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Abstract
We deal with the Noether symmetry classification of a nonlinear fin equation, in
which thermal conductivity and heat transfer coefficient are assumed to be functions
of the temperature. In this study Noether symmetries of the fin equation are
investigated using the partial Lagrangian approach. This classification includes
Noether symmetries, first integrals and some invariant solutions with respect to
different choices of thermal conductivity and heat transfer coefficient functions.
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1 Introduction
The aim of the present study is to classify the Noether point symmetries of a fin equa-
tion. In the literature, symmetry classifications of differential equations with respect to
Lie point symmetries and Noether symmetries have an important role for understanding
possible solutions of differential equations [–]. Noether symmetries can also be used
in finding the first integrals (conserved forms) of the nonlinear problems. The earliest
studies on Noether symmetries based on the Noether theorem are due to German math-
ematician Emily Noether []. Applications of the Noether theorem to differential equa-
tions can provide some important information about the problems in mechanics, physics,
and engineering sciences [–]. In order to apply the Noether theorem, the differen-
tial equations should have a standard Lagrangian. On the other hand, one can apply the
partial Lagrangian method to differential equations to investigate Noether symmetries
and first integrals by using Euler-Lagrange equations []. Here, we determine the par-
tial Lagrangian and Noether symmetries of the fin equation by applying partial Noether
approach to a nonlinear fin equation.
This study is organized as follows. In Section , we present some fundamental defini-

tions of the Euler-Lagrange operator, partial Lagrangian and partial Noether operators.
In Section  we discuss the nonlinear fin equation and the corresponding determining
equations. This section also includes different cases corresponding to different choices
of thermal conductivity and heat transfer coefficient. Furthermore, Noether point sym-
metries and first integrals for each different case are presented. Section  presents some
invariant solutions, and the last section summarizes some important results in the study.
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2 Preliminaries
Suppose that x is the independent variable and y = (y, . . . , ym) is the independent variable
with coordinates yα with respect to x given in the following form:

yα
x = yα

 =Dx
(
yα

)
, yα

s =Ds
x
(
yα

)
, s ≥ ,α = , , . . . ,m, (.)

where Dx is the total derivative operator [–], with respect to x, which is defined as

Dx =
∂

∂x
+ yα

x
∂

∂yα
+ yα

xx
∂

∂yα
x
. (.)

Here, the vector space of all differential functions of all finite orders is represented by A
that is a universal space. Also, operators apart from the total derivative operator (.) are
defined on the spaceA.

Definition  The operator

δ

δyα
=

∂

∂yα
+

∑
s≥

(–Dx)s
∂

∂yα
x
, α = , , . . . ,m, (.)

is called the Euler operator or Euler-Lagrange operator.

Definition  The generalized operator is given by

X = ξ
∂

∂x
+ ηα ∂

∂yα
+

∑
s≥

ξα
s

∂

∂yα
s
, (.)

where

ξα
s =Ds

x
(
W α

)
+ ξyα

s+, s ≥ ,α = , , . . . ,m, (.)

andW α is the Lie characteristic function

W α = ηα – ξyα
x , α = , , . . . ,m. (.)

Here we can rewrite the generalized operator (.) in terms of a characteristic function
as follows:

X = ξDx +W α ∂

∂yα
+

∑
s≥

Ds
x
(
W α

) ∂

∂yα
s
, (.)

and the Noether operator associated with a generalized operator X can be defined

N = ξ +W α ∂

∂yα
+

∑
s≥

Ds
x
(
W α

) ∂

∂yα
s
. (.)

Now let us consider a kth-order system of an ordinary differential equation

Eα(x,u,u(),u(), . . . ,u(k)) = , α = , , . . . ,m. (.)
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Definition  The first integral of the system I ∈A (.) can be written in the form

DxI = . (.)

Then the expression (.) is called the local conservation law for system (.). Further-
more, DxI = O̧αEα is called the characteristic form of conservation law (.) where the
functions O̧α = (O̧, . . . , O̧m) are the associated characteristics of the conservation law
(.).

