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Abstract

This paper is devoted to studying the singular integrals and Marcinkiewicz integrals
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1 Introduction

Let R? (d = mor n), d > 2, be the d-dimensional Euclidean space and S$%-1 be the unit
sphere in R? equipped with the induced Lebesgue measure do,. Let atg1, 4, ...,044 be
fixed real numbers, oy; > 1 (j = 1,...,d). Define the function F : R? x (0,00) — R by
F(x, pg) = Z,il sz,o;zad’i, % = (%1,%2,...,%4). It is clear that for each fixed x € R%, the func-
tion F(x, p,) is a decreasing function in pz > 0. We let p,(x) denote the unique solution
of the equation F(x, p;) = 1. Fabes and Riviére [13] showed that (R%, p,) is a metric space,
which is often called the mixed homogeneity space related to {ad,j}j’lz 1-Fori>0,weletAy),
be the diagonal d x d matrix Az, = diag{A*@1,...,A%d}. Let ¢ : R* —> (0, 00), we denote
Adpoa0y by A"db (y) for y € R4, where y' = Ag )1V € S,

Let B4 = maxi<j<q 0ty j, Ya = Minj<j<q 0tg;. It is easy to check that

pa(x) < x| < pa(x)P,  if pa(x) > 1;
pa(x)d < |x| < pa@)d, if pa(x) <1;

pa(x) = |x|, if pa(x) = 1.
The change of variables related to the spaces (R%, p,) is given by the transformation

o,
x1 = " o8Oy - - cos By O8O, 1,

o .
X = ,od’;"2 cosb ---cosB,_o8inb,_q,
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o, I .
%41 = p, " cos By sinb,

o, .
x4 = p, " sin6y.

Thus dx = pgd_ljd(x’)dpd doy(x'), where pzd_l]d(x’) is the Jacobian of the above trans-

formand o, = Z}’il aap Ja(x') = Z]‘il adJ(x}f)Z. Obviously, /;(x') € C*®(S%!) and there exists

M, > 0 such that
1<Jy(x') <Mg Va' €S
Let © € L'(5%!) and satisfy the following conditions:

Q(Azx) =Q2(x), VYi>0andx#0,

. 200 dost) -0

Define the parabolic singular integral operator T by

Tf (x) := p.v. /1;{01 psjg)idf(x —y)dy. (1.1)

As is well known, a singular integral operator of the type (1.1) originally arose from the
study on the existence and regularity results of the heat equation and the more gen-
eral parabolic differential operator with constant coefficients. In 1966, Fabes and Riviére
[13] showed that T is bounded on L?(R?) for 1 < p < oo if Q € C'(S%!). Subsequently,
Nagel, Riviére and Wainger [18] weakened the regularity condition on 2 to the case
Q e Llog* L(S*). Recently, Chen, Ding and Fan [5] extended further the condition to
the case Q € H'(§%).

In this paper, we will continue the research along this line. We will focus our attention on
the multiple singular integrals with mixed homogeneity. Assume that Q € L}(§" x §"1)
and satisfies the following conditions:

QA% Angy) = Qx,9), Vs, t>0,(x,y) e R” x R”, 1.2)

/ Qs V) o (i) = f Q) do(v) = 0. 13)
sm= 5=
We consider the multiple singular integral with mixed homogeneity defined by

B Qu', V) B ~
To(f)(x,y) == p.v. //]Rmxw —pm(u)D‘Mp,,(v)“nf(x u,y—v)dudv. (1.4)

In 2011, Chen and Le [8] showed that if Q € L(log* L)>(S" ! x §"), then Tq is bounded
on L#(R™ x R”) for 1 < p < 00. On the other hand, in the special case @,,; = a,; =1
(i=1,2,...,m;j=1,2,...,n), Tg is the classical multiple singular integral, which is studied
extensively by many authors (see [2, 10, 12, 14, 15, 19, 25, 27, 28] for examples). In par-
ticular, Ying [28] (also see [27] for a more general case) proved that T is bounded on
LP(R™ x R") for 28/(28 —1) < p <28 and B > 1 provided that Q2 satisfies the following
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condition:

sup // |§2(u/, 1/) | {G(“;", nsu, 1/) }ﬂ do,, (u/) do, (v’) < 00, (1.5)
gm=1y gn-1

(&/,7)esm-1xsn-1

where

1
In-vI

1
G(E/,nf;u/,v/) =log +]og| Y +log 7 -log
n-v

1
& '] & u

It should be pointed out that the condition (1.5) for one parameter case was originally
defined in Walsh’s paper [22] and developed by Grafakos and Stefanov [16]. For the sake
of simplicity, we denote that for 8 > 0,

Fp(S" Tt x 8" ) ={QeL'(S" x §"): Q satisfies (1.5)}.

Employing the ideas in [16], one easily verifies that for B > By > 0, Fp, (S x §*1) C
Fp, (5™ x §"1) and

() F6(5™ ! x §"1) ¢ Llog" L) (8" x §"1) C Llog* L(S™! x 5™
B>1

ZJFp(s" x 5. (1.6)
B>1

Based on the above, a natural question is as follows.

Question 1.1 For the general case a,,; >1(i=1,...,m) and a,; > 1 (j=1,...,n),is Tq
bounded on L (R x R") under the condition (1.5) for some 8 >1?

One of the main purposes of this paper is to give a positive answer to the above question.
The method we use allows us to treat a family of operators broader than those given by
(1.4). To be precise, for suitable functions ¢,y : R* — (0,00) and two real polynomial
Py, on R with Py, (0) = 0 and Py;,(¢) > 0 for ¢ # 0, where N; is the degree of Py, (i =1,2), we
define the multiple singular integral operator Té along surfaces S(Py; (¢), Pn, (¥)) by

TH(f)(x,)

Q /, J
- po. / / &f(x— AP ),y AL)NZWI)(V)) dudy, 17)
R™ xR pm(u)ampn(v)a"

where

S(Pri (@), Pry (9)) o= { (4 ), 4,2 (00) : (1) e R x R7.

