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INTRODUCTION

White spot syndrome virus (WSSV) is a virus in the
genus Whispovirus, family Nimaviridae (Mayo 2002).
WSSV infects a wide spectrum of crustaceans and is
highly pathogenic to the farmed shrimp Litopenaeus
vannamei, where it is responsible for major economic
losses (Walker & Mohan 2009, Corteel et al. 2012, Shi
et al. 2012, Yuan et al. 2016). WSSV was first re -
corded in Taiwan in 1992 and subsequently observed
worldwide (Chou et al. 1995, Pradeep et al. 2012).
Losses due to WSSV are reported every year, and
have been estimated at more US$8 billion since 2000
(Bondad-Reantaso et al. 2001, Rosenberry 2001,

APHIS-USDA 2005, Dieu et al. 2004, Marks 2005,
OIE 2011, Tendencia &  Verreth 2011, Tang et al.
2012, World Bank 2013). WSSV outbreaks occur con-
tinuously in China and exist widely in the wild (Jang
et al. 2009, Ding et al. 2015, Li et al. 2016). The orien-
tal river prawn Macrobrachium nipponense can be
infected by WSSV via oral administration and intra-
muscular injection (Yun et al. 2014). In freshwater
ponds, M. nipponense usually cohabitates with the
Chinese mitten crab Eriocheir sinensis, and serious
outbreaks of WSSV have caused catastrophic losses
in harvests of E. sinensis (Ding et al. 2015). Red
swamp crayfish Procambarus clarkii is usually used
as a model organism for WSSV infection for re search
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on the invertebrate innate immune system (Du et al.
2016). The Chinese mitten crab E. sinensis and the
red swamp crayfish P. clarkii are both important
WSSV carriers, and there is expanding literature on
infection research for these species (Du et al. 2008,
Zeng & Lu 2009, Du et al. 2010, Bateman et al. 2012,
Ding et al. 2017a,b). In the wild, E. sinensis and P.
clarkii were more likely to carry WSSV than M. nip-
ponense, and the natural prevalence level of M. nip-
ponense was about 8.3% (Yin et al. 2017). The virus
is transmitted horizontally to E. sinensis and P.
clarkia (Yan et al. 2007) and the infection dynamics in
these hosts is well known (Zeng & Lu 2009, Zeng et
al. 2011, Huang et al. 2015, Ding et al. 2017b). WSSV
infectivity studies have been conducted on M. nippo-
nense (Yun et al. 2014, Yin et al. 2017) but little is
known about the infection dynamics in this host.

M. nipponense is an important economic species
that is farmed widely in China (Ma et al. 2011, Fu et
al. 2012, Yuan et al. 2015), with annual yields ex -
ceeding 265 061 metric tonnes (Bureau of Fishery,
Ministry of Agriculture 2016). Compared with pe -
naeid shrimps, M. nipponense is generally consid-
ered to be less prone to disease in culture. Although
there has been no outbreak caused by WSSV in
farmed M. nipponense to date, it may serve as a
reservoir for WSS and thus poses a potential threat to
cultured L. vannamei.

WSSV can be diagnosed by PCR and histopathol-
ogy (Sahul Hameed et al. 2003, Mijangos-Alquisires
et al. 2006). Histological examination of WSSV-chal-
lenged M. nipponense may show visual changes
in the target tissues. The gills play a vital role in
transporting respiratory gases and controlling the
osmotic and ionic balances in aquatic organisms,
and WSSV causes histopathologically detectable
changes in the gills of L. vannamei, Macrobrachium
rosenbergii, Panulirus homarus, Penaeus indicus,
Penaeus monodon, Panulirus orantus, and Scylla
serrata (Rajendran et al. 1999, Yoganandhan et al.
2003, Syed Musthaq et al. 2006, Naresh et al. 2017).
In addition, hepatopancreas is the main immune
organ in shrimp (Jiang et al. 2014) and the center
for storage, meta bolism, and detoxification (Bhavan
& Geraldine 2009). Many viruses cause histopatho-
logically detectable changes in the epithelium of
hepatopancreas of the cultured crustaceans, includ-
ing L. vannamei, Fenneropenaeus chinensis, Mar -
supenaeus japonicus, P. monodon, and Macro-
brachium rosenbergii (Bateman & Stentiford 2017,
Zhang et al. 2017). However, information on histo-
logical changes following infection of WSSV in M.
nipponense is lacking.

