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ON WEIGHTED LACUNARY INTERPOLATION *

MARGIT LENARD'

Abstract. In this paper the regularity of a special lacunary interpofaproblem is investigated, where for a
givenr (r > 2,r € N) the derivatives up to the-2nd order together with the weighteth derivative are prescribed
at the nodes. Sufficient conditions on the nodes and the whightion, for the problem to be regular, are derived.
Under these conditions a method to construct the explicinédae for the fundamental polynomials of the regular
weighted lacunary interpolation is discussed. Examplespagesented using the roots of the classical orthogonal
polynomials.
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1. Introduction. The special lacunary interpolation problem studied in taper is
called weighted0, 1, ...,r — 2, r)-interpolation for a givenr (r > 2, r € N), where the
derivatives up to the-2nd order together with the weighteth derivative are prescribed at
the nodes. On afinite or infinite intenfal, b] for n € N, let{z; }!_, be a set of distinct points,

the nodes, and let € C"(a, b) be a given function, the weight function. FurthermoreJL%l
((=0,1,....r—2,r; i =1,...,n) be arbitrary given real numbers. Find a polynontia/
of degree less tham such that

(1.2) Rg)(:zri) :yfl), (an)(T)(xi) :ylm, (l=0,1,....r=2;i=1,...,n),

(for the sake of simplicity we omit double indices, so we'lite ©; = z; ,, andygl) = yflfl)
The weighted0, 2)-interpolation problems( = 2) was studied originally by J. Balaz][as
a generalization of th@, 2)-interpolation problem initiated by P. Turaf][

The weighted0, 1, ..., r—2, r)-interpolation is called regular at the nodes } -, with
respect to the weight functiom, if for any choice Ofyl(l) there exists a unique polynomial
R, of degree less tham which satisfies the conditions.(l). The problem is not regular in
general, because in some cases such a polyndepiaoes not exist (see, e.g., J. Balazg [
forr = 2 and A. Krebsz 2] for r = 3), or if it exists, the uniqueness might fail. Furthermore,
in order to prove convergence theorems in the regular calsesexplicit formulae for the
interpolation polynomialz,, are also needed. Several authors investigated the prololem f
r = 2 andr = 3 and found regular solutions and explicit formulae by priéxsog special
additional conditions to1(.1). In these cases the degree of the interpolation polynoRyjal
was increased by the number of the additional conditions:. aFgeneral approach to the
special cases when= 2 or r = 3 we refer to M. Lénard4] and A. Krebsz and M. Lénard
[3] and to the references therein.

In Section2, sufficient conditions on the nodes and the weight functiergaven for the
problem to be regular. In Sectid) a method is presented to construct the explicit formulae
for the fundamental polynomials of the regular weightédLl, ..., — 2, r)-interpolation
problem under these conditions. In Sectigrexamples are given for regular cases on the
roots of the classical orthogonal polynomials.
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2. Regularity. Inorderto find regular cases with their explicit formulaettoe weighted
(0,1,...,r — 2,r)-interpolation, we extend the problerh.{) with additional Hermite-type
conditions.

For givenn, m € N, on a finite or infinite intervala, b] let {x;}_, and{z;}", be dis-
joint sets of distinct points, the nodes, anddee C"(a,b) be a given function, the weight
function. Furthermore, Ietygl) ¢ = o1,....,r — 2,r; &« = 1,....,n) and
ggj) (j=0,...,5; — 1; i =1,...,m) be arbitrary given real numbers/ = j; +--- + jn,
andN = rn + M. Find a minimal degree polynomialy of degree less thaiV satisfying
weighted(0, 1, ..., — 2, r)-interpolation conditions
(2.2) Rg\l,)(:zri) :yfl), (wRN)(T)(xZ-) :ylm, (l=0,1,....r=2;i=1,...,n),
with additional Hermite-type interpolation conditions ém; }™ |,

(2.2) RP@)=3",  (G=0,....5i-1i=1,....,m).

(Form = 0 the problem is the weighte@, 1, ..., — 2,r)-interpolation.) This extended
interpolation problem is also not regular in general, as ishhiown forr = 2 andr = 3
in [4] and [3]. Hence we study the interpolation probleth1)-(2.2) with further additional
conditions. P. Mathur and S. Dattd discussed a special case when= 1, j; = r — 1, and
the additional condition ig2{] ) (z;) = g\" V.