Obviously, Tq is the special case of T% for Py (s) = ¢(s) = ¥(s) = s (i = 1,2). Also, in the
special case ot = atpj=1(i=1,...,m;j=1,...,n),

S(Pry (@), Py (1)) = { (P, (0 (11]) ) o', Py (W (IV]) ) V) 2 (,v) € R™ x R} (1.8)
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Moreover, for the special case ¢(s) = ¥ (s) =sand o =0 j=1(i=1,...,m;j =1,..., 1),

S(Pny (@), Py, (W) = { (Pn, (1) o, Py (IVI)V) = (1, v) € R” x R" .

Wu and Yang [27] proved that if Q € F5(S"! x §"!) with 8 > 1, then T} is bounded on
LP(R™ x R") for 28/(28 — 1) < p < 28. In this paper, we will extend the result above as
follows.

Theorem 1.1 Let Py, and Py, be two real polynomials on R with Py,(0) = 0 and Py, (t) > 0
fort #0, where N; is the degree of Py, (i = 1,2), and let o, € §, where § is the set of functions
¢ satisfying the following properties:
(i) ¢:R* —> (0,00) is continuous strictly increasing and ¢ € C1((0, 00)) satisfying that
@' is monotonous;
(ii) there exist constants Cy,cy > 0 such that t¢'(t) > Cp(t) and ¢(2t) < c,¢(t) for all
t>0.
Suppose that Q satisfies (1.2)-(1.3) and Q € Fg(S" x §*) for some B > 1. Then TS
defined as in (1.7) is bounded on LP (R™ x R") for 28/(28 — 1) < p < 2B. The bound is inde-
pendent of the coefficients of Py, (i = 1,2), but depends on ¢, ¥, N1, Ny, m, n and p.

Remark 1.1 For any ¢ € §, there exists a constant By > 1 such that ¢(27) > B,¢(r) for all
r > 0. To see this, by the mean-valued theorem, for any r > 0, there exists s € (r,2r) such
that ¢(2r) — ¢(r) = r¢’(s). The properties (i) and (ii) of ¢ imply that

(s) C
5(20) ~ ) =r9(5) 2 1Co P2 = L g(0),
Taking By =1 + Cy/2, this is the desired constant.

Remark 1.2 We remark that the model examples for functions ¢ € § are t* (¢ > 0),
tIn(1 + £), tInln(e + £) and real-valued polynomials P on R with positive coefficients and
P(0) =0 (see [3]). Theorem 1.1 extends the result of [27], which is the multiple-parameter
generalization of the result in [11, 16], to the mixed homogeneity setting, even in the spe-
cial case ¢(s) = ¥(s) = s. Also, by (1.6), Theorem 1.1 is distinct from the result of [8], even
in the special case Py, (s) = P, (s) = ¢(s) = ¥ (s) =s.

On the other hand, we also consider the multiple Marcinkiewicz integral operator M5
along the surfaces S(Py, (¢), Pn, () defined by

R (©).Px, (V) dsdt\*
MS(f)(x,y)=( / f Tt e iy I (1.9)
0 0 s°r
where
PPN (1) (6,)) = / f Q(u,v) - APN1(¢>(M) ) AP0 ) ) dudy
o ' Atst) Pm ()%= p, (V)1 " ’ " ’

and A(s,£) = {(u,v) e R" x R": p,,,(u) < s, p,(v) < t}.
When Py, (s) = P, (s) = @(s) =¥ (s) =, i = ;=1 (i =1,...,m; j=1,...,n), we denote
ME by Mg, which is the classical Marcinkiewicz integral on the product domains and
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is studied extensively by many authors (see [1, 3, 4, 6, 7, 17, 23-26] et al.). In particular,
Al-Qassem, Al-Salman, Cheng and Pan [1] showed that if Q € Llog* L(S"™ x §"71), then
Mg is bounded on LP(R™ x R") for 1 < p < 0o; Hu, Lu and Yan [17] (also see [23, 26])
proved that if Q € Fz(S™! x §"1) for B >1/2, then Mg is bounded on LP(R" x R") for
1+1/(2B) < p <1+ 2B. For the general operator MZ%, when Pn(t)=t(i=1,2)and @,V €7,
Al-Salman [3] showed that M2 is bounded on L?(R™ x R”) for 1 < p < 0o provided that
Q € Llog" L(§"™! x §"1).
A natural question which arises from the above is the following:

Question 1.2 Under the condition (1.5) with 8 > 1/2,is MJ, also bounded on L?(R” x R")
for1+1/28) <p<1+28?

This question will be addressed by our next theorem.

Theorem 1.2 Let Py, (i =1,2), ¢, ¥ be as in Theorem 1.1. Suppose 2 € Fg(S™ x $"7) for
some B >1/2 and satisfies (1.2)-(1.3). Then M%, defined as (1.9) is bounded on LP(R™ x R")
Jor1+1/(28) < p <1+ 2B. The bound is independent of the coefficients of Py, (i = 1,2) but
depends on ¢, ¥, Ny, Ny, m, n and B.

Remark 1.3 Theorem 1.2 extends the result of [17] to the mixed homogeneity setting,
even for the special case Py, (s) = Py, (s) = ¢(s) = ¥(s) = s. And by (1.6), Theorem 1.2 is

distinct from the result of [3], even in the special case Py; (s) = Py, (s) =s.

The rest of this paper is organized as follows. After recalling some notation and estab-
lishing some preliminary lemmas, we will prove Theorem 1.1 in Section 2. And the proof
of Theorem 1.2 will be given in Section 3. We remark that our some ideas in the proofs
of our main results are taken from [3, 9, 11, 17], but our methods and technique are more
delicate and complex than those used in [3, 9, 11, 17].

Throughout this paper, the letter C or ¢, sometimes with additional parameters, will
stand for positive constants, not necessarily the same at each occurrence but independent

of the essential variables.

