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In this work, sensitivity of the Schur stability and the   Schur stability of linear difference equation 
systems with constant coefficients have been investigated, and new results on the sensitivity problem 

have been given. The results have applied the scalar-linear difference equations with order   and 
supported with numerical examples and also compared with the existing ones in the literature. 
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INTRODUCTION 
 

Let   be a matrix of dimensions     and      be a 

vector of dimension  , and consider the following 
difference equation system: 
 
                      .                         (1) 
 
The asymptotic stability of the system (1) is equivalent to 
the asymptotic stability of the coefficient matrix  . It is 

well-known that with respect to Lyapunov, a matrix   is 
discrete-asymptotically stable if and only if the discrete-
Lyapunov matrix equation                      
has a solution matrix   which is positive definite matrix, 

that is,        . Moreover, this solution is given by 

            
   . And also according to the spectral 

criteria, a matrix   is discrete-asymptotically stable if and 
only if the eigenvalues of the coefficient matrix   lay in 

the unit disc, that is,           for all          , 

where                stands for the eigenvalues of the 

coefficient matrix   (Elaydi, 1996; Akın and Bulgak, 1998; 
Godunov, 1998; Bulgak, 1999). Such systems are also 
called as Schur stable (Wang and Michel, 1993; Rohn, 
1994; Voicu and Pastravanu, 2006).       Throughout    the  
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study, we focus our attention to the concept of Schur  
stability.  

In the literature, some restrictions on the perturbation 
matrix   are assumed to study the Schur stability of the 
following system 
                          ,              (2) 
 

where   is the coefficient matrix of the Schur stable 
system (1). 
 

 So called continuation are used to study the sensitivity of 

the Schur stability and the   Schur stabilitiy of the 
system (1) (Van Loan, 1984; Akın and Bulgak, 1998; 
Bulgak, 1999; Aydın et al., 2001). 

In this work, some results on the sensitivity of the Schur 

stability and the   Schur stabilitiy of the difference 
equation system (1) were presented, and these results 
were compared with the existing results in the literature. 
We have also applied the results to the delay difference 
equations. 

 
 

SENSITIVITY of SCHUR STABILITY of SYSTEMS of 
LINEAR DIFFERENCE EQUATIONS 
 
In this study, we give some results in the literature on the 
sensitivity of the Schur stability of the systems with 
constant and periodic coefficients. 



 
 

 
 
 
 
Sensitivity of Schur stability of systems with 
constant coefficients 
 
Let’s start with the parameter      that shows the quality 
of Schur stability of the system (1) and holds and an 
important place in the theory of stability.  

Schur stability parameter      is defined as follows: 

 
                      ,     
 
where   is unit matrix,    is adjoint of the matrix  , 
                 is the spectral norm of the matrix    

furthermore, the norm     is Euclidean norm for the 

vector               
 . Linear difference system (1) is 

Schur stable if and only if        holds, and so it is 
clear that the perturbed linear difference system (2) is 

Schur stable if and only if               holds, 

where the matrix                    
    is positive 

definite solution of the discrete-Lyapunov matrix equation 

                   .  
Moreover, let    be the practical Schur stability 

parameter of the system (1), then the matrix   is called 

as practically Schur stable (  Schur stable) provided 

that      and         hold. If         holds, then 

the matrix   is called as   Schur unstable matrix 
(Bulgakov and Bulgak, 1980; Akın and Bulgak, 1998; 
Bulgak, 1999).  
 
 
Lemma 1 (Bulgak, 1999; Lemma 5.2) 
 

Let   be a Schur stable matrix (system (1) is Schur 

stable) (      ). We have           and       . 

Moreover, if       then      
 

      
. 

It is important to know the distance from Schur stable 
matrices to the Schur unstable matrices. The distance is 
usually investigated with the help of the theorems which 
are known as continuity theorems in the literature. Now, 
we briefly introduce the theorems which shows the 
sensitivity of the Schur stability of the system (1).  
 
 
Theorem 1 (Bulgak, 1999; Theorem 5.1) 
 

Let   be a Schur stable matrix (system (1) is Schur 

stable) (      ). If         then the matrix     is 
Schur stable, and 
 

                
 

       , 
 

holds, where     
 

   
 
    

. 
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Theorem 2 (Bulgak, 1999; Theorem 6.1) 
 

Let   be a Schur stable matrix (      ). If        

then the matrix     is Schur stable. Moreover, if 
                       then the inequality  
 
                                 , 
 

holds, where     
 

      
. 