Definition  [] Let L = L(x,u,u(),u(), . . . ,u(α)) ∈A, α≤k, let nonzero functions f β
α ∈A

be a partial Lagrangian, and let X be a Lie-Bäcklund operator of the form of (.). If there
exists a vector B ∈A, B �=NL +C, C = constant, we have the following relation:

X(α)L + LDx(ξ ) =W α δL
δyα

+Dx(B), (.)

where W = (W , . . . ,Wm), B(x, y) is the gauge function, and W α ∈ A, then X is called a
partial Noether operator corresponding to L, and X(α) is the αth prolongation of the gen-
eralized operator (.). If we apply the Euler-Lagrange operator (.) to the Lagrangian L,
then we obtain the following differential equations:

δL
δuα

= , α = , , . . . ,m, (.)

which are called Euler-Lagrange equations and the Lagrangian L is called a standard La-
grangian. However, if δL

δuα �= , the Lagrangian L is called as a partial Lagrangian and the
corresponding differential equations are called partial Euler-Lagrange equations.

Definition  X is a Noether point symmetry corresponding to a Lagrangian of the system
of differential equations (.) if there exists a function B(x, y). In addition, X is a Noether
point symmetry corresponding to a Lagrangian of the fin equation, then I is the first inte-
gral associated with X, which is given by the expression []

I = ξL +
(
η – y′ξ

)
Ly′ – B. (.)

3 Noether symmetries of a fin equation
We now consider the Noether symmetry classification of the nonlinear fin equation
[–]

y′′ +
K ′(y)
K(y)

(
y′) – H(y)

K(y)
= , (.)

where K andH are thermal conductivity and heat transfer coefficient, respectively, which
are considered as functions of temperature, and y = y(x) is the temperature function and
x is a dimensional spatial variable. The Lie point symmetries equation (.) is investigated
in the reference []. In this study, we consider the partial Noether approach to analyze
Noether symmetries of equation (.).
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For fin equation (.), we can write the Euler-Lagrange operator (.)

δ

αyα
=

∂

∂yα
–Dx

∂

∂yx
+D

x
∂

∂yxx
, (.)

and the partial Lagrangian L for fin equation (.) can be written as

L =


(
y′) +

∫ H(y)
K(y)

dy, (.)

and if we apply Euler-Lagrange operator (.) to Lagrangian (.), then we obtain

δL
δy

=
H(y)
K(y)

– y′′. (.)

In addition, if we rewrite the fin equation in the form

–y′′ +
H(y)
K(y)

=
(
y′)K ′(y)

K(y)
, (.)

then equation (.) becomes

δL
δy

=
(
y′)K ′(y)

K(y)
· (.)

In relation (.), the partial Lagrangian (.) has at most first order derivatives, and then
we can take α =  and write the following definition:

W  δL
δy

=
(
η – ξy′)(y′K ′(y)

K(y)

)
= ηy′K ′(y)

K(y)
– ξy′K ′(y)

K(y)
, (.)

and Dx(B) is defined in the form

Dx(B) = Bx + y′By. (.)

By application of the first prolongation of the generalized operator (.) X() to Lagrangian
(.), we get

X()L = η
H(y)
K(y)

+ ηy′, (.)

where η is defined in the form [–]

η = ηx + (ηy – ξx)y′ – ξy
(
y′). (.)

The expansion of the form of (.) by using the definition of the first prolongation of the
Noether operator and relations (.)-(.) is written as follows:

ηxy′ + (ηy – ξx)y′ – ξyy′ +


ξxy′ +



ξyy′ + ξx

∫ H(y)
K(y)

dy

+ ξyy′
∫ H(y)

K(y)
dy + η

H(y)
K(y)

+ ξ
K ′(y)
K(y)

y′ – η
K ′(y)
K(y)

y′ – Bx – y′By = . (.)
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The usual separation by powers of derivatives of y (.) reduces to the following deter-
mining equations:

–


ξy + ξ

K ′(y)
K(y)

= , (.)

ηy –


ξx – η

K ′(y)
K(y)

= , (.)

ηx + ξy

∫ H(y)
K(y)

dy – By = , (.)

ξx

∫ H(y)
K(y)

dy + η
H(y)
K(y)

– Bx = . (.)