2 On multiple singular integrals
Let us begin with some notations and lemmas. For given positive polynomials Py, (t) =
Z Bit', Py, (t) = Zf\g y;t' and two smooth functions ¢, ¥ € §, we set

Nioy,

Pi(t) = (P ()™ := Y ayt' forle{1,2,...,m};

i=1

Niayk
PA(0) = (P, (0) ™ = > byt fork e (L,2,...,n).

j=1
Then for x,& € R™; y,n € R”,

m Nioy,

A ZPNI =Y > aup (o) %) &,

(=1 =1
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n Noay

A2 = ZPNZ (0n )" 5 - nk—Z Z B ()Y ¥ - e
j=1

k=1

We denote N := max{Nja,,,;: 1 <1 < m}, Ny := max{Npa,, : 1 < k <n}and set a;; =0
whenever i > N10,,1; bjx = 0 whenever j > Nya,x. So we can write

m Nicy X M i
Al;Nl(w)(x) E= Z Z ai,l(p(/?m(x))lx; g = Z(L,(g) .x/)(p(pm(x))l,
=1 =1 =1

where L;(§) = (a;161,ai282, - . ., AimEp). Similarly,

N

A0 0 =340 ) (o))

j=1
where I;(n) = (b;1m1,bj212, .., bjuny). For € {0,1,..., N1}, v € {0,1,..., N>}, we set

Qulx) = (Z a5 (o)), Zul ¥ P pm(x))>

i=1 i=1

(Z by (o), Z by, ¥ (0a»)) )

j=1 Jj=1

Here we use the convention ), ,a; = 0. Hence,

w X
Qu) & =Y (Li&) - #)p(pm(®)’, 0=<p <Ny
i=1

R,G) - n=Y (L) ¥) ¥ (oa()), 0<v =N

j-1

For any «,£ € Z and p € {0,1,..., NV}, v € {0,1,..., N>}, we define the measures {0y ¢, }
and {|o,¢;u,0|} as follows.

Ok, b, V(E T]) //Ke ,Om(x)"‘”'p (y)a P(—I(Q;L(x) 3 +RU(Y) . 7})) dxdy, (2.1)

Q(x,
|0Keuv| &, n) —// pm(lx)"‘(zpn o exp(=i(Qu(x) - & + R,(y) - n)) dxdy, (2.2)

where A, o = {(x,y) € R” x R": 271 < p,(x) < 24,271 < p,(y) < 2%). By (1.3) and Qp(x) =
(0,0,...,0) € R, Ry(y) = (0,0,...,0) € R”, for u € {0,1,..., N1} and v € {0,1,..., N>} we
have

G0 (&) = G io0(&,m) = 0. (2.3)

Then it is easy to see that

TEO@) = 3 Grenin, #F(5). (2.4)

K,LEL

Page 6 of 23
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Lemma 2.1 (cf. [21, pp.476-478]) Let P be a polynomial mapping R* — R, where
P(t) = (Pi(2), Po(t), ..., Py(t)) and P; is a real polynomial defined on R* (i=1,...,d). Then
the maximal function Mp(f)(x) defined by

Mp(f)x) = sup =

r>0

/|t<rf(x -P()) dt‘

is bounded on LP(R?) for 1 < p < 0o. The bound is independent of the coefficients of P; (i =
d)andf.

Lemma 2.2 Let P be a polynomial mapping R* — R?, where P(t) = (Pi(t), Ps(¢),

., P4(2)) and P; is a real polynomial defined on R* (i =1,...,d). Suppose that ¢ € §. Then
the operator My defined by

2r d
Mpia 1) =sup [ |r(e-P(o(0)|F
r>0 Jr

is bounded on LP(R?) for 1 < p < 0. The bound is independent of the coefficients of P; (i =
.,d) and f, but depends on ¢.

Proof For any r > 0, by the change of variable, it can be easily seen that
2r dt
| =P

¢(2r) P ds
‘/w G- (S))|¢/<¢f1(s>)¢4<s)

1 »(2r) 2r)
< — d
Gy Joi) fla=PONT C¢¢> V)/ )| ds

_ @) 1 o
= Cpp(r) p(2r)

If (x = P(s)) | ds < é—iMp(lfl)(x).

This implies that Mp)(f)(x) < C(@)Mp(|f])(x). Then Lemma 2.2 follows from Lem-
ma 2.1. O

Lemma 2.3 Let ¢,y € §. Suppose that Q € L}(S™! x §"1) and satisfies (1.2)-(1.3). Then,
for we{1,2,...,N1}, v € {1,2,..., N>}, the maximal operator defined by

U;,.,(f)(x,y) = Sup ||GK,Z;M,U| *f(x;y)|
Kk, LEZ

is bounded on LP(R™ x R") for 1 < p < 0co. The bound is independent of the coefficients of
Py, (i=1,2) and f, but depends on ¢, ¥, N1, No, m, n

Proof By the definition of |0y ¢, |, we have

||UK,€;M,V| *f(s’ 77)‘

|2, v)|
// Ay Pm(@)* mpn(y)anf(x = Qulu),y - RV(V)) du dv
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2% ot ’
SC// / [f(x = QulApp,tt),y = Ry(Ay p, v ))|d,0mdp,,
sm-tygnt Joeat Jpe PP
x |Q(u/, v/) | do,, (u’) do, (1/)

< C// 1 1|Q(L/,1/) |MQM,RV;,,/YV/(f)(x,y) dam(u’) dcry,(v’),
Sy §n-

where

1 2s p2t
My ryu v ()%, y) = Sup—t/ / If (x = Qu(Amytt'),y = Ry (AnpV')) | dr dh.
s t

5t>0 S

By Lemma 2.2, using iterated integration, it is easy to see that

|Ma,.yw (F) ”p <C|fll, forl<p<oo,

where C is independent of «/, v'. Thus

lorutl, = [[ 1906 Mo, muw P, don(el) don () = CUFI
which completes the proof of Lemma 2.3. g
Lemma 2.4 (cf. [20, p.186, Corollary]) Let ®(£) = t*1 + puat® + -+ + p,t* and W €

C(la, b)), where [is,...,1u, are real parameters, and a1, ...,q, are distinct positive (not
necessarily integer) exponents. Then

b
f exp(ir® (1)) W (¢) dt

b
scxf{ sup |00 + [ |\IJ’(t)|dt},

a<t<b

with € = min{l/ay,1/n} and C does not depend on i, ..., Ly aslongas0 <a<b <1

Lemma 2.5 Suppose that ¢, € §. Then for any n € {1,2,..., N1} and v € {1,2,...,N3},
there exist €, = 1/14 and €, = 1/v such that for any r > 0

" d m /€1
f exP(1Q () - €) L = o)L, (6) -]

r/2 m

! d n 7| —€2
/ exp(=iRy(Anpy) - 1) 22 < COP) W () L) -y |,

r/2 Pn

The constant C(p) is independent of the coefficients of P, but depends on ¢; and C(\) is
independent of the coefficients of Py, but depends on .