 
 
Sensitivity of Schur stability of systems with periodic 
coefficients 
 
For convenience, we give some results on the sensitivity 
of the Schur stability of the system with periodic 
coefficients. Now, let us introduce the Schur stability 
concept for system with periodic coefficients.  
 

Let      be a matrix of     dimensions and  periodic 
(   )     and let      be a vector of   dimensions. 
Consider the following system 
 
                         .              (3) 
 
The parameter         is used as Schur stability 
parameter, and is defined by 
 

 

  
 
where the matrix      is the monodromy matrix of the 
system (3) (Akın and Bulgak, 1998; Aydın et al., 2000; 
Aydın et al., 2001). The system (3) is Schur stable if and 
only if          . And note that, in the case    , we 

have              (Aydın et al., 2000). 
 
Let             and consider the perturbed system 
of the system (3): 
 
                                .             (4) 
 
Let      be the monodromy matrix of (4), we state below, 
the so called the continuity theorems for the system (3) 
with periodic coefficients, which also shows the sensitivity 
of the Schur stability. 
 
 
Theorem 3 
 

Let the system (3) be Schur stable and      and      be  
the monodromy matrices of the systems (3) and (4) 
respectively. If the matrix      satisfies: 

    =    ;     =      𝑘 𝑘

∞

𝑘=0

, 

 1  ,   =  𝐹  ; 

𝐹 =         
𝑘
      

𝑘
∞

𝑘=0

,       =    𝑗 ,

  1

𝑗=0
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       , 

 

then the system (4) is Schur stable (Aydın et al., 2001; 
Theorem 2). Moreover, the inequality 
  

 𝐹  𝐹  
   

 
        , 

 

holds, where 

and 𝐹                   
    (Aydın et al., 2001; 

Theorem 3). 
 
 

SOME RESULTS on SENSITIVITY of SCHUR 

STABILITY and   SCHUR STABILITY of SYSTEMS 
with CONSTANT COEFFICIENTS 
 
In this section, some results on the sensitivity of the 
Schur stability are stated. 
 
 

Sensitivity of Schur stability 
 

Now, we give the Corollary 1 which is a result of Theorem 3. 
 
 

Corollary 1  
 

Suppose that   is a Schur stable matrix, that is       . 
If the matrix   satisfies       , then     is Schur 
stable. Moreover, the inequality 
  

              
                  

                   
, 

 

holds. where          
 

    
    . 

 
 

Proof 
 

In the case    , the proof of Corollary 1 is clear since  

      ,       ,       ,         , 

,  
 

𝐹           
     ,                 ,  

                      ,  
 

𝐹                     
   ,            , 

                    . 

 
 

Remark 1 
 

Corollary 1 occurs also as a result of Theorem 3.1 in 
Aydın et al. (2002), in the case T=1. Furthermore the first 
part of Corollary 1 exist in Aydın et al. (2002). 

 
 
 
 
Remark 2 
 

The inequality        in Corollary 1 is equivalent to  
  
                    . 
 
This inequality has been taken in Theorem 2 as  
  
                      , 
 
and therefore, obtained the following inequality  
  
                                 . 
 

The inequality                        is also 

equivalent to       , therefore it is clear that      , 

where          
 

     
    . Furhermore, we note 

that Theorem 2 does not guarantee the Schur stability 

while      . 
 
 
Lemma 2  
 
The following statements are true, where the parameters 
  ,    and    are as defined in Theorem 1, Theorem 2 

and Corollary 1, respectively, and             , 
    – eigenvalues of the matrix  ; 
 

1. If      , then 
        

   

  
    

 

  
 . 

2. If      , then 
      

  
    

 

  
 . 

3. If      , then                      . 

4. For the all Schur stable matrices  ,       . 

5. If         , then      . 

6. If the diagonal matrix   which satisfies      , then 
     . 

7. If       
 

  
, then      . 

 
Proof   
 

1. Let      . It is clear that        
 

      
 from 

Lemma 1 and the definition of Schur stability parameter 
    . Thus the inequalities 
 

            
 

       
   ,  

        
   

  
    

 

  
 

 
occurs. This completes the proof. 

 2. Let      , and so        
 

      
 . Thus the 

inequalities 
 

       
 

    
   ,  

      

  
 

 

      
 

 

  

 = 1   2                 +            2  𝐹 > 0 

   1   (1) =    +      =     
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Table 1.   Comparison of   ,    and    for the matrix     . 
 