In what follows, letp,, andq be polynomials of degree and M, respectively, associated
with the interpolation condition2(1)-(2.2), that is,

W(z:) =0, i=1,...,n),
2.3) p( ) ( )
g (z:)=0, (j=0,....5i—1i=1,....m).

If only weighted interpolation conditions are prescribkd,g(x) = 1 andm = 0. Further-
more, let

o pn(zc) - n
R TAT FErT =t

denote the fundamental polynomials of Lagrange-intetmiathat is, ¢ (x;) = 0, for

i,k =1,...,n. Using induction orr it is easy to verify that, foi = 1,...,n,
0, forl <r,
(2.4) (") D () = { THPn)" (@), forl =r,

S D@L ) @), forl=r+1,

and

(2.5) (T D (z;) = { 0, fori#k, 1<,

r1(0)" (x;), fori £k, l=r.

Studying the regularity of the problem let us consider thenbgeneous case, when
ygl) =00=0,1,....r=2,1r; i = l,...,n)andgjz('j) =00G=0,...,5;—L;i=1,...,m).
Itis obvious that every polynomidt which satisfies the conditions,

(26) R%)((Ez):()’ (221,,n,]=071,,r—2)7
' RY(z;) =0, (i=1,...,m; j=0,1,....5 — 1),
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can be written in the form

2.7 Ry(z) = (q0},'Q) (),

wherep,, andq are defined inZ.3) and(Q is a polynomial. Furthermore, on using.{) we
obtain

(wRx)" (@) = (wepl, Q)" (25) = (wapt )" (2:)Q(as) + 1! (wa(pl,) Q') (1)

fori =1,...,n. Therefore, if

(2.8) (wqpfl_l)(r) (;)=0 and  w(z;) #0, (i=1,...,n),
then
2.9  (wRy)" (z)=0  ifandonlyif  Q'(z;) =0, (i=1,...,n).

ThusQ'(xz) = pn(z)\(x), where) is a polynomial. Since we are looking for a minimal
degree polynomiaRy in the form @.7) which fulfills (2.6) and @.9) with ko (ko € N)
additional homogeneous conditions, the degree of the potyal Q must be less than+ k.
For the sake of simplicity, in what follows, we will prescelonly one or two conditions at

one or two pointsky = 1 or 2). In these cases we obtain either
Qx)=c or Qz)=c / pr(t)dt + d,
To

where the parametersandd are to be determined from these additional conditions.
If, for example, the additional homogeneous condition is

(wRxn)" (20) =0,

then
(WRN)(T) (w0) = (CMQPZ_I)(T) (zo) =c¢ (U/QPZ_I)(T) (z0) = 0.

Hence, the condition of regularity is

(wapl, )" (o) # 0.

Other cases can be discussed in a similar way and we list séithem in the following
statement.

THEOREM 2.1. If at the nodes{x;}? , and {z;}!", the weight functionv satisfies
(2.8), then the interpolation problert2.1)—(2.2) is regular under the additional condition(s)
()-(v) if and only if the corresponding condition in the third colomf Table2.1is fulfilled.

REMARK 2.2. The modified weighte@, 1, ..., r — 2, r)-interpolation studied ing] by
P. Mathur and S. Datta, corresponds to the special case when- 1, zo = I,
q(x) = (x — x9)" ! and the additional condition is (i) in Tabflwith j = r — 1.

3. The fundamental polynomials. In this section, we first construct polynomias j

which satisfy the following weighte(, 1, . .., » — 2, r)-interpolation conditions at the nodes
{zi}iy
AN () = 6,10 k=1 ;
(3 1) g,k(‘rz) j1Oki (Zv =1,...,1;
(wA; ) (z;) =0 ,1=0,1,...,7—2),
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TABLE 2.1
ég(rilgli(t)igﬁl(;r)]terpolatory Condition for Regularity
0 | BY (o) =y (ar27)" (o) #0
M | @rn)® @) =y”  (wah ) @) 0
1\ (—2) 1 (r)
b | B (@) o (ot g i) -
(wRN)" (o) = g (wqpffl) ™ (20) (qpffl S pn(t)dt) "7 (29) £ 0
. . . 1 e )
) RS\JI) (-’EO) = y( 7) (IIP:fl)(J)(wnJrl) (qp;71 fxo pn(t)dt) ! (-'EO) -
Y (@ns1) = y&)l (aph~ 1)@ (o) (qpffl Juy pn(t)dt> O (ns1) £ 0
r—1 (r) r—1 rx (r)
V) (WRN)™ (z0) = y( ), (wqpn ) (Tn+1) (wqpn fxo pn(t)dt) (z0) —
@R @t =0 (waph ) (o) (waph™ J2 pa@it)” (@e) # 0
and
Afdl;é(xi)zo (i,k=1,...,n;
(3.2)
(U)A ) (CCZ) —5]“ 120717 7T_2)7
with Hermite-type interpolation conditions
(3.3) Ajk(:vz) =0, (¢i=1,....m;k=1,...,n;5=0,...,7r=2,r;1=0,...,5;—1).