Before studying histological changes following
infection of WSSV in M. nipponense, the pathogenic-
ity of WSSV to M. nipponense should be studied first.
One means to examine pathogenicity is to establish
the median lethal dose (LD50) of a pathogen or con-
taminant. The LD50 has been adopted extensively to
evaluate the toxicity of WSSV in various marine and
freshwater crustaceans (Escobedo-Bonilla et al. 2005,
Du et al. 2006, Liu et al. 2011, Corteel et al. 2012, Zhu
& Quan 2012, Pace et al. 2016). We determined the
LD50 of WSSV and examined infection levels in tis-
sues of experimentally infected M. nipponense by 2-
step PCR. We examined the interactions between M.
nipponense and WSSV by isolating and quantifying
viable WSSV copies from infected L. vannamei. We
also examined the histopathological changes in dif-
ferent tissues at different times following infection.
The results of the present study will expound the
pathogensis of WSSV in M. nipponense and facili-
tate the further prevention and control of WSSV in
crustaceans.

MATERIALS AND METHODS

Maintenance of experimental animals

Litopenaeus vannamei free of WSSV were taken
from culture ponds in Wuxi, China. Macrobrachium
nipponense were purchased from the Lake Tai
region of China. L. vannamei (weight 5.65±1.93 g)
and M. nipponense (weight 4.76±1.54 g) were main-
tained in a recirculating-water aquarium system
filled with aerated freshwater (25±1°C) and fed with
paludina (freshwater snails with an operculum) twice
a day. Animals were acclimated for 7 d prior to exper-
imental treatments.

Viral inoculum preparation and quantification

WSSV-infected L. vannamei were obtained from
the School of Life Science, Sun Yat-sen University, in
2015. These animals had been diagnosed as positive
by 2-step PCR using primers from the World Organi-
sation for Animal Health (OIE 2012). The infected
samples were stored at −80°C. DNA was extracted
from samples using a TaKaRa MiniBEST Universal
Genomic DNA Extraction Kit from Takara Biotech-
nology. The primers used for 2-step PCR are shown
in Table 1. A 1 µl aliquot of DNA template solution
was add to a PCR tube containing 100 µl of reac-
tion mixture (10 mM Tris−HCl, pH 8.8, 50 mM KCl,
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1.5 mM MgCl2, 0.1% Triton X-100, 200 µM of each
dNTP, 100 pmol of each primer, 2 U of heat-stable
DNA polymerase). PCR was carried out as follows:
one cycle of 94°C for 4 min, 55°C for 1 min, and 72°C
for 2 min, followed by 39 cycles of 94°C for 1 min,
55°C for 1 min, and 72°C for 2 min, and a final 5 min
extension at 72°C. The WSSV-specific amplicon from
this reaction was 1447 base pairs. To visualize the
results of PCR, 10 µl PCR products were electropho-
resed on 1% agarose gels containing ethidium bro-
mide at a concentration of 0.5 µg ml−1.

Tissue samples from infected L. vannamei, except
for the hepatopancreas, can be used to prepare a
WSSV inoculum (Rajendran et al. 2005). We pre-
pared purified WSSV by homogenizing gills from
infected shrimp in phosphate-buffered saline, fol-
lowed by centrifugation at 8000 × g for 30 min at 4°C,
and then filtering the supernatant fluid through a
0.4 µm filter using a vacuum filter apparatus (Sahul
Hameed at al. 2000). The filtrate was stored at −20°C
for subsequent studies.