Proof We only prove the first inequality, since a similar argument can get the second in-
equality. By the change of variables, we have

r dpo,
/ exp(~iQu (Am,p, /)'5)L

r/2 Pm

m
dpm
://;:xp(—zz L&) -« <ﬂ('0m)1) P

Page 8 of 23
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o(r) H j dt
= _'§ L& -V ) ——
/W) o ( 2L x)t)go—l(r)wf(w-l(t»

j=1

1 "
=o(r) / exp(—i > (L© -x’)w(r)"t">¢(t)gr,¢(t)dt,
S

j=1

where ¢ = ¢(r/2)/p(r), ¢(t) = (97 (@(NE) ™, g0 (1) = (¢' (9 (@(r)t))) . Let
1) - / exp (—iZ(L,»@) -x/)w(V)’S’)¢(S) ds, c=t<l,
S j=1

By Lemma 2.4, there exists €; = 1/p such that

Vm\scwvwlAa-%F“<wpw@M+/\W@Mﬁ)
s€lg,t] ¢
< C|90(V)ML;L(E) 'x/|_El 2/r +1/r)

C —€1
< o0V Lu© -+

Thus by integration by parts and the fact that ¢’ is monotonous, we have

r apm
/ exp(_inL (Amrpmx/) ’ E) o

/2 Pm

1
- ‘W) f 2., (0)dI(?)
S

1
swmomm¢m+/umm@mwQ
S
<@l L&) -2 | (' () + (9 (/12) ).

Using t¢' () > C,e(t), we get

" d m 7 1—€1
/ exp(=iQu (A py) - €) 222 < £ (14 2¢,) |0V L,u () - ¥ |
r/2 Pm C(p

< Cl)|o()" L, (&) - &
This proves Lemma 2.5. d

Lemma 2.6 Let ¢,y € §. Suppose that Q2 € Fg(S"™ x §"7) for some B > 1 and satisfies
(1.2)-(1.3). Then for p € {1,2,..., N1} and v € {1,2,...,/N,}, there exists a constant C > 0
such that

@) 1YL > 1, then

‘m(é, 77) _O—J:Lu(g; 7))|

< C|p(25)"L,(&)| min{1, (log|y (2°) 'L.()]) " }; 2.5)
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(it) if 9(2)*Ly(§)| > 1, then

|Gt (62 1) = G (€, 1)|

< Cly(2")"1,(n)| min{1, (log|(2)" L. (©)]) " };
(iii) if |(2V*L,(£) > L and |y (2°)"1,(n)| > 1, then

|Getmon (& m)| < Cmin{L, (log|(24) L, (8)]) 7, (log|w (2) 'L )" };
|Gy (&,m)| < Cmin{1, (log|e(25)L.(8)]) ™ (log|v (29)'1.m)]) 7 );

(iv)

|@(Er 77) - O':Z;/:Lv(g’ 77) - UJH,\V—I(S; 77) + Ukm)—l(%_: 77)|
e(29"L.®)], [v(2°) L)
|0(29) L (®)|]¥ (2°) L]}

< Cmin{l,

’ ’

The constant C is independent of the coefficients of Pn, and Py, .

Proof Let
/ 2K . / dpm
H,(x,§) = /2;71 exp(—iQu(Amp,x) - §) o ;
2l
/ . / d
Je0sm) = f xp (iR, (Anp,) - 1) 2.
2t-1 Pn

By Lemma 2.5, there exist €;, €; € (0,1] such that

|H,(,M xﬁé)! < Cmin{l,

0(2)"Lu) -2}

Vew (¥, n)| < Cmin{L, [ (2°) L(n) - ¥/| ).

When |@(2€)“L,,(€)| > 1, since t/(log )? is increasing in (ef, 00), we have

(log e’ |(p(2)L, (§)) - #/|"1)”

Heu(+,§)] <C
e (+8)| < (log [@(2€) L, (§)])P

Then

(log e”[(p(2)*L,u(§))" - #/|~1)P }

|H,(,,1 (x’,%‘)| = Cmin{l, (log @(2€)~L,(&)])P

Similarly, when | (2¢)"L,(n)| > 1,

(loge? |(y (29" 1,(n)) - y/'|72)P }

Veu(y'sm)| < Cmi“{l’ (log [ 29T, (n)])P

(2.6)

(2.7)

(2.8)

(2.10)

(2.11)
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By the definition of o ¢;,,,,, we have

|Gt (&, 1) = Ot 10 (€, )]
' 1 / . ’ dlom
=c | XD(=1Qu (A ) - §) — XD(-iQu 1A ) - ) 22
sm=1y gn-1 1/2 pm
X [Jew (v, ) || (%, ¥) | dowm (%) do(¥)

<[ Dln)lle@) L2y do ) do, ().
sm-lxgn-1

Combining (2.11) with the fact Q € F3(S"™ x §"'), we obtain (2.5). Similarly, we can
conclude (2.6). To prove (2.7) and (2.8), we write

@] <C [[ 19060 [Ho () e ) o () dor ().