Let p,, andq be the polynomials defined i2 @) and let, fork = 1,...,n

(3.4)

o )
(35 Ajrl@) =5 5
where
(3.6)

Qjk()
(3.7)

App() = (qp},

IC)

7! (wq(p),)"

and, recursively, foj =r — 2,7 — 3,

qj.k(z) = b (z) [

{(@ = 2r) G (2) + 0y (2)Q k(2

T @) {cr,k + Aj[gk(t) + bnkpn(t)]dt}

., 1,0,

}—i— Z dJkAzk

l=7+1

qj,k(t)

= m {Cj,k + /Ij [W + ajplr(t) + bj,kpn(f)] dt} ,

r—j—2

O (zr) + Z k(T — xp ]—%(I),
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1 —s
(3.8) Mk =g {f,(fﬂ (1) — o ()0 (1) Z%k( )s!é?f )(;ck)},

(3.9) ajr=— ; _ bk

1\ (gfp) =9 ()
(3.10) a = —< ) e
o j q(zk)
wherezxg, b, ande; . (k=1,...,n; j=0,1,...,r—2,r) are free parameters. ([8.5),

(3.7), and(3.8) the value of} _ is 0 if the upper limit of the summation is less than the lower
limit.)

THEOREM 3.1. If at the nodes{x;}?_, the weight functionv and the polynomia
satisfy the conditions

(3.11) (wapy,~ 1)( g () =0 and  w(x;)q(z;) #0, (t=1,...,n),

then the polynomiald; . (j =0,1,...,7 — 2,7, k=1,...,n) defined in(3.4)-(3.10) are
of degree at mosir + M + 1 and fulfill the conditiong3.1)-(3.3).

Proof. Letk € {1,...,n} be fixed. An easy calculation shows thht;, in (3.4) satisfies
the equations3.2).

Now we are looking fotA,_5 ; in the form

_ q(l’) _ r—2r r—1
Ar g p(z) = 7(7, ~2)lg(an) {(UC xk)" () + oy, (fC)Qr—z,k(fC)} ;
where@,_2 i, is a polynomial of degree at most+ 1. As p,(z;) = 0 and/y(z;) = 0k
(i=1,...,n), we obtain

AV, (z) =0, (1=0,1,....,7r—3),
andAiT__;,)g(:ci) = x;- Onusing 2.5 and @B.11) we gettha(wA, o ;)" (z;) = 0fori # k
if and only if

— (1)
() M) (i — )

Hence the polynomia:{)’r_m can be defined by
1 {42 (@r) b () — £ ()
(pr)" () T =

From the equatiofwA, 5 ;)" (x;) = 0 we obtain the parameter

(wqly)" (xr)
2(wq)(xx)

as defined in%.9) for j = r — 2. HenceQ,_» , is the polynomial in 8.6) for j = r — 2.

Q/r—z,k(ffi) =

Q;—Z,k(x) =

+ ar—Q,kék(x) + br—Z,kpn(x)} .

Ar—2k = —

— (@) - Gan).
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The polynomialsd; ., we construct recursively fof = » — 3,...,1,0 in a similar way.
Hence we are looking fad; . in the form of 3.5, where thel); ., are polynomials of degree

n+1and thedl[jl’]k are parameters. It is obvious that
) (1205177]_1)7

From the conditions
A (zr) =0, (l=j+1,...,r=2),

we obtain the parameten%” as it is given in 8.10. Then the polynomialg);  are to be

]

determined from the conditions
(wA; )" (2;) =0, (i=1,...,n).
On using 2.5 and @.11), we get thatwA; )" (x;) = 0 for i # k if and only if
-1 ()
) k) (@i — @) 971
Therefore, let us write the ponnomia@g,k in the following form,
1 { gk (x)
(Pn) (@) | (z—zp)7 =771
wherea; , andb; . are parameters, whilg; ;, are polynomials which fulfill the conditions
Gk (@i) = =l (@3), (i # k).