To find the infinitesimals ξ and η, the determining equations (.)-(.) should be solved
together. First, from the solution of equation (.), we have that

ξ = K(y)a(x), (.)

where a(x) is a function of x. The solution of equation (.) is

η =


a′(x)K(y)

∫
K(y)dy +K(y)b(x), (.)

where b(x) is a function of x. Thus, if we differentiate (.) with respect to x and (.)
with respect to y, then we can eliminate the function B(x, y) from equations (.)-(.),
and we obtain the following single equation:

(


a′(x)

∫
K(y)dy + b(x)

)
H ′(y) +



K(y)a′(x)H(y)

–


a′′′(x)K(y)

(∫
K(y)dy

)
–K(y)b′′(x) = , (.)

which is a differential equation including unknown functions K(y), H(y), a(x) and b(x).
Using equations (.)-(.), one can classify Noether symmetries and the correspond-
ing first integrals of nonlinear fin equation (.) based on different forms of the thermal
conductivity K(y) and the heat transfer coefficient H(y) and differential relations for a(x)
and b(x).
Case : K(y) = k(constant).
In equation (.), if we consider K(y) = k(constant), then we obtain the following dif-

ferential equation for H(y) function:

(
b(x) + a′(x)ky

)
H ′(y) + ka′(x)H(y) – k

(
b′′(x) – ka′′′(x)

)
= . (.)

Now we analyze differential equation (.) for different H(y) functions corresponding to
different solutions of (.), and we get differential relations between functions a(x) and
b(x), which give Noether symmetries and the corresponding first integral for each case.
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Case .: H(y) = h(constant).
For this case, equation (.) becomes

hka′(x) – kb′′(x) – kya′′′(x) = . (.)

In (.) it is clear that a′′′(x) = , ha′(x) – b′′(x) = . From the solutions of a(x) and b(x),
we obtain the following infinitesimal functions:

ξ = k
(
c + xc + xc

)
,

η =


ky(c + xc) + k

(


hxc +



hxc + c + xc

)
,

(.)

and the corresponding Noether symmetries

X = k
∂

∂x
, X = kx

∂

∂x
+

(


ky +



khx

)
∂

∂y
,

X = kx
∂

∂x
+

(
kxy +



hkx

)
∂

∂y
, X = k

∂

∂y
, X = kx

∂

∂y
.

(.)

By using relations (.) and (.), the function B(x, y) is found in the form

B(x, y) =


hxc +



hkxyc +



hxc

+


hkxyc +



kyc + hxc +



hxc + kyc, (.)

where ci, i = , . . . ,  are constants. Thus, the first integrals (conserved forms) for nonlinear
fin equation (.) can be calculated by using expression (.) and by considering each
group parameter ci.

I = hky –


k

(
y′),

I =


(
–hx – hkxy + k

(
hx + ky

)
y′ – kx

(
y′)),

I =


(
–hx – hkxy – ky + k

(
hx + kxy

)(
y′) – kx

(
y′)),

I = –hx + ky′, I = –


hx – ky + kxy′.

(.)

Case .: H(y) = y.
Based on the similar calculation in the first case, if we take H(y) = y, we obtain the in-

finitesimals ξ and η by solving equations a′(x) – ka′′′(x) = , b(x) – kb′′(x) = 

ξ = k
(


e
–x√
k
√
k
(
e

x√
k c – c

)
+ c

)
,

η =


ky

(
e

x√
k c – e

–x√
k
(
e

x√
k c – c

))
+ k

(
e

x√
k c + e

–x√
k c

)
,

(.)
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where ci, i = , . . . ,  are constants. The corresponding generators are

X =
(


e

x√
k k




)
∂

∂x
+

(


e

x√
k ky

)
∂

∂y
,

X =
(
–


e
–x√
k k




)
∂

∂x
+

(


e
–x√
k ky

)
∂

∂y
, (.)

X = k
∂

∂x
, X =

(
e

x√
k k

) ∂

∂y
, X =

(
e

–x√
k k

) ∂

∂y
,

and the gauge function is

B(x, y) = e
–x√
k
√
k
(


e

x√
k kyc –



kyc + e

x√
k yc – e

x√
k cy

)
+ c, (.)

where c is an arbitrary constant and the first integrals are found by using the expression
(.)