Then (2.7) and (2.8) follow from (2.10)-(2.11) with the fact 2 € Fz(S”' x $"'). Finally,
(2.9) follows from the inequality

’m(s’ 71) - Um,v(s! 77) - Oml(S) 71) + O—Km—l(ér Tl)|

scf[ . lawy)
sm=1y gn-1

1 1
A [ exp(ci(Qurlae) - R ) )
1/2 J1/2

x (exp(—ip (2 pm) " L,u(§) - ) — 1)

dﬂ A do,, (x/) do, (y/).

m IO}’I

X (exp(—iw (21';/0”)“11;(77) 'J’/) - 1)

This completes the proof of Lemma 2.6. d

Now we take two radial Schwartz functions ¢; € S(R™) and ¢, € S(R”) such that ¢;(¢) =
1 for |t| <1 and ¢;(t) = 0 for |¢| > min{B,, By} (i = 1,2), where B, By, are as in Remark 1.1.

Define the measures {w,¢,.,»} by

M
et 1) = Feggon(&,1) [ #1(0(2°)'Lil) ]‘[¢>2 (2 1(n)

i=p+1 j=v+1

M
~ GerpnE ) [ | (0 (29)'Li®)) l—[¢2 Y1)

i=p j=v+l
M
— et En) [ | d1(p(2)'Lit®) 1‘[¢2 2% 1(m))
i=p+1
M Na

+ O @) [ 61(0(29) L&) [ ] (v (2 1(n)

i=p j=v
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for k,£ € Z, n € {1,2,...,Ni} and v € {1,2,...,N}, where we use the convention

[ljepaj =1. By (2.3), it is easy to see that

N Ny

Ok, & N1.N> =§ E Wi, tp1,v+

n=1 v=1

Lemma 2.7 Let Q, ¢, ¥ be as in Lemma 2.6. For u € {1,2,...,Ni} and v € {1,2,...
k,t € Z, we have

(i)

|Demem (E,1)| < Clo(2) Lu®)| | (2) "L ()

(i) if l9(2)“L, (§)| > By, then
| ez & 1) = Clogle(2) L)) |w (2) ' L.);
(iii) if |¥(25)"1,()] > By, then
| e (& )| = Clo(2) Lu(€)| (10g] ¥ (2°) 'L, ())) s
() if 19(2)*L,.(€)| > B, and |y(2°)"1,(n)| > By, then
|t m)| < C(logle(29) L, (8)]) ™ (log| v (2) L)) .

Here and below, By (¢ = ¢ or ) is as in Remark 1.1, the constant C is independent
coefficients of Py, (i = 1,2).

(2.12)

7'A/2})

(2.13)

(2.14)

(2.15)

(2.16)

of the

Proof We write ITy(u) = l_[f\:/,ﬂﬂ 1PV Li(€)), Ta(v) = [TA2,; ¢2(¥ (2°YL()). Then

Ot (1) = T 5w (&, ML (W) TT2() = O 1, (€, M) TTi (1 — DT (v)
— Oty (&M ()T (v - 1)

+ 0t (&M ( — DI (v - 1).

Thus, it is easy to see that

| @t &) = T[Tt (6 1) = Tt (§: M (9(2°) " Lyu(6))
= Tetro-1(E M2 (¥ (2°) 1 (n)
+ Ukm—l(s’ 77)¢1 (‘P (2K)ML/L (g))¢2 (V/ (2£)U1v(’7)) i

(2.17)

< Cloetyn &) = Ot (E:1) = e i1 (E: ) + O gt 1)

+ C|0e it & 1) = Ot E 0)||1 - 1(0(29) L. (8)) ]

+ Cl o1 1) = Ocpto-1(E 0|1 - d2 (v (29) "1, ()|

+ Clocatm1E |1 - d1(e(2°) L) ||1 - 2 (v (2°) 'L () |-
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Notice that
11-1(0(2) L.(®))] = Clo(2) L. (&), (2.18)
1= (¥ (2°)'L()| < Clv(2°) L(n)|. (2.19)
Invoking Lemma 2.6, we get (2.13). On the other hand, since
M(n-1)=0, if|e(2)"L.(€)|>B,, (2.20)
My(v-1)=0, if [y(2°)"L(n)| > By, (2.21)

by (2.17) and (2.20), we have

| Dty & 1)| = |Gt (M () TT2(V) = G pomm1 (&, ) T ()T (0 — 1)
< |Getmn €1 = Oy G b (v (2°) "L ()|

= |m(§,ﬁ) _O'ml(g’n” + |Oml(€rn)||l_¢2(w(2l)v1u(77))|

Then (2.14) follows from (2.6)-(2.7) with (2.19). Similarly, we get (2.15). Finally, (2.16) fol-
lows from (2.8), (2.17), (2.20) and (2.21). This completes the proof of Lemma 2.7. O

By Lemma 2.3 and the definition of {ji, ¢,,,.}, it is easy to verify the following lemma.

Lemma 2.8 Let Q,9,V¥ be as in Lemma 2.3. Then for u € {1,2,..., N1} and v € {1,2,
..., No), we have

Sup | |wy e; *f(- - <C
”M&“ et 21 )|HU’(RM><]RH)_ IV Iz e ey

for1<p <oo. The constant C is independent of the coefficients of Py, and Py,.
Applying Lemma 2.8 and [9, p.544, Lemma], we can obtain

Lemma 2.9 Let Q, ¢, ¥ be as in Lemma 2.3. Then for n € {1,2,..., N1} and v € {1,2,
..., N2}, we have

1/2
’ <Z |a)K,€;/A,\) *gK,K('; )|2>

K€L
for1< p < oo and any arbitrary functions {g.¢}. The constant C is independent of the coef-
ficients of Py, and Py,.

1/2
<Z e ~)|2)

K AEL

.
)

LP(R™ xR" LP(R™ xRM)

Now we are in the position of proving Theorem 1.1.