We determined the WSSV copy number in tripli-
cate using quantitative real-time PCR (qPCR) with
the primers Wq-F and Wq-R (Table 1). A 1.5 µl
DNA sample was added to 15 µl reaction mixture
containing 1 µl each primer, and qPCR was per-
formed as follows: 95°C for 30 s, followed by 40
cycles at 95°C for 10 s and 60°C for 10 s. Melting
curve analysis was performed at the end of the
qPCR reaction at 65−95°C (in 0.5°C increments) for
10 s. The WSSV-specific amplicon using Wq-F and
Wq-R was cloned into the vector pMD 19-T Simple
(Takara) and sequenced to confirm the sequences.
The obtained recombinant plasmid was then trans-
formed into competent Escherichia coli (DH5α,
TransGen Biotech) and cultured for 12 h. The
recombinant plasmid was extracted from the E. coli
to detect its concentration using an Eppendorf 2000
spectrophotometer. The WSSV DNA copy number
was calculated as described by Sun et al. (2013). A
standard curve for quantifying WSSV DNA copy

numbers was made using serially diluted solutions
of the recombinant plasmid.

Dilutions, inoculation, and WSSV infectivity

After quantification, the concentration of WSSV
inoculum was 106.2 copies g−1. L. vannamei and M.
nipponense were stocked in 36 l aquaria (10 animals
per aquarium). For each trial, 10 animals were in -
jected intramuscularly with WSSV inoculum (20 µl)
at 10-fold serial dilutions (100−10−6). Animals serving
as negative controls were injected with the same vol-
ume of phosphate-buffered saline. Each treatment
was performed in triplicate. The inoculum was in -
jected at the junction between the 3rd and 4th ab -
dominal segments. Dead and moribund animals in
each treatment group were recorded at 24 h intervals
and examined by 2-step PCR to ensure the accuracy
of the LD50. The WSSV LD50 was calculated using the
Behrens-Kärber method (Kärber 1931).

Distribution of WSSV in 
Macrobrachium nipponense

Dead M. nipponense exposed to WSSV were col-
lected and heart, gill, stomach, gut, hepatopancre as,
nerve, integument, muscle, pereopod, eyestalk,
testis, and ovary tissue samples were sampled for
PCR processing. Each tissue was examined in tripli-
cate. DNA was extracted from the samples using a
TaKaRa MiniBEST Universal Genomic DNA Extrac-
tion Kit and prepared for 2-step PCR to detect the
presence of WSSV.

Histopathology

Hepatopancreas, gill, and muscle tissues were col-
lected for histopathology studies at 0, 24, 48, 72, and
96 h post-inoculation (hpi) with WSSV. At each time
point, 3 individuals were selected randomly. The
concentration of WSSV injected was 40% of the LD50

for M. nipponense. Gill, hepatopancreas, and muscle
were removed from M. nipponense and immersed
immediately in Davidson’s fixative for 48 h, and then
transferred to 70% ethanol for subsequent paraffin
histology. Tissues were sectioned at 5−6 µm and
stained with hematoxylin and eosin. WSSV copy
number in the hepatopancreas, gill, and muscle tis-
sues of M. nipponense were quantified by qPCR as
above at each time point.
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Name   Sequence

146F1   5’-ACT ACT AAC TTC AGC CTA TCTAG-3’
146R1   5’-TAA TGC GGG TGT AAT GTT CTT ACG A-3‘
146F2   5’-GTA ACT GCCCCT TCC ATC TCC A-3’
146R2   5’-TAC GGC AGC TGC TGC ACC TTG T-3’
Wq F    5’-CTC TTG TGG TTC ATC AGG GGC-3’
Wq R    5’-CTG GAT TTT CTC TCA GGG TCT TTA-3’

Table 1. Primer sequences used for WSSV 2-step PCR and
quantitative real-time PCR
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RESULTS

LD50 of WSSV in Litopenaeus vannamei
and Macrobrachium nipponense

For each trial, 10 animals were injected with WSSV
inoculum at 100−10−6 dilutions. Litopenaeus van-
namei injected with 100, 10−1, 10−2, 10−3, 10−4, and 10−5

dilutions began to show disease signs from 24 hpi,
whereas those injected with 10−6 dilutions began to
show disease signs from 48 hpi. The clinical signs of
WSSV infection in L. vannamei included lethargy,
reduced appetite, and reddish coloration of body and
appendages. White spots were seen on several indi-
viduals. Changes in behavior patterns included
reduced swimming activity and disorientation with
swimming to one side. Deaths occurred from 24 to
144 hpi, and dead animals were subjected to bio -
assays. The LD50 determined from 3 replicate treat-
ments of L. vannamei (100.51, 100.42, and 100.83 LD50

