [20,23]. These networks
contain 13,324 and 59,396 interactions, respectively. We obtained
functional annotations from the Gene Ontology (GO) [26].

Notation. We represent the set of known interactions between
human proteins as an undirected graph G(V, E), where V is the set of
nodes (proteins) and E is the set of edges (interactions). Let M be the
set of pathogen groups. We say that a pathogen group P interacts with
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a human protein s if s interacts with a protein in P. For a pathogen
group P € M, we define Vp C V to be the set of human proteins that
interact with P. Let T'=Up¢y be the set of proteins that interact with
at least one pathogen. Let Ty (respectively, Tp) be the set of human
proteins that interact with at least one viral (respectively, one
bacterial) group. Let T\ C Ty, (respectively, T%5 C Tj) be the set of
human proteins that interact with at least k viral (respectively, k
bacterial) pathogen groups; by definition, 7"y, = Ty and T, = T},
We now describe in detail the tests we use to analyze Ty, Ty, T4,
T®,, and the 54 Vp sets.

Analysis of degree in the human PPI network. The degree of a
protein in a graph is the number of interactions in which it
participates, not including self-interactions. We plot distributions of
the degrees of four sets of proteins in G: (i) V, the set of all proteins in
G; (ii) Tp, the set of all human proteins interacting with at least one
bacterial pathogen group; (iii) Ty, the set of all human proteins
interacting with at least one viral pathogen group; and (iv) T2y, the
set of human proteins interacting with at least two viral pathogen
groups. In this analysis, we ignore T®y since it contains only 20
proteins. If the distributions of Tz and T are more biased towards
high degree proteins than the distribution for V, then we hypothesize
that viral and bacterial pathogens have evolved to interact with hub
proteins in the human PPI network.

Analysis of betweenness centrality in the human PPI network. The
degree of a protein captures only its local connectivity. Centrality
captures both global and local features of a protein’s importance in a
network. In this paper, we use the notion of a protein’s betweenness
centrality [110]. A protein with high betweenness centrality is
characteristic of a bottleneck in an interaction network (i.e., there
are many paths that pass through this protein) [34].

We define the betweenness centrality be(v) of a protein v as the fraction
of shortest paths in G between all protein pairs (x,w) that pass through
the protein v. Given u, v, w € V, let 6, denote the number of shortest
paths between proteins « and w. There may be multiple equally long
paths between u and w that are shorter than any other path between u
and w. Let 6,,(v) denote the number of these that pass through v.
Then the betweenness centrality of v is

Guw(v)
be(v) = Z o
wweV
u,wF# v

In our analysis, we divide bc(v) by the number of pairs of nodes in G,
yielding a quantity between 0 and 1. We use the algorithm devised by
Brandes [111] to compute the betweenness centrality of all nodes in G.
This algorithm runs in time proportional to the product of the
number of nodes in G and the number of edges in G. As with the
degree analysis, we plot distributions of the betweenness centrality for
V, Ty, Ty, and T® . If the distributions for Ty, Ty, and T?y, are biased
toward higher values of centrality than the distribution for V, we
hypothesize that pathogens have evolved to interact with bottlenecks
in the human PPI network.

Gene set enrichment analysis. Let L be the ranked list of the
proteins in V, where we rank the proteins either by degree or by
betweenness centrality. Given L and a predefined set S of proteins of
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Table 3. Interaction Summary

Group Number Number of Number of Unique Number of Targeted Proteins
of PPls Strains Targeted Human Proteins in Human PPI Network
HIV 8,024 44 743 671
Hepatitis 1,244 16 109 93
Influenza 287 4 76 76
Papillomavirus 229 12 96 94
Epstein-Bar virus 211 2 135 121
Adenovirus 80 9 60 59
Herpesvirus 64 20 54 54
Yersinia 57 3 56 45
Sarcoma virus 52 6 36 35
T-lymphotrophic virus 25 2 23 23
E. coli 22 1 20 20
Chlamydia 19 1 19 19
Neisseria 16 1 16 16
Streptococcus 14 5 8 8
Vaccinia virus 13 4 7 7
Staphylococcus 12 3 10 7
Pseudomonas 1 1 9 9
Measles virus 10 3 4 4
Polyomavirus 8 3 8 8
Leukemia virus 7 1 7 6
Shigella 5 1 4 4
Anemia virus 4 4 2 1
Bacillus 4 3 4 4
Hantaan virus 4 1 4 4
SARS 4 1 4 4
Clostridium 3 3 2 2
Dengue virus 3 3 3 3
Rotavirus 3 3 2 2
Echovirus 3 2 1 1
Helicobacter 3 2 2 2
Salmonella 3 1 3 3
Seoul virus 3 1 3 3
Listeria 3 1 2 2
SIvV 2 2 2 2
Orf virus 2 2 1 1
Foamy virus 2 1 2 2
Puumala virus 2 1 2 2
Stomatitis virus 2 1 2 2
Mycoplasma 2 1 2 1
Sendai virus 1 1 1 1
Nucleopolyhedrovirus 1 1 1 1
Rabies virus 1 1 1 1
Toxoplasma 1 1 1 0
Poliovirus 1 1 1 1
Nipah virus 1 1 1 1
Klebsiella 1 1 1 1
Enterobacteria 1 1 1 1
Mokola virus 1 1 1 1
West Nile virus 1 1 1 1
Tula virus 1 1 1 1
Corynephage 1 1 1 1
Ebola virus 1 1 1 1
Campylobacter 1 1 1 1
Plasmodium 1 1 1 1
TOTAL 10,477 190 1,233 1,109