Proof of Theorem 1.1 Combining (2.4) with (2.12), we write

N Ny M N,

THO =YY" ot xfi=D_ Y Th (). (2.22)

n=l v=1 k,leZ pn=l v=1
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It suffices to show that for u € {1,2,...,V;}and v € {1,2,..., N3},

| 78,001, < Clfll, for 28/(28-1) <p <28. (2.23)

For fixed u € {1,2,..., MV } and v € {1,2,...,MN>}, choose two collections of C*® functions
{Ai}iez and {n;}jez on (0, 00) with the following properties:
(i) suppi; C [p(2™)™, (2771, suppr; C [y ()™, ¥(Z7)™];
(i) 0<Aun <1, Y, 7Mil0)*= Z/ez n(t)? =1;
(iii) AL, |n]f(t)| < C/t, where C is a constant.
Define the multiplier operator S;; on R” x R” by

Siff @9) = 2 (L)) i (|1 0)|)F . 9). (2.24)
Then
Tg,p.,v(f)(xiy) = Z Wy ;1,0 *f(x;y)
Kk AEL
= Z Wi, b0 * (Z Si+K,/+ZSi+/<,/+[Qf> (x;y)
KkLEL ijel
= Z Z Si+K,j+Z (wK,Z;//,,v * Si+K,j+£f)(x’y)
ijel kel
= Z T if (%,9). (2.25)
ijel.

Now we consider the L”-boundedness of T;;. By the Littlewood-Paley theory and Lem-
ma 2.9, we have

1/2
2
” Tz,}f”p = C (Z |Si+K,j+l(wK,l;u,u * Si+l(,j+(if)| )

K AEL p

1/2
2
=< C (Z |U)K,(Z;;L,u * Si+/<,j+lf| )

K,LEL

1/2
<C (Z |Si+K,,+¢f|2>

V' RAVA

p

p

<Clfll,, l<p<oo,ijeZ. (2.26)

On the other hand, by the Littlewood-Paley theory and Plancherel’s theorem, we have

2
ITyf 15 < C

1/2
2
(Z |wk,€;u,v * Si+K,j+€f| )

K AEL

2

- c%//ﬂwxw|am<s,n>|2|x,»m(|L,L(s>|)n,»+z(|1v(n>|)|2Lf<s,n)|2ds d

7'\\} . 21% ) de,
sCKZL;//E | o &7 |f €, m)|” dE dn

i+icj+Ll
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where Ejyjue = {(§,1) € R™ x R" : (2% < |L,(8)] < @@ ), y(2)™ <
I1,(n)| < ¥(2**1)7"}. Using Lemma 2.7 and Remark 1.1, we have

” Tvl,}f”Z = C(‘/’; Kﬁ, y V)Bl',jllf”b (2'27)

where

BB, i,j>-2
BJj|IP, 0> =2,j <=2

Bj=q " " (2.28)
lilPB)", i<-2,j>-2;

171", Lj=-2.

Interpolating (2.26) and (2.27), for any p € (28/(28 —1),28), we can obtain § € (0,1) such
that §8 > 1 and

ITiif lp < Clo, s 11, v) B If s 28128 =1) <p <28.

Then we have

annpsC(w,w,u,u)(ZB;““‘B/““+ > B

ijeZ ij>=2 i>-2,j<-2
=88 p—jVo P
DIl S R ] f‘)ufnp
i<-2,j>-2 <=2

<Cle, ¥, w)IfI, for2B8/28-1)<p<2B.
This together with (2.22) and (2.25) completes the proof of Theorem 1.1. O

3 On the multiple Marcinkiewicz integrals

This section is devoted to the proof of Theorem 1.2. We first introduce some notations
and lemmas. For u € {1,2,...,M}, v € {1,2,..., A2} and i,j € Z, s,t € R*, we define the
measures {0}, } and {|a”st|} by

T () = / / Q(x,y)
Ljst n 2”’1St A” ,Om(x)am lp (y)an—l

x eXP(—i(Qu ()& +R,(y) - 1)) dxdy, (3.1)
1Q(x, )]
Tl €)= iz [ e
X exp(—i(Q,L(x) -E+R,(y)-n))dxdy, (3.2)

where Af”; ={(x,y) e R" x R": 2715 < p,,(x) < 2's5,27'¢ < p,(y) < 2t} and Q,, R, were
defined as in Section 2. It is obvious that for u € {0,1,...,N}}, v € {0,1,..., N5}

o0 (Em) = ol () =0, V() € R X R,
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and

I;fi\fl(‘ﬂ) Ny (¥ x’ ) = st Z 2t+10-/\/'1 No F(x,). (3.3)

iis,t
i,j=—00

Lemma 3.1 Lets,t >0, i,j € Z and ¢, € F. Suppose that Q@ € Fg(S" x §"1) for some
B > 1/2 and satisfies (1.2)-(1.3). Then for each pair u and v, there exists a constant C > 0
such that

@) if |y (2Z)'1,(n)| > 1, then

1
‘O’Ustg 77) ,I;Stvg 77)’

< Clp(2%s)"L,.(€)| min{1, (log|w (2£) 'L,()|) " }; (3.4)
(i) if 19(2i5)"L,, (€)] > 1, then

v 1
|6L,”(§ DR (]

< Cly(2t)"L(n)| min{1, (log|<p(2is)“L“($)|)_ﬁ}; (3.5)
(iii) if 9(2's)* L, (€)| > 1 and |y (2t)"L,(n)| > 1, then

[ofei(&m| = Cmin{1, (log|o (2's) " L,(&)]) 7. (tog w (22) L) '} (3.6)

ot (& m)| < Cmin1, (logle(2's)" L (®)]) ” (logw () L)) "} (3.7)
(iv)

|o/% &) — o, ol E e ) - a;j:ﬁ(s n)+cf[fslt”§ )|
(29)'L,
|0(2's)"Lu(®)] v (22) L) }. (3.8)

< Cmin{1, |¢(2 s)"L

The constant C is independent of the coefficients of Pn, and Py, .