I =


e

x√
k
(
–k


 y + kyy′ – k



(
y′)), I =



e
–x√
k
(
k


 y + kyy′ + k



(
y′)),

I =


(
ky – k

(
y′)), I = e

x√
k
(
ky′ –

√
ky

)
, (.)

I = e
–x√
k
(√

ky + ky′).
Case .: H(y) = yn, n > .
In equation (.), if we take H(y) = yn, then we obtain

ny(–+n)b(x) + kyna′(x) + knyna′(x) – kb′′(x) – kya′′′(x) = , (.)

which gives a′(x) = , and b(x) =  gives ξ and η

ξ = kc, η = , B(x, y) = , (.)

where c is a constant. Then the infinitesimal generator corresponding to (.) is

X = k
∂

∂x
, (.)

and the first integral is written similarly to the previous case

I = –
–ky+n + k( + n)(y′)

( + n)
. (.)

Case .: H(y) = Exp(y).
For this case, it is clear that the infinitesimal functions are

ξ = kc, η = , B(x, y) = , (.)

where c is a constant, and the generator is

X = k
∂

∂x
, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/147
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and the first integral is

I = eyk –


k

(
y′)· (.)

Case .: H(y) = 
my+n .

For this case, the infinitesimals are found as follows:

ξ = kc, η = , B(x, y) = , (.)

where c is an arbitrary constant, and the generator is

X = k
∂

∂x
, (.)

and the first integral is

I =
k log(k(n +my))

m
–


k

(
y′). (.)

Case .: Arbitrary function H(y).
We find that

ξ = kc, η = , B(x, y) = , (.)

where c is a constant and the generator is

X = k
∂

∂x
, (.)

and the first integral is

I = k
∫

H(y)dy –


k

(
y′). (.)

Case : K(y) = kExp(αy), k and β are constants.
In equation (.), if we take K(y) = kExp(βy), we obtain the following differential equa-

tion in terms of H(y) function

(
αb(x) + a′(x)eyαk

)
H ′(y) + eyαkαa′(x)H(y) – eyαk

(
αb′′(x) + eyαka′′′(x)

)
= , (.)

and consider the following cases as the solutions of (.), and we get the mathematical
relations between functions a(x) and b(x).
Case .: H(y) = h(constant).
For this case, differential equation (.) yields

eyαk
(
hαa′(x) + αb′′(x) + eyαka′′′(x)

)
= . (.)
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In (.) k �= , then the term in the parenthesis must be zero, which gives a′′′(x) =  and
ha′(x) + b′′(x) = , then the infinitesimal functions are found as follows:

ξ = eyαk
(
c + xc + xc

)
,

η =
eyαk(c + xc)

α
+ eyαk

(


hxc +



hxc + c + xc

)
,

(.)

where ci, i = , . . . ,  are constants, and we have following five infinitesimal generators:

X =
(
eyαk

) ∂

∂x
, X =

(
eyαkx

) ∂

∂x
+

(


eyαhkx +

eyαk

α

)
∂

∂y
,

X =
(
eyαkx

) ∂

∂x
+

(


eyαhkx +

eyαkx
α

)
, (.)

X = eyαk
∂

∂y
, X = eyαkx

∂

∂y
,

and we have the gauge function

B(x, y) =


α 
(
eyαkc – eyαkα

(
h
(
c + x(c + xc)

)
– c

)

+ hxα(hx(c + xc) + c + xc
))
, (.)

and the corresponding first integrals

I =
eαyhk

α
–


eαykα(y′),

I = –
eyhkxα + hxα – eαykα(eαyk + hxα)y′ + eαykxα(y′)

α ,

I = –
(
eαyk + eαyhkxα + hxα – eαykα

(
eαykx + hxα

)(
y′) (.)

+ eαykxα(y′))/(α),
I = eαykαy′ – hx, I = eαykxy′ –



hx –

eαyk
α

.