copies g−1) was 100.59±0.22 copies g−1 (Fig. 1).
Among Macrobrachium nipponense injected with

serial dilutions of WSSV, animals injected with 100 or
10−1 dilutions began to show disease signs after
48 hpi, and those injected with 10−2 began to show
disease signs after 72 hpi. The clinical signs in M.
nipponense included lethargy, reduced appetite, and
reddish coloration of body and appendages, but no
white spots in the epidermal tissues were observed.
Changes in behavior included reduced swimming
activity and disorientation with swimming to one
side. Deaths occurred from 48−144 hpi and dead ani-

mals were bioassayed as above. The LD50 deter-
mined from the 3 replicate treatments of M. nippo-
nense (103.91, 103.82, and 103.79 LD50 copies g−1) was
103.84±0.06 copies g−1 (Fig. 2).

Distribution of WSSV in M. nipponense

WSSV was detected in the gills, hepatopancreas,
muscle, stomach, heart, gut, nerve, epidermis, pereo-
pod, eyestalk, testis, and ovary by simple PCR
(Fig. 3). WSSV was detected as intranuclear inclu-
sions in the epidermal cells of hepatopancreas and
the hemocytes of gills by histological observation
(Figs. 4B & 5D). The WSSV copy number was signifi-
cantly higher in the gills, hepatopancreas, and mus-
cle compared with the other tissues, as assayed by
simple PCR. The results of 3 replicates were the
same.
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Fig. 1. Cumulative mortality for Litopenaeus vannamei in-
jected with white spot syndrome virus and held over time.
The viral dilution regime ranged from 100 to 10−6. Data were 

from 3 replicates of 10 L. vannamei individuals
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injected with white spot syndrome virus and held over time.
The viral dilution regime ranged from 100 to 10−6. Data were 

from 3 replicates of 10 M. nipponense individuals

2000bp 
1447 

750 
1000 

500 

250 

Fig. 3. Detection of white spot syndrome virus in different
tissues of experimentally infected Macrobrachium nippo-
nense by 1-step PCR. Lane 1: gill; lane 2: hepatopancreas;
lane 3: muscle; lane 4: stomach; lane 5: heart; lane 6: gut;
lane 7: nerve; lane 8: integument; lane 9: pereopod; lane 10:
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Histopathology

Hepatopancreas from M. nipponense at 0 hpi
showed a normal, well-organized glandular structure.
The tubules were closed distally on one side and open
proximally into ducts, which united to form longer
ducts, ultimately connected to the digestive tract. Em-
bryonic (E) cells were found at the narrow distal end
of the tubule, some showing mitotic figures. Restzellen
(R) cells, and non-vacuolated and deeply stained fib-
rillenzellen (F) cells were found a short distance away
from the distal region. Vacuolated blasenzellen (B)
cells were found in the middle and proximal regions
of the tubules. The interstitial sinuses between the

tubules were normal (Fig. 4A). The hepatopancreas of
M. nipponense at 24 hpi exhibited increased numbers
of F and R cells compared with 0 h hpi, as well as en-
larged nuclei with marginalized chromatin, and often
contained a distinct basophilic inclusion body. Py-
knotic nuclei were more abundant than at 0 hpi and
the size of the B cells was decreased (Fig. 4B). At 48
hpi, the hepatopancreas of M. nipponense exhibited a
well-organized glandular structure again showing the
clearance of WSSV and normal numbers of B, F, and R
cells; the basophilic intranuclear inclusion bodies had
decreased or even disappeared, and pyknotic nuclei
were decreased (Fig. 4C). The hepatopancreas of
M. nipponense at 72 hpi exhibited abundant baso -
philic intranuclear  inclusion bodies again, and similar
 numbers of F and R cells to the hepatopancreas at
24 hpi. By 96 hpi, the hepatopancreas showed the
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Fig. 4. (A) Hepatopancreas from Macrobrachium nippo-
nense experimentally infected with white spot syndrome
virus (WSSV) at 0 h post-inoculation (hpi). Typical organiza-
tion of the hepato pancreas. E: embryonic cells. B: blasen-
zellen; R: restzellen; F: fibrillenzellen; IS: interstitial sinus.
(B) Hepatopancreas from experimentally infected M. nippo-
nense at 24 hpi. Presence of more R cells in the hepatopan-
creas tubules of infected prawns, basophilic intranuclear in-
clusion bodies (IC), and pyknosis (P). (C) Hepatopancreas
from experimentally infected M. nipponense at 48 hpi. He-
patopancreas tubules showed clearance of WSSV and turn
to typical organization. (D) Hepatopancreas from experi-
mentally infected M. nipponense at 72 hpi showing ba-
sophilic IC. (E) Hepatopancreas from experimentally in-
fected M. nipponense at 96 hpi. Presence of more Band R
cells in the hepatopancreas tubules, decreased basophilic 