Overview of human-pathogen PPIs. For each pathogen group we list the total number of PPIs involving pathogen proteins in that group, the number of strains in that group, the number
of unique human proteins interacting with that group, and the number of these that interact with at least one other human protein.
doi:10.1371/journal.ppat.0040032.t003

interest (e.g., those interacting with HIV), we use GSEA to determine whose rank is i belongs to S. First, we compute m = X;c/l;, the sum of
whether the proteins contained in § are randomly distributed all the values in L. Next, for each index 7 in L, we compute two values:
throughout L or concentrated at the top. In the ranked list L, let [; !
be the value (of degree or centrality) at index i; 1 < i < |L|. We abuse Pui(S,) = Z niz

jEs,j<i

notation and say that an index ¢ is an element of S if the protein
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Table 4. Gene List

Gene Name UniProt ID(s) Protein Name
5A Q9YKI3_9HEPC Non-structural protein 5A
CCR5 CCR5_HUMAN C-C chemokine receptor type 5
CD4 CD_HUMAN T cell surface glycoprotein CD4 precursor
CDCs CDC[2,4,6,8]_HUMAN Cell division control protein
CDK2 CDK2_HUMAN Cell division protein kinase 2
CREBBP CBP_HUMAN CREB-binding protein
CXCR4 CXCR4_HUMAN C-X-C chemokine receptor type 4
DLG1 DLG1_HUMAN Disks large homolog 1
E1A E1A_ADEO02 Early E1A 32 kDa protein
E1B E1BL_ADEO02 E1B protein, large T-antigen
E2Fs E2F[1,2]_HUMAN Transcription factor E2F
E4 E4OR1_ADEQ9 E4-ORG1
EP300 EP300_HUMAN Histone acetyltransferase p300
FLIC FLIC_ECOLI Flagellin
GTF2B TF2B_HUMAN Transcription initiation factor IIB
HDACs HDAC[1,2]_HUMAN Histone deacetylase
HLA-DRA 2DRA_HUMAN HLA class Il histocompatibility antigen
HSP60 084760_CHLTR Heat shock protein 60
KPNAs IMA[1,2]_HUMAN Importin subunit alpha
KPNB1 IMB1_HUMAN Importin subunit beta-1
MAM Q48898_MYCAT Superantigen precursor
PIB OMPB1_NEIMB Major outer membrane protein PIB precursor
POLG POLG_HCV1 Genome polyprotein
RAN RAN_HUMAN GTP-binding nuclear protein Ran
RANBP5 IMB3_HUMAN Importin beta-3
RB1 RB_HUMAN Retinoblastoma-associated protein
REV REV_HV1H2 Rev Protein
SP1 SP1_HUMAN Transcription factor Sp1
STAT1 STAT1_HUMAN Signal transducer and activator of transcription 1-alpha/beta
SUMO1 SUMO1_HUMAN Small ubiquitin-related modifier 1 precursor
TAF1 TAF1_HUMAN Transcription initiation factor TFIID subunit 1
TAT TAT_HV1H2 Protein Tat
TBP TBP_HUMAN TATA-box-binding protein
TLRs TLR[2,4,5,9]_HUMAN Toll-like receptor precursor
TNPO1 TNPO_HUMAN Transportin-1
TP53 P53_HUMAN Cellular tumor antigen p53
VE6 VE6_HPV11 Protein E6
VE7 VE7_HPV11 Protein E7
List of genes referenced in this manuscript.
doi:10.1371/journal.ppat.0040032.t004
. 1 our results by testing each of 57 sets: Ty, Ty, 7{2)% and the sets Vp
Puiss(S,3) = 5 <\L|j corresponding to each of the 54 pathogen groups.
JES, j<i

Thus, Pj;(S, i) measures the weighted fraction of proteins with
index at most ¢ that are in S and P,,;(S, i) measures the fraction of
proteins with index at most ¢ that are not in S. We handle multiple
ranks with identical values by computing these two values only at the
largest rank for each unique value in L. Finally, we define the
enrichment score as the largest positive value of P;(S, i) - P,,;(S, 7),
ie.,

es(S,L) = max (max(Py(S,7) — Ppiss(S,7),0))