Proof Set

1 2!s
L[l.,“s(x/,é) = —/2 exp(—iQM (Am‘pmx/) 'S)d/)m;

2l Joi-14

1 2Vt ) ,
Va0 =55 [ expliR(4) 1)

By Lemma 2.5, there exist €, €5 € (0,1] such that

UL (x,€)| < Cmin{1, |p(2's)"L,.(8) - «'| "}, 3.9)

|V, (Y,n)| < Cmin{L, [y (22) 'L(n) - ¥'| "} (3.10)
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When |¢(2/s)"L,(&)| > 1, since ¢/(log t)? is increasing in (e, 00), we have

b [, (logef|(p(2's)"L,.(£)) ~x’|-fl)ﬂ}
i (¢.)] < Con]s (oglg@s) L@ | 10
Similarly, when | (2£)"1,(n)| > 1
v (o [, (ogef|(y(2t)"I,(n)) -y’l“Z)ﬁ}
VL) < len{l, oz [0 @D ()P (3.12)

By the definition of o/; i, .., we have

’ t/st(é n) - Uzl;sltv(évﬂw

1
= Cf/sm—l g1 1/2|€Xp(—iQM (Am’zisl’mx/) 5) - exp(_iQu—l (Am,zispmx/) '§)|d:0m
x V0|2, )| o (') dow(y')
<Ci§0 2s”L (§)|// ]ty ;7)||Q( ,}/)|d(fm( ')ddn(y/).

Combining (3.12) with the fact Q € Fz(S” x §"), we obtain (3.4). Similarly, we can
conclude (3.5). To prove (3.6) and (3.7), we write

Ttenl < [[ 1ol ) o]Vl )| don ) don ).

Combining (3.11)-(3.12) with the fact that Q € Fz(5"! x §"7), we get (3.6) and (3.7).
Finally, (3.8) follows from the inequality

e a}jsi“(s n) - ,‘;:f(s n)+a,*;si” e

scf[ . lew@y)
sm=1y gn-1
1

exp(—i(Qu_l (Am,Z"s,omx/) &+ Rv—l(An,?/'tpny,) ) '7))

1/2

x (exp(~ig(2'spm) L. (€) - &) = 1)

1/2

X (exp(—il/f (thpy,)vlv(r/) ~y/) - 1) dp,dp,| do, (x’) do, (y/).

This completes the proof of Lemma 3.1. g

We now take two radial Schwartz functions ¢; € S(R™) and ¢, € S(R") such that ¢;(¢) =
1 for |t| <1 and ¢;(t) = O for || > min{B,, By} (i = 1,2), where B,, By, are as in Remark 1.1.
Define the measures {}}; ,} by

—

O (&) = 01 (6, MO (WO () — 0/ Y (€, MOy (11—~ 1))

— ol E )OO0~ 1) + 015 E, O (1~ DO (v - 1),
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where ©; () = [T 1 D1(0(275) L (8)), ©2(v) = [1)2,1 620 () L(n), foriyj € Z,5,¢ > 0,
nwell,2,..., M} vell,2,...,N5}. Here we use the convention [Mjepa; = 1. It is easy to see

that
Ny &
t]slt 2 _Zzwust (313)
n=1 v=1

Applying Lemma 3.1 and the same arguments as in proving Lemma 2.7, we have

Lemma 3.2 Let Q, ¢, W be as in Lemma 3.1. Then for u € {1,2,...,N1} and v €
{1,2,. Ng} i,j €Z; s,t >0, there exists a constant C > 0 such that

() Iw,,”(é,n)l < Clo(2's)* L (&)Y (2Zt) L (n)];

(ii) if |9(25)" L, (€)| > By, then

|7 (6 m)| < Clog|e(2'5) L&) [ (20)'L,

(iii) if 1Y (20°1,(1)| > By, then
|l (€,m)| < Clo(2)" )| (l0g] v (20) L)) s

(v) if lo(2's)“L,(§)| > By, and |y (2t)"1,(n)| > By, then

[wfea(e.m] = Cloglo(2's) "L, @)]) " (tog|y (2e) L))
Here the constant C is independent of the coefficients of Py, (i =1,2).

By Lemma 2.2 and the same arguments as in proving Lemma 2.3, we have the following

lemma:

Lemma 3.3 Let ¢, € 5. Suppose that Q € LN(S™ ! x S" ) and satisfies (1.2)-(1.3). Then
for pe{1,2,...,N1}, v € {1,2,..., N>}, the maximal operator

(rw(f)(x, = supsup||a”st| * f(x, )|
ijeZ s,t>0

is bounded on L? (R™ x R") for 1 < p < co. The bound is independent of the coefficients of
Py, (i=1,2) but depends on ¢, ¥, N1, No, m, n

Applying Lemma 3.3, we have

Lemma 3.4 Let @, ¢, ¥ be as in Lemma 3.3. Then for u € {1,2,...,N1} and v €
{L2,...,Na},

supsupHa)”SA*f ‘H <Clfll,, l<p<oo.
ij€Z s,t>0

The constant C is independent of the coefficients of P, (i =1,2).
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Furthermore, applying Lemma 3.4 and [9, p.544, Lemma], we can obtain

Lemma3.5 Let, ¢, Y beas in Lemma 3.3. For u € {1,2,..., N1 v e {1,2,..., N3}, 5,t>0
and any arbitrary functions g;j, then

oy ) 1/2
Z|wi,}';s,t * gij()]

ijel

(g )

ijeZ

p

, l<p<oo,
p

where the constant C is independent of the coefficients of Py, (i=1,2).

Lemma 3.6 Let Q, ¢, ¥ be as in Lemma 3.3. Then for p € {1,2,...,Ni} and v € {1,2,
..., Na), there exists a constant C, > 0 such that for 1 < p < oo

2 r2 ) 12
H(Z / / |2 % e )] dsdt)
1 )1

K AEL
1/2
(Z e ~)|2)

K AEL

p

’

p

<G,

where (g ¢}« ez are arbitrary functions defined on R™ x R". The constant C,, is indepen-
dent of the coefficients of P, (i=1,2).

v

it * 8.t b s, By Lemma 3.4, we have

Proof We consider the mapping F : {gc¢}cc — {@
forl<p<oo

’

sup sup |a)§fj’;zt*gm(-,-)|” <C,
p

sup |ge.e(--)]
ijel ste(l,2] PEAYA

which implies F : LZ(R™ x R")(£*°) — LP(R™ x R™")(£*°(L>°([1,2] x [1,2]))).
On the other hand. By the dual argument and Lemma 3.4, we have