IC. All scale bars = 2 µm

Fig. 5. (A) Gills from Macro brachi um nipponense experimen-
tally infected with white spot syndrome virus (WSSV) at 0 h
post-inoculation (hpi). Normal organization of the gills. L:
lamellae; PC: pillar cells; HC: Hemocytes. (B) Gills from ex-
perimentally infected M. nipponense at 24 hpi. Normal or-
ganization of the gills. (C) Gills from experimentally infected
M. nipponense at 48 hpi. Hemocytic infiltration (HI), fusion of
gill lamellae (FL), and basophilic IC in infected prawns. (D)
Gills from experimentally infected M. nipponense at 72 hpi.
FL and basophilic IC in infected prawns. (E) Gills from ex -
perimentally infected M. nipponense at 96 hpi showing clear-
ance of WSSV and turn to normal gill organization. All scale 

bars = 2 µm
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clearance again (Fig. 4D), with de creased basophilic
intranuclear inclusion bodies and increasing numbers
of B and R cells (Fig. 4E). The WSSV concentration of
hepatopancreas at 0, 24, 48, 72, and 96 hpi were 0,
103.9, 102.8, 103.5, and 102.6 copies g−1. The clearance of
WSSV in hepatopancreas came out together with the
decrease in both WSSV concentration and number
of basophilic inclusion bodies at 48 and 96 hpi,
 respectively.

The gills of M. nipponense at 0 hpi showed normal
lamellae (L) and hemocoelic sinuses, with hemocytes
(HC) in the circulation and no structural abnormali-
ties or abnormal gill lesions. Specialized epithelial
cells, pillar cells (PC), stretched into the lamellar
sinus at intervals and adjoined similar cells stretch-
ing from the opposite surface (Fig. 5A). At 24 hpi, the
gills showed normal lamellae, similar to 0 hpi (Fig. 5B).
However, by 48 hpi, the gills of M. nipponense
showed hemocytic infiltration (HI) in the hemocoelic
sinuses, fusion of lamellae (FL), and basophilic inclu-
sion bodies (Fig. 5C). The number of basophilic inclu-
sion bodies had increased by 72 hpi, showing severe
pathology induced by WSSV (Fig. 5D). The gills
cleared WSSV and turned to normal organization at
96 hpi together with the decreased WSSV concentra-
tion, showing a decreased number of basophilic in -
clusion bodies (Fig. 5E). The WSSV concentration of
gills at 0, 24, 48, 72, and 96 hpi were 0, 0, 103.0, 103.5,
and 102.7 copies g−1.

There were no discernible pathological changes in
muscle cells, with apparently normal skeletal muscle
and fiber cells from 0 to 96 hpi and the WSSV concen-
tration at each time point was also 0 copies g−1.