                          

                                         

                                                    

                                                         

                                                        

                                                         

                                                         

  
 
 
occurs. This completes the proof. 

3. For      , from the inequality        
 

    
   

and the definition of the parameter    ,  it is clear that  
 

  ,  

and so          
 

    
         , 

 

  . 
 
This completes the proof. 
4. For any Schur stable matrix  , from the inequality 
 

    
   it is clear that      . 

5. Let       
 

  
      . Therefore 

 

  
      , and 

so the inequality       is obtained from the inequalities 
in Lemma 2-1 and Lemma 2-3. 
6. In case the diagonal matrix                    
which satisfies      , since          

 
     the 

matrix   is Schur stable and the parameter of Schur 

stability      is equal to 
 

    
 , that is,      

 

    
. 

.Therefore,  
 

;           
 

    
        . 

 

Since 
   

  
   , we conclude that        . 

7. Let       
 

  
 . Therefore 

 

  
      , and so the 

inequality       is obtained from the inequalities in 
Lemma 2-2 and Lemma 2-3. 
 
 

Proposition 1 
 

The inequality           is true, where      

       ,      
    

  
 for        . Moreover, the 

inequality                   is also true.   

Proof  
 

Let              and      
    

  
  for         . 

The functions      and      are monotone decreasing 

functions since         and                . 

Therefore, it is seen that                    . 
This completes the proof.  
 
Note 1  
 
In case      , we do not have the possibility give the 

range such that       from Proposition 1, similarly 
     . This sentence does not imply the inequality 

      (     ) will not be. But the numerical examples 

supports  the inequality       (     ) may not be in 
this case. 

Consider the parameters   ,    and   , for example, for 

the matrix       
    
    

 . For the different values of   

we give the values of norm       ,        ,   ,   ,   . 
As is also seen from Table 1,   ,    and    decreases 

toward zero, while         increases.     can be greater 

than    while    and    decreases toward zero (   and    
are very small). 

Now, considering Theorem 2 and Corollary 1, we give 
the continuity theorem which allows the greater perturbe 
than others without disturbing the Schur stability for the 
linear difference equation systems with constant 
coefficients. 
 
 
Theorem 4 
 

Suppose that   is a Schur stable matrix, that is 

. If the matrix B satisfies      , then 

    is Schur stable. Moreover, if       , then the 
following inequalities 
 

       
    

                   
  ,    

              
                  

                   
. 

holds,    where                ,      
 

      
  and      

1     2 +
1

    
    2 + 1 

1          2 +
1

    
         2 + 1      

 2 =
1

6  ( )
=

1   2

6 
 

    < ∞ 
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    . 

 
 
Proof  
 
The proof of the first part of the theorem and the second 
inequality in the second part of the theorem is clear from 
Corollary 1 and Theorem 2. The first inequality in the 
second part of the theorem follows the arrangement of 
the second inequality.  

Now, we give the Corollary 2 which is a special case of 
Corollary 1 and Theorem 4. 
 
Corollary 2 
 
Let      . If the matrix B satisfies           then 

the matrix     is Schur stable. Moreover, the following 
inequalities 
  

       
 

            
 ,   

              
   

     

  

            
, 

 
holds. 
 
 

Proof  
 

Using the inequality        
 

    
 in Lemma 1 and the 

inequalities in Theorem 4, it is obtained that  
 

1.  
2. 

  
 

3.        
 

                    
 

 

            
 . 

 
 
Remark 3  
 

Since                , the inequality     
  11− + 2occurs as a direct result of Lemma 1. Thus, 
we can conclude that the results  support each other. 

 
 
Sensitivity of   Schur stability 
 
Theorem 5 
 

Let   be a   Schur stable matrix (       ). If the 

matrix     satisfies        
 ,  then      is   Schur 

stable, where   
        

       

      
    . 

 
 
 
 
Proof  
 

Let   be a   Schur stable. Let us       
 . From this 

inequality 
 

          
       

      
      

                
       

      
 

 

                  
       

      
, 

 

                  
       

      
, 

 
                             , 
  
                              , 
 

and therefore the inequality 
 

    

                   
   , 

 

is obtained. Since        
    

                   
 is valid 

from Theorem 4, the inequality           is found. 
This completes the proof. 
 