Case .: Arbitrary H(y).
For an arbitrary H(y) function, we obtain infinitesimal functions in the form

ξ = eyαkc, η = , (.)

where c is a constant, and the infinitesimal generator is

X = eαyk
∂

∂x
, (.)

and the gauge function is

B(x, y) = kαc
∫

eαy
(∫

e–αyH(y)dy
)
dy, (.)
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and the first integral is calculated as follows:

I = k
(
eαy

∫
e–αyH(y)dy

– α
∫

eαy
(∫

e–αyH(y)dy
)
dy –



eαyk

(
y′)). (.)

Case .: H(y) = h
(βy+γ ) , β and γ are arbitrary constants.

For this case, the infinitesimals ξ and η are

ξ = eyαkc, η = , (.)

where c is a constant and the infinitesimal generator is

X = eαyk
∂

∂x
, (.)

and the gauge function is

B(x, y) = –
e–

αγ
β hkαc
β

(
e
α(yβ+γ )

β ExpIntegralEi

(
–

α(yβ + γ )
β

)

+ ExpIntegralEi

(
α(yβ + γ )

β

))
, (.)

where ExpIntegralEi is a special function on the complex plane. For real nonzero values
of x, the exponential integral Ei(x) is defined as

Ei(x) =
∫ x

–∞

(
et

t

)
dt,

and the first integral is

I =


β(γ + βy)
e–

αγ
β

(
–

(
e

αγ
β
+αyhkβ – hkαExpIntegralEi

(
α

(
γ

β
+ y

))
(γ + βy)

)

– e–
αγ
β
+αykβ(γ + βy)

(
y′)). (.)

Case : K(y) = kyβ , β �= –.
If we take H(y) = h is constant, then we obtain the following equation:

–h( + β)a′(x) + ( + β)b′′(x) + ky+βa′′′(x) = , (.)

andwefind the infinitesimal functions from the solutions of a′′′(x) =  and–h(+β)a′(x)+
( + β)b′′(x) = 

ξ = kyβ
(
c + xc + xc

)
,

η =
ky+β (c + xc)

( + β)
+ kyβ

(


hxc +



xc + c + xc

)
,

(.)
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where ci, i = , . . . ,  are constants. In this case, we have the following five infinitesimal
generators:

X = kyβ
∂

∂x
, X = kxyβ

∂

∂x
+

(


hkxyβ +

ky+β

( + β)

)
∂

∂y
,

X = kxyβ
∂

∂x
+

(


kxyβ +

kxy+β

( + β)

)
∂

∂y
, (.)

X = kyβ ∂

∂y
, X = xkyβ ∂

∂y
,

and the gauge function is

B(x, y) =



(
hx

(
hx(c + xc) + c + xc

)
+

ky+β

(β – )(β + )
(
–h( + β)

(
x(c + xc)

+ β
(
c + x(c + xc)

))
+ (β – )

(
kyβc + (β + )c

)))
. (.)

Using equation (.), we obtain three first integrals

I = –
kyβ (–hy + k( + β)yβy′)

( + β)
,

I = –


( + β)
((
hx – kyβy′)(hx( + β) + ky+β – kx( + β)yβy′)),

I = –


( + β)
(
hx( + β) + ky+β – kx( + β)yβy′),

I = –hx + kyβy′, I =
hx


–
ky(+β)

 + β
+ kxyβy′.

(.)

Case .: K(y) = kyβ , β = –.
For this case, equation (.) is equal to

ha′(x) – b′′(x) – ka′′′(x) ln y = , (.)

and by using (.), the infinitesimals functions become

ξ =
k

y
(
c + xc + xc

)
,

η =

y

(
k
(


hxc +



hxc + c + xc

)
+ k(c + xc) ln y

)
,

(.)

where ci, i = , . . . ,  are constants and the infinitesimal generators are

X =
k

y
∂

∂x
, X =

kx
y

∂

∂x
+
k(hx + k ln y)

y
∂

∂y
,

X =
kx

y
∂

∂x
+
k(hx + hkx ln y)

y
∂

∂y
, (.)