DISCUSSION

WSSV infects a broad range of crustaceans, includ-
ing the shrimps Fenneropenaeus indicus (Bright
Singh et al. 2005), Marsupenaeus japonicus (Satoh et
al. 2008), and Penaeus monodon (Das et al. 2010),
fresh water prawns Macrobrachium idella, Macro-
brachium lamerrae (Sahul Hameed et al. 2000), and
Macrobrachium rosenbergii (Rao et al. 2016), the
crayfish Astacus, Pacifastacus leniusculus (Jirava -
nichpaisal et al. 2004), and Cherax quadricarinatus
(Mrugała et al. 2015), and the crabs Calappa phi-
largius, Paradorippe granulata, Scylla serrata, and
Thalamita danae (Chen et al. 2000, Sahul Hameed et
al. 2003). The susceptibility of a host to WSSV can be
reflected in the copy numbers found during active
infections (Sahul Hameed et al. 2003, Mijangos-
Alquisires et al. 2006, Bateman et al. 2012), and the

LD50 is a common mean to examine its pathogenicity.
The LD50 value of Litopenaeus vannamei to a Thai
isolate of WSSV was 106.6 copies ml−1 (Escobedo-
Bonilla et al. 2005), that of M. rosenbergii to WSSV-
Thai-1 and WSSV-Viet were 105.4±0.4 and 102.3±0.3

copies ml−1, respectively (Corteel et al. 2012), that of
Procambarus clarkii to the native WSSV was
101.3−103.3 copies ml−1 (Pace et al. 2016), and of S. ser-
rata was 105 copies ml−1 (Liu et al. 2011). In the pres-
ent study, M. nipponense readily supported WSSV
replication, leading to disease and mortality. The
LD50 values of L. vannamei and M. nipponense to
WSSV were 100.59±0.22 and 103.84±0.06 copies g−1, re -
spectively, indicating an approximately 1000-fold
higher LD50 for M. nipponense compared with L.
vannamei. Compared with L. vannamei, M. nippo-
nense appeared to be more capable of resisting
WSSV infection and disease, similar to the situation
for WSSV-Thai-1 and WSSV-Viet in M. rosenbergii
(Corteel et al. 2012). These data indicate that higher
doses of WSSV are required to establish infection in
the oriental river prawn M. nipponense.

The success of a viral infection (successful replica-
tion) depends mainly on the interactivity between
the viral attachment proteins and the host’s specific
cellular receptors (Sánchez-Paz 2010). WSSV’s abil-
ity to infect a broad range of crustaceans suggests
that the virus interacts with a general cell surface
receptor common to most crustaceans (Liang et al.
2005). WSSV can replicate in all the vital organs of
infected penaeid shrimps (Syed Musthaq et al. 2006).
However, WSSV cannot infect all types of cells indis-
criminately. The main target tissues for WSSV infec-
tion are the epidermis, foregut, gills, antennal gland,
hindgut, gonads, lymphoid organ, hematopoietic
cells, cells associated with the nervous system, and
connective tissue (Jiravanichpaisal et al. 2006, Reddy
et al. 2010, Han et al. 2013, Söderhäll 2013, Li et al.
2014, Yan et al. 2016), whereas the other tissues, such
as the hepatopancreas and gut, are refractory to
WSSV infection (Sahul Hameed et al. 1998, Wang et
al. 1997). WSSV was detected as intranuclear inclu-
sions in eyestalk, gills, head soft tissue, connective
tissue, appendages, and Y-organ by histopathologi-
cal observations (Vijayan et al. 2003, Yoganandhan
et al. 2003). However, WSSV was detected in the
hepatopancreas in P. monodon and M. rosenbergii
and in the gut of M. japonicus by in situ hybridization
(Chang et al. 1996, Di Leonardo et al. 2005, Corteel et
al. 2012). The hepatopancreas is involved in filtering
out stuff from the hemolymph and that would include
products of tissue damage; hence, the WSSV pre-
sented in these types of cells could be transited from
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other organs (Di Leonardo et al. 2005). Pleopods,
gills, hemolymph, stomach, and abdominal muscle
are the 5 most prevalent infected organs in shrimps
(Lo et al. 1997, Jeswin et al. 2013), while the gills,
heart, stomach, gut, hepatopancreas, nerve, epider-
mis, muscle, pereopod, eyestalk, testis, and ovary
were shown to be WSSV-positive by 2-step PCR in
the current study. These results were consistent with
others for L. vannamei (Ashikaga et al. 2009).