 
APPLICATION to SCALAR-LINEAR DIFFERENCE 

EQUATIONS with ORDER   of THE RESULTS on THE 
SENSITIVITY 
 
Consider the scalar-linear difference equations with order 
𝑘 as follows 
 

   
                                                                                 (5) 
 
By taking     𝑘          ,     𝑘          ,…, 
             the equation (5) can be written as 
 
            ,                                                      (6) 
 

in matrix-vector form where the matrix   is companion 
matrix as follows 
 

  

 

 
 

     
     
 
 

    

 
 

    

 
 

    

 
 
 

 
 
   

 
 

 ,   

 
Thus, the results on the sensitivity of Schur stability which 
are given for the system (1)  can  easily  be  used  for  the  

   < 1       3  max  2,  3  and so    +    < 1 , 

       +          
1

1     2

(2   +    )   

1  (   2 + 2      +    2)
 

1

1     

   

1  (   +    )2
 

   + 1   0        𝑘 1    𝑘 + 1 = 0,   0 



 
 

 
 
 
 
sensitivity of Schur stability of the scalar-linear difference 
equations with order 𝑘 (5). 

Consider the perturbation of the Equation (5), and so, 
of the system (6)  
  

                ,                             (7) 
 

and the set    called as the   ball, that is, the  –

dimensional ball (Roger and Charles, 1999), where  
 

;   

 
 

 
 

For the system (6), the variant of Theorem 4 is as follows.  
 
 

Theorem 6 
 

Let the system (6) be a Schur stable (the companian 

matrix   is Schur stable). If the 𝑘-tuple        , then the 

perturbed system (7) is a Schur stable,  

where          
 

      
       

 

    
      .  

 
 

Proof  
 

Let the system (6) be a Schur stable (the companian 
matrix   is Schur stable). While the matrix   is Schur 

stable, the condition                in the first part of 
the Theorem 4 quarantees the Schur stability of the 
matrix      . Therefore, it obtained the inequality 

         since          
      

      
    

  
     ,                 for the matrix   and        .  

 
 

Note 2  
 

The 𝑘 ball       occurs as a region of Schur stability for 

the perturbation matrix  . The   ball       is a interval, 

the   ball       is a disc and the   ball       is also 

the interior of a sphere, that is, a solid ball.  
Now, we give the Theorem 7 that is a result of Theorem 

5 for the system (6). 
 
 

Theorem 7  
 

Let the system (6) be     Schur  stable  (the  companian  
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matrix   is   Schur stable). If the 𝑘-tuple      
 , then 

the perturbed system (7) is also   Schur stable, where  
 

  
        

       

      
     

 

Proof  
 

Proof is clear from Theorem 5 and Theorem 6. 
 
 

Remark 4  
 
If the perturbation matrix   in the perturbed system (2) 
only occurs from a row, Theorem 7 is valid for the system 
(2) too, where               

 ,         row vector, for 

any                 ,   zero vector. 

 
 

NUMERICAL RESULTS 
 
Firstly, we compare the results of Theorem 1, Theorem 2, 
Corollary 1 and Theorem 4. For simplicity in the 
comparison, we let the perturbation matrix   with upper 

bounds of     as follows: 
 

    
 

   
 
    

 (Theorem 1),  

   
 

      
,          

 

     
     (Theorem 2), 

 

          
 

    
     (Corollary 1), 

              (Theorem 4), 
 

and let us denote the perturbation matrices of    by   
  

(          𝑘     ) and let 
 

      
 

        (Theorem 1),  

                        (Theorem 2), 
 

    
                  

                   
 (Corollary 1, Theorem 4), 

 
be the upper bounds of                .  
 
 
Example 1. Let 
 

1.     
     

      
 ,   

   
       

        
 , 

  
   

       
        

 , 

 

2.      
    
     

 ,   
   

       
        

 , 

 =

 

 
 

0 0 0  0
0 0 0  0
 
0

 𝑘 1

 
0

 𝑘 2

 
0

 𝑘 3

 
 
 

 
0
 0 

 
 

 

 =   𝑘 1,  𝑘 2,  ,  1,  0  

  =    =   1,  2,  ,        <    
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Table 2. The values of     ,   ,   ,   ,   ,  ,       ,    ,  ,   ,    and    according to 
given datas in Example 1. 
 

           

                             

                                        

                                       

                                       

                                      

                                      

 

    
    

    
    

    
    

  

                                                       

                                                 

                                                  

                                       

                                       

                                                    
 
 
 

  
   

         
         

 , 

 

3.     
    
     

 ,   
   

       
        

 , 

   
   

        
       

 . 