X =
k
y

∂

∂y
, X =

kx
y

∂

∂y
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/147


Orhan et al. Journal of Inequalities and Applications 2013, 2013:147 Page 12 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/147

and the gauge function is

B(x, y) =


(
hx

(
k(c + xc) + hx(c + xc) + c + xc

)

+ k
(
h
(
–c + x(c + xc) + c

)
ln y + kc ln y

))
, (.)

and we have four first integrals

I =
k


(
h + h ln y –

ky′

y

)
,

I =
ky′ – hxy

y
((
hx + k ln y

)
y – kxy′),

I = –

y

((
hx + k ln y

)
y – kxy′),

I =
ky′

y
– hx, I = kx

y′

y
– k ln y –

hx


.

(.)

4 Invariant solutions
Some group invariant solutions of nonlinear fin equation (.) can be constructed from
the Noether symmetries and the first integrals. In this section, we consider some different
special cases to present invariant solutions of (.).
Case . For the case K(y) = k(constant) and H(y) = h(constant), the first conservation

law is

I = hky –


k

(
y′). (.)

Then the expression DxI =  gives the following invariant solution of fin equation (.):

y(x) =
c + hx – 

√
hkxc + hkc

hk
, (.)

where c, c are constants.
Case . As another case, if we consider K(y) = k(constant) and H(y) = y, then the first

integral becomes

I =


e
–x√
k
(
k


 y + kyy′ + k



(
y′)), (.)

and Dx =  yields the following solution:

y(x) = –
√
c
e

x√
k

k 


+ e–
x√
k c, (.)

where c, c are constants. This solution (.) is the group invariant solution that satisfies
the original fin equation (.).
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Table 1 Noether symmetry classification table of fin equation

Thermal
conductivity

Heat transfer
coefficient

Infinitesimals and first integrals

k(constant) H(y) ξ = k2c1, η = 0, I = k
∫
H(y)dy – 1

2 k
2y′2

k(constant) h ξ = k2(c1 + xc2 + x2c3),
η = 1

2 k
2y(c2 + 2xc3) + k( 34hx

2c2 + 1
2hx

3c3 + c4 + xc5),
I1 = hky – 1

2 k
2y′2,

I2 = 1
8 (–2h

2x3 – 4hkxy + 2k(3hx2 + 2ky)y′ – 4k2xy′2),
I3 = 1

8 (–h
2x4 – 4hkx2y – 4k2y2 + 2k(2hx3 + 4kxy)y′ – 4k2x2y′2),

I4 = –hx + ky′ , I5 = – 1
2hx

2 – ky + kxy′

k(constant) 1
my+n ξ = k2c1, η = 0, I = k log(k(n+my))

m – 1
2 k

2y′2

k(constant) ey ξ = k2c1, η = 0, I = eyk – 1
2 k

2y′2

k(constant) y ξ = k2( 12 e
–2x√
k
√
k(e

4x√
k c1 – c2) + c3),

η = 1
2 k

2y(2e
2x√
k c1 – e

–2x√
k (e

4x√
k c1 – c2)) + k(e

x√
k c4 + e

–x√
k+c5 ),

I1 = 1
4 e

2x√
k (–k

3
2 y2 + 2k2yy′ – k

5
2 (y′)2),

I2 = 1
4 e

–2x√
k (k

3
2 y2 + 2k2yy′ + k

5
2 (y′)2), I3 = 1

2 (ky
2 – k2(y′)2),

I4 = e
x√
k (ky′ –

√
ky), I5 = e

–x√
k (

√
ky + ky′)

k(constant) yn ξ = e2yαk2c1, η = 0, I = 2ky1+n–k2(1+n)(y′ )2
2(1+n)

k Exp(αy) H(y) ξ = e2yαk2c1, η = 0,
I = k(e2αy

∫
e–αyH(y)dy – 2α

∫
e2αy (

∫
e–αyH(y)dy)dy – 1

2 e
2αyky′2)