Now we are looking for the polynomialg ;. in the form of 3.7), where the parameters ;,
are determined from the conditions

¢\")(x1) =0, (s=1,....r—j—2)

Q},k(fﬂi) =

Q,/j,k(x) =

+ achfk (ZC) + bj,kpn(l')} ,

Hencey; , fori =1,...,7 — j —2in (3.8) assure thaf); ,, are polynomials.

Finally, from the equatior@wAM)(’”) (xr) = 0, using @.11), we get the parameter;
in (3.9. Hence the polynomiald; ;, for j = 0,1, ..., — 2 defined in 8.5 with (3.6)-(3.10
are of degree at mostr + M + 1 and fulfill the equations3.1). O

The following special case illustrates how to apply TheoBefirto construct the funda-
mental polynomials of regular weight¢d, 1, . .., » — 2, r)-interpolation. Let us consider the
additional condition (ii) in Tabl®.1wheng(z) = (x — x¢)" !, thatism = 1, #; = z, and
j1 = r—1. Hence we are looking for a polynomial of degree less tha# 1)r which fulfills
(2.1) with

RY (o) =y, (wRn) (z0) = 5", (1=0,1,...,r—2),
and the problem is a weightgd, 1, . .., r — 2, r)-interpolation problem at the nodé¢s; }_,

with respect to the weight functian. In this case the conditior3(11) can be written as

(3.12) ((z — zo)" ! wpfl_l)(r) (;) =0 and w(z;) #0, (i=1,...,n),
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and the condition for regularity from Tabke1is

(3.13) (z —z0)"™ Lwpr= 1)( m (zo) # 0,

wherezg # z; (i =1,...,n).

THEOREM3.2. If at the nodeqz;}" , the weight functionv satisfieg3.12) and(3.13),
then the weighted0, 1,...,7 — 2,7)- |nterpolat|on is regular at the nodefse; }7, with re-
spect to the weight funct|0m Furthermore, the interpolation polynomial is of degresde
than(n + 1)r and can be written in the form

zn:A (J) +2Ark y,(f),

j=0 k=0

r—2

where the fundamental polynomials ;. are given explicitly.

Proof. Under the conditions3.12-(3.13 the regularity of the problem is a simple corol-
lary of Theorem2.1 The fundamental polynomiald; (j = 0,1,...,7 — 2,r; k =
1,...,n) are associated with the weighté@l 1, ..., — 2, r)-interpolation conditions and
they fulfill the equations3.1)-(3.3). They are defined in3(4)-(3.10, where

bjr =0, (j=0,1,....,7r—=2,7; k=1,...,n).
and the parameters ;, are determined recursively fgr=r,» — 2,7 —3,...,1,0 from the
conditions
(wA;j )" (20) = 0, (k=1,...,n).

Hence, the degree of these polynomials is less thaf 1)r.
Next let us construct the fundamental polynomidls, for j = 0,1,...,r —2 which are
associated with the Hermite-type conditions, so they fulfé conditions

A.gf)O(Ik):O’ (l:O,l,..,,’I’—Q; kzl,-..,”)a
Aﬁf%(xo):%-,z, (1=0,1,...,7r—2),
(wAj0)" (21) =0, (k=0,1,...,n).

We are looking ford; o in the form

(3.14) Ajo(x) = ph (@) (z — z0) 7 (x) + (x — z0)"~'pj ! (2)Q;(w),

whereQ); is a polynomial of degree at mostand

(3.15) ri(z) = aéj) + agj)(a: —xo)+--+ a? ( — 20)" 277,

r—2—j

It is obvious that

Al @) =0, (1=0,1,....,7r—2),
Al (z0) =0, (1=0,1,....5—1).