 

Now, let us give in Table 2, the values of     ,   ,   ,   , 
  ,  ,       ,    ,  ,   ,    and    according to given 
datas: 
 
As can be seen from Table 2,    is bigger than    for 
relatively large values of perturbation, so is bigger than 
  .    is smaller than    for relatively small values of 

perturbation. However,   is the biggest of the Schur 
stability perturbation bounds   ,   ,    and  , so in any 

case   is biggest bound of perturbation.  
 
For the perturbation matrices  , while        (Theorem 

1),           (Theorem 2) (Schur stability is not 

guaranteed by Theorem 2 while      ),        
(Corollary 1 and Theorem 4), the values   ,    and    
have been calculated, respectively. Otherwise, the 
symbol   has been used for the values   ,    and   . As 
can clearly be seen from Table 2, the upper bound    is 

closer to the accured value   than others. 
Secondly, we give the examples of Theorem 5, 

Theorem 6 and Theorem 7. 
 
 
Example 2 
 

Let    
    
    

  and       . 

 

Schur stability parameter      is 4/3, i.e.      
 

 
. 

Schur stability boundary   is     , i.e.       (Theorem 
4). 

100 Schur stability boundary   
  is         , that is, 

  
           (Theorem 5). 

 

Since          holds, the matrix   is 100-Schur 
stable. Also it follows from Theorem 5, for any 
perturbation matrix satisfying             , we know 

that matrix     is    Schur stable.  
Let us the perturbation matrix 

    
         

         
  with              . We 

have     , thus we see that                 
    holds, therefore the matrix      is 100Schur 
stable matrix.  

Let us the perturbation matrix 

    
        

        
  with                

 . We 

have     , thus we see that                 
    holds, therefore the matrix      is 100Schur 
unstable matrix. 

 
Example 3 
 
Consider the delay difference equation 
 

           
  

   
     

 

   
        ,                (8) 

 
in Driver et al. (1992) and analyze it. For the companion 
matrix  , it is easy to check that                  . 

Since      ∞ the equation (8) is Schur stable. Let 

  
    ,   

    . 
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Figure 1. The regions of   ,     

  and     
 .  

 
 
 

                                     
0.342497  1 

    
             ,    

             , 

                      
    

         

   
    

     

                                

    
                             ,  

    
                              

 

Consider the perturbed equation  
 

        
                                                                                 (9) 
 

 The Equation (9) for all elements of the set    is Schur 

stable. 

 The Equation (9) for all elements of the set     
  is 

   Schur stable. 

 The Equation (9) for all elements of the set     
  is 

60 Schur stable. 
 

Schur stability region   ,    Schur  stability  region      
   

and    Schur stability region     
  of the Equation (8) 

have been given with Figure 1. As  is  clearly  seen  from  
Figure 1,     

       
     . 

 
Remark 5  
 
For matrix    , we have       , which has the best 
quality of the Schur stability. In this case, the values 

       ,    
 

  
,    

 

  
 and       . In view of the 

spectral criterion, we see that the value     for the 
Schur stability of the system is the upper bound of the 
largest perturbation allowed at the same time. 
 
Remark 6  
 
As is shown in Example 2, the inequality       

  for 

perturbation of   Schur stability are the very sharp 
inequality. 
 
Note 3 
 

The numerical examples have been  computed  by  using 
matrix vector calculator MVC (Bulgak and Eminov, 2001) 

  +1     =    
21

100
+  1    1 +   

1

100
+  2    2,  > 0, 
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and Maple 12. 
 
 
Conclusıons 
 

Firstly, the perturbe bounds in Theorem 1, Theorem 2 
and Corollary 1 have been compared in Lemma 2 and in 
Table 1. As a result of this comparison, we have given 
the continuity theorem (Theorem 4) which allows the 
greater perturbe than others without disturbing the Schur 
stability, and then the theorem (Theorem 5) which gives 

the perturbe bounds without disturbing the   Schur 
Stability.  

Secondly, we have applied the scalar-linear difference  
equations with order 𝑘 the obtained results and obtained 
the new useful results (Theorem 6 and 7) which gives the 

regions of Schur stability and   Schur stability.  
Then, all the results have been supported with 

numerical examples. We have seen from examples too 
that the bound of perturbation of Schur stability in 
Theorem 4 is greater than others (Example 1), the bound 

of perturbation of   Schur stability in Theorem 5 is very 
sharp (Example 2), the region of Schur stability in 

Theorem 6 and the region of   Schur stability in 
Theorem 7 can easily be calculated (Example 3). 
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