1<i<|)|

A large positive value of es(S, L) indicates that the proteins in §
have high degree or high betweenness centrality. Note that our
modification of the original definition of the enrichment score [35]
ensures that if § mainly contains proteins with low degree or
betweenness centrality, then the score will be close to 0, since Py (S, )
— Piss(S, 7) will be negative for most indices. We record the rank i that
yields es(S, L); the column titled “#proteins contributing” in Table S1
of the supplementary data displays these numbers. To compute p-
values for an observed enrichment scores, we generate a null
distribution of scores by repeatedly selecting |S| random nodes in L
and computing the score for each random subset of nodes. We repeat
this process 1,000,000 times and estimate the p-value for s as the
fraction of random sets whose score is at least as large as s. We obtain
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Functional enrichment. We isolate functionally coherent subsets of
human proteins among the sets Ty, Ty, 7(2)3’ 7«2)% and the sets Vp
corresponding to each of the 54 pathogen groups using a test for
functional enrichment. Given the hierarchical structure of the Gene
Ontology (GO) [26], we account for dependencies between annota-
tions by using the method proposed by Grossman et al. [112]. Let S be
a set of proteins of interest (e.g., the set of proteins interacting with
HIV). We aim to compute GO functions that annotate a surprisingly
large number of proteins in S. To this end, for each function fin GO,
we count s;, the number of proteins in § annotated with fand s, the
number of proteins in § annotated by at least one parent of f. We also
compute vy and vy, the number of proteins in V annotated by fand
by at least one parent of f, respectively. With these four counts in
hand, we use the hypergeometric distribution to compute the
probability p«S, V) of drawing s, or more proteins from a set of v,
marked proteins when we select s, proteins at random from a
universe of v, proteins:

min(sya(),0r) <Uf> (UP‘I(/‘) - IZ
-l k Spalf) —
pr(S,V) = "
& ()
Spalf)
We account for multiple hypothesis testing using the method of
Benjamini and Hochberg [113]. We consider only functions enriched
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with a p-value of at most 0.05. Note that different enriched functions
may annotate identical sets of human proteins. In each such case, we
group the functions and associate the most enriched function (and its
p-value) with the group. To report enrichment ranks, we sort the
groups in increasing order of p-value. Although not discussed in this
paper we repeat this analysis using 7" (rather than V) as the universe of
proteins. With 7 as the universe, we expect to find functions that
distinguish between the pathogens. The results with 7" as universe are
available on our supplementary website.

Biclustering of enriched functions. We compute enriched func-
tions in each of the 54 sets of human proteins interacting with each
pathogen group. We construct a binary matrix whose rows are
enriched functions and whose columns are pathogen groups. An
entry is one in this matrix if and only if the function is enriched with
a p-value of at most 0.05 in the pathogen. In this binary matrix, we
define a bicluster to be a subset R of rows and a subset C of columns
such that each row-column pair in R X C contains a one. We also
require a bicluster to be closed, i.e., each row not in R (respectively,
column not in C) contains a zero in at least one column in C
(respectively, row in R). We use the Bimax algorithm to compute all
closed biclusters in this binary matrix [114].

Supporting Information

Figure S1. Protein Degree-Centrality Scatter-Plots

Log-log scatter-plots of each protein contained within the three
networks used in this study: (A) the whole human PPI network (11,463
proteins), (B) the high-throughput human PPI network (4,986
proteins), and (C) the manually curated human PPI network (8,704
proteins). The x-axis is the degree and the y-axis is the centrality of a
protein within its respective network.

Found at doi:10.1371/journal.ppat.0040032.sg001 (2.5 MB TIF).

Table S1. Relative Node Occurrences

Relative occurrences of four types of nodes in each of the three
networks: Whole human PPI network (W), the human PPI network
yielded by High-Throughput experiments (HT), and the human PPI
network consisting only of Manually Curated PPIs (MC). The
“Fraction” column defines the cutoff at which a protein is considered
a hub or a bottleneck. The other columns represent the fraction of
hub-bottleneck, non-hub-bottleneck, hub-non-bottleneck, and non-
hub-non-bottleneck proteins in the network using that cutoff.

Found at doi:10.1371/journal.ppat.0040032.5st001 (46 KB PDF).
Table S2. Detailed GSEA Results

Summary of GSEA results with and without human-HIV interactions
for three networks: Whole human PPI network (W), the human PPI
network yielded by High-Throughput experiments (HT), and the
human PPI network consisting only of Manually Curated PPIs (MC).
We report p-values only for the sets of human proteins in Figure 3.
The “#proteins in group” column displays the total number of
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