(4) ;

The coefficients;,”” in (3.19 are determined recursively from the conditions

AW (o) = 81,5, (I=j,j+1,....,r—2),



ETNA

Kent State University
http://etna.math.kent.edu

120 M. LENARD

and we obtain

) 1
a, = - s
O i (xo)
-1 ;
, -1 G0 .
CLl(J) = (pn) (:CO)CLEJ) (l = 1,77"—2—])

o) & (-l

Now we construct the polynomi&); in (3.14 using the conditiongwA, o)) (x;) = 0 for
i=1,...,n. Applying (2.4 and 3.12 we get

(WA ) () =0 ifandonlyif O (z:) = —Lal@a(@) (i=1,...,n),

J (2 — o)~ 19"

and hence we obtain

1oy P (@) (@) 4 po ()7 (2)
Q (:C) - (x _ xo)r—l—j

3

where the polynomiaf; is of degreer — 2 — j and the coefficients are to be determined
uniquely from the equations

(—p;lrj—|—pnfj)(l)(a:0):O7 (1=0,1,...,7—2—7).
Therefore,
o =P )i () + pa(O)75(1)
QJ('I) - CJ + AO (t _ (EO)T_I_j dta

where the paramete is to be determined from the conditigmA; o)™ (zo) = 0.
Finally, it is easy to verify that the polynomial

Py @) — w0) !

AT,O(.T) = -
((:17 - xg)’“*lwp:fl)( ) (z0)
fulfills the conditions
A (zy) =0, (1=0,1,....r—2 k=0,1,...,n),
(wA0)") (21) = .0, (k=0,1,...,n). O
4. Regular weighted(0,1,...,r — 2,r)-interpolation at the roots of the classical

orthogonal polynomials. The classical orthogonal polynomials (Jacobi, Hermitel ha-
guerre polynomials) fulfill the differential equation

(wy)" + f- (wy) =0

with some weight functiorw and functionf. Hence, ifp,, is a classical orthogonal polyno-
mial of degreen andp,, (x;) = 0, then

(wpn)" (z;) = 0, (it=1,...,n)

wherew is given in Tablet.; cf. Szegd 7).
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TABLE 4.1
pn(z) (a,b) w(z)
Hermite
:::2
H,(z) (—00,0) ez
Laguerre
Ly (2) [0, 00) e~ 52°F
(> -1)
Jacobi
PPN @) | 11 (1-a2) T (1+a)E
(aaﬁ > _1)

LEMMA 4.1.1f w(z;) # 0 at the nodegxz;}? ,, then

(wpn)" (z;) =0 ifandonlyif ((wpn) ) @) =0 (i=1,...,n)

Proof. On using £.4) and the fact that; (: = 1,...,n) are distinct roots of the polyno-
mial p,,, we obtain

((wpa)™) (@) = (@ (o))" (@)
= w (@ (0h)" () (wply + 20'p)) (1)
= O 0 ) ) ) ). O
Letthe nodegz;}!_, be the roots of the classical orthogonal polynomijaénd letw be
the function associated wifh, in Table4.1. Furthermore, let us define the weight function

w as

4.1) w(a) = ,

whereq is the polynomial defined in2(3). On using Lemmal.1it is obvious that the nodes
and the weight function defined id.() satisfy the conditionsX.8). Hence, applying Theo-
rems2.1and3.2, we obtain regular weighte@, 1, ..., — 2, r)-interpolation on the roots of
the classical orthogonal polynomials with respect to thaghtefunctionw in (4.1). Now we
present only a special case when the nodes are the roots mynxerre-polynomiaL%a) on
the intervall0, oo). Other cases can be discussed in a similar way.

THEOREM 4.2. If the nodes{z;}!_, are the roots of the Laguerre-polynomiﬁ&o‘)
(o > —1), then the weighted0, 1, ..., — 2, r)-interpolation with respect to the weight
function

is regular for
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a+l

Proof. Letp, = Lgla) (> —1),20 = 0,¢q(z) = 2"}, andw(x) = 272 e 2. Then

As L'(0) = (") > 0 and (LS?’)/ (z) = —L D (2) (c.f. G. SzegbT]), the sign of

() _
(Lﬁf‘)) 7 (0) is (—1)? and therefore by induction for gl

<(e%L§;‘>)”) v (0) # 0.

Thus, the condition3.13 is fulfilled if

a—+1 . .
2 (T_l):j, (j:]w"'a/r)7

and we can apply Theoret2. 0

On using the notatiod!, " (x) = —%Lgl_)l(x), in the special casg= r — 1, we obtain
the following theorem.

THEOREM 4.3. If the nodes are the roots of the ponnomLafrl), then the weighted
(0,1,...,7—2,r)-interpolation is regular with respect to the weight fumctio(z) = e~ (=1,
The interpolation polynomial is constructed explicitlyTiheoren.2.
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