k Exp(αy) h(constant) ξ = e2yαk2(c1 + xc2 + x2c3),

η = e2yα k2(c2+2xc3)
2α + eyαk( 34hx

2c2 + 1
2hx

3c3 + c4 + xc5),

I1 = eαyhk
α – 1

2 e
2αyk2α2(y′)2,

I2 = – 2eyhkxα+h2x3α2–eαykα(2eαyk+3hx2α)y′+2e2αyk2xα2(y′ )2
4α2

,

I3 = – 1
8α2

(4e2αyk2 + 4eαyhkx2α + h2x4α2 – 2eαykα(4eαykx +

2hx3α)(y′) + 4e2αyk2x2α2(y′)2),
I4 = eαykα2y′ – hx, I5 = eαykxy′ – 1

2hx
2 – eαyk

α

k Exp(αy) h
(βy+γ )2

ξ = e2yαk2c1, η = 0, I = 1
2β2(γ+βy)

e
– αγ

β (–2(e
αγ
β

+αy
hkβ –

hkα ExpIntegralEi(α( γβ + y))(γ + βy))e
– αγ

β
+2αy

k2β2(γ + βy)(y′)2)
kyβ h ξ = k2y2β(c1 + xc2 + x2c3),

η = k2y1+2β (c2+2xc3)
2(1+β) + kyβ ( 34hx

2c2 + 1
2 x

3c3 + c4 + xc5),

I1 = – kyβ (–2hy+k(1+β)yβ y′2)
2(1+β) ,

I2 = – 1
4(1+β) ((hx–ky

β y′)(hx2(1+β)+2ky1+β –2kx(1+β)yβ y′)),
I3 = – 1

8(1+β)2
(hx2(1 + β) + 2ky1+β – 2kx(1 + β)yβ y′)2,

I4 = –hx + kyβy′ , I5 = hx2
2 – ky(1+β)

1+β + kxyβy′

kyβ , β = –1 h ξ = k2

y2
(c1 + xc2 + x2c3),

η = 1
y (k(

3
4hx

2c2 + 1
2hx

3c3 + c4 + xc5) + k2(c2 + 2xc3) ln y),

I1 = k
2 (h + 2h ln y – ky′2

y2
), I2 =

ky′–hxy
4y2

((hx2 + 2k ln y)y – 2kxy′),

I3 = – 1
8y2

((hx2 + 2k ln y)y – 2kxy′)2, I4 = ky′
y – hx,

I5 = kx y
′
y – k ln y – hx2

2

Case . As the third case, we consider K(y) = k(constant) and H(y) = y and find the con-
served form as follows:

I =


e
–x√
k
(
e

x√
k ky – e

x√
k k

(
y′)), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/147


Orhan et al. Journal of Inequalities and Applications 2013, 2013:147 Page 14 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/147

and (.) gives the following invariant solution:

y(x) =
e–

x+kc√
k (e

√
kc + ce

x√
k )

k
. (.)

Case . The choice of K(y) = kExp(αy) and H(y) = h(constant) yields the conservation
law

I =
eαyhk

α
+


eαykα(y′), (.)

and by integration of (.), we find the group invariant solution in the following form:

y(x) =

α
ln

(
cα
hk

+

k

hxα +
hxα 

√


c +


hkαc

)
, (.)

where c is constant, which satisfies fin equation (.).

5 Concluding remarks
In this studywe analyze theNoether symmetry group classification of a nonlinear fin equa-
tion, which is a second-order nonlinear ordinary differential equation. Here, we consider
thermal conductivity and heat transfer coefficient as variable functions of temperature,
and the nonlinear fin equation is considered in a one-dimensional model describing heat
transfer in rectangular fins. From the mathematical point of view, it can be said that this
problem is highly nonlinear. Here, we consider applying a partial Lagrangian approach
for the classification to this problem. For different heat transfer coefficient and thermal
conductivity functions, we obtain Noether point symmetry algebras. Finally, we find the
corresponding new first integrals for each case, the results are presented in a Table , and
for each case, some invariant solutions are obtained from the first integrals (conserved
forms). This study can be considered as one of the first studies on the Noether symmetry
classification of differential equations in the literature. In addition, it is important to men-
tion that the λ-symmetry method is another new approach to finding first integrals for
differential equations. As a further study, we will deal with the λ-symmetry classification
of the same problem. This study is still in progress.
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