The histological changes induced by WSSV have
been widely investigated in shrimps. Histological
studies of WSSV-infected shrimps showed degener-
ated cells, characterized by basophilic intranuclear
inclusion bodies in hypertrophied nuclei of ectoder-
mal and mesodermal origins (Sahul Hameed et al.
2002, Durand et al. 2003, Rodríguez et al. 2003, Tang
et al. 2013).The present study revealed discernible
cellular degeneration, nuclei hypertrophy with baso -
philic intranuclear bodies, and chromatin margina-
tion in the hepatopancreas and gill cells at 24 and 48
hpi, respectively. The hepatopancreas consists of
branched tubules made up of 4 different types of
epithelial cells (B, F, R, and E cells). The hepa -
topancreas functions of storage, metabolism, and
detoxification are mediated by R cells (Li et al. 2007).
WSSV infection of M. nipponense resulted in in -
creased numbers of F and R cells in the hepatopan-
creas, accompanied by basophilic intranuclear Cow -
dry type-A inclusion bodies and decreased size of B
cells. The WSSV concentration had the same fluctua-
tion with the changes in histopathology following dif-
ferent infection times in the hepatopancreas of M.
nipponense, suggesting that hepatopancreas at 48
and 96 hpi had an efficient resistance to WSSV. The
increasing number of R cells in the hepatopancreas
in WSSV-infected M. nipponense may be a stress
response to the virus, be a defensive reaction to the
virus or simply be a metabolic response to the disease
in terms of mobilizing resources.

Histopathological changes in the gills of WSSV-
infected M. nipponense were similar to those re -
ported in L. vannamei (Rajendran et al. 2005, Afshar-
nasab et al. 2009, Pazir et al. 2011). The gills of M.
nipponense showed hemocytic infiltration in the he -
mocoelic sinuses, fusion of lamellae, and basophilic
inclusion bodies at 48 hpi. The basophilic inclusion
bodies induced by WSSV observed in gills were the
same as those reported by Yun et al. (2014). The
reduction of viral load and mitigation histopathology
of hepatopancreas and gills were indicated by the
decreased number of basophilic inclusion bodies and
WSSV concentration, and the increased number of B
cells in hepatopancreas. The WSSV concentration

had the same fluctuation as the changes in histo -
pathology following different infection time in the
gills of M. nipponense. Yoganandhan et al. (2003) re -
corded histopathological evidence of WSSV in gills of
P. indicus at 36 hpi, whereas the hepatopancreas
remained negative, even when shrimp were in a
moribund state. Afsharnasab et al. (2009) found
intranuclear Cowdry type-A inclusion bodies in all
tissues except the hepatopancreas in L. vannamei.
However, the hepatopancreas and gill cells in the
current study showed signs of clearance of WSSV at
48 and 96 hpi, respectively. To the best of our knowl-
edge, this is the first evidence for this phenomenon in
crustaceans. The results of our study differed from
those of Yoganandhan et al. (2003) and Afsharnasab
et al. (2009) in that the hepatopancreas cells in M.
nipponense were more likely to be damaged by
WSSV than L. vannamei. Furthermore, the clearance
of WSSV in the hepatopancreas and gills also sug-
gested that M. nipponense was more able to resist
WSSV infection than L. vannamei. The earlier histo -
pathological signs of infection in the hepa topancreas
suggests that the hepatopancreas is more likely to be
affected by WSSV than the gills in M. nipponense.

The immune response of crustaceans to invading
pathogens includes phagocytosis, encapsulation, and
melanization. Encapsulated pathogens are often col-
lected in the gills or hepatopancreas, where they are
broken down and subsequently cleared (Hauton
2012). High tolerance and clearing mechanisms for
WSSV have been reported in the giant freshwater
prawn M. rosenbergii (Pais et al. 2007, Sarathi et al.
2008). WSSV-infected shrimp such as F. indicus show
an efficient immune response to WSSV, but the com-
pensation mechanism appears unable to maintain
resistance against infection, suggesting that this
shrimp cannot protect itself from WSSV infection
(Sarathi et al. 2007). However, the clearance of
WSSV in the hepatopancreas and gills of M. nippo-
nense implies that it has an effective immune
response with efficient healing compensation against
WSSV.
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