2 2
2/1 /1 |ofe, % Qe )| dsdt

PRAYA

> lgee)]

PRAYA

=G
p

’
p

which implies f : LZ(R” x R")(£}) — LP(R™ x R")(€1(L'([1,2] x [1,2]))). Then Lemma 3.6

follows from the standard interpolation arguments. O

Lemma 3.7 Let S;; be the multiplier operators defined in (2.24) for any i,j € Z. Then (i) for
each fixed 1 < p < 2 and for any functions (g js .0}

2 2 2 12 g
‘(Z/ / ZSHK,ngi,j;s,t;K,é('!') det>
ezt Y1 lien p
2 2 1214
<cy (Z [ |g,-,,;s,m,e<-,->|2dsdt> . Vi<q<p (3.14)
ijez! Nepezrdl V1 p
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(i) for each fixed 2 < p < 0o and for any functions {gijs e},

> 2 /219
‘ < Z / / Z Sivejrt&ijiste,t (5°)| ds dt)
K LEL 1 J1 ije »
2 2 ) 1/2 2 q/2
= CZ(/ / H ( Z |gi,j;s,t;f(,(3('; )| ) dsdt) s
Lj€L L K AEL p
Vi<g<p =pl/lp-1). 15

By the arguments similar to those used in [17, pp.78-81], we easily establish this lemma.
The details are omitted.

Now we turn to prove Theorem 1.2.

Proof of Theorem 1.2 By (3.3) and (3.13), we can write

ME(3) = ( fo N /0 N

0

0
PR N ‘N
Z ZHIU;',;';sl,t 2xf(x,y)

ij=—00

e} 00 1/2
L NN s dsdt
2H]</ / |Gi,j;sl,t : *f(x,y)| -
0 0 st
oK+l 2l+1

1/2
NN 2dsdt
B 4( / / |‘70,01;s,t2 *f(x,y)| )
. 2 st

K AEL

2 p2 1/2
NN 2 dsdt
o[ Sl e )

Kk AEL

2 1/2
dsdt
st

=

ij=—00

M N,

[ L,V 2 1/2
5422(/1/1 D el f (%) dsdt)

n=1 v=1 YRAVA
M Ny

=4) > MY (@) (3.16)

n=1 v=1

It suffices to show that M{" is bounded on LP(R™ x R") for u € {1,2,...,N;} and v €
{1,2,...,N>}. By the definitions of Sij, we can write

2 p2 2 1/2
M’é’”(f)(x,y) = (/ / Z w,}::ev;s,t * (Z Si+K,j+€Si+K,j+€f> (x:y) ds dt)
LI ez ijeZ
2 2 2 1/2
= (Z / / ZS”K,M(w,’:,ZS,t * Sivijref ) (%) dsdt> . (3.17)
oeez?l Y1 ey,
Case 1.1+ 1/(28) < p < 2. Combining with (3.17) and Lemma 3.7, we know that for 1 <
q<p
2 p2 ) 1/2q
”Mlstzv(f) “Z = CZ (Z / / |w:l:,,lv;s,t * Sivejirtf (5 )| det) (3.18)
ijez! Nepezl U1 p
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For fixed i,j € Z, let

v ) 1/2
Z |a)K€st Sivcjeef @ y)| dsdt | .

Kk AEL

By Lemma 3.6 and the Littlewood-Paley theory, we have

IMfll, < Cp <Gllifllp, 1l<p<oo. (3.19)

p

1/2
( Z |Si+l<,j+(f('r ) ’2>

K,LEL

On the other hand, by Plancherel’s theorem and Lemma 3.2, we know that

IMf 13 = Z/ / // [l o€ 22, (1L, )

Kk AEL

x 1o ([L()|) [F&, )| de di ds i

= Zf/ el / / ol 6| dsdeds d,

ke Eivi J+

where E;, j.¢ is as in the proof of Theorem 1.1. Then

1M if ll2 < Clo, ¥, i1, v)BijIf ll2, (3.20)

where B;; is as in (2.28). Interpolating between (3.19) and (3.20), there exists § €
(2/(28 +1),1) such that

IMiif I, < Clo, ¥, i, v) B IIf Nl 1+1/28) <p<2.

For fixed 1 + 1/(28) < p < 2, we can choose 1 < g < p such that gé8 > 1. Then

i —jVé. _i o—
zuwnuww,u,w(zsmyw S g

ijel ij>—2 i>-2,j<-2

P —jqvé o=
Y EPB > i q‘”)m‘nz

i<=2,j>-2 ij<-2

= C(‘P; Kb,,U«, ‘))”f”q; 1+2ﬂ <p<2,
which implies
MG D, < C@. v, m)Ifllp, 1+1/(2B) <p<2. (3.21)

Case2.2<p<1+28.By(3.17) and Lemma 3.7, we have, for 2 < p < oo and any 1 < g <
P =plp-1),

Izl <e ([

ijel

1/2
<Z|wwst Sivicjref )|>

K AEL

2 ql2
ds dt) . (322)
p
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Let

1/2
Jijistf (%,y) = (Z |w5,2s,t * Si%/%f(x’y”z) ’

K AEL

By Lemma 3.5 and the Littlewood-Paley theory, we have that for i,j € Z and s, ¢ € [1,2],

”]i,j;s,tf”p = Cp

1/2
(Z |Si+/(,j+£f(': )|2)

K AEL

p

<Glfll,, l<p<oo. (3.23)

On the other hand, by the same argument as in getting (3.20), we have

”]i,j;s,tf”Z = C(@) 1/f, M, U)Bi,j”f”b (3'24)

where B; isasin (2.28). By interpolating between (3.23) and (3.24), for fixed p € (2,1+28),
we can choose g € (1,p') and y € (2/(28 +1),1) such that gy8 > 1 and

Wigisif lp < Clo, ¥, i1, v) VB llpy 2<p<1+28.

Combining this with (3.22), we have

||Mé§'”(f>HZ§C(<o,w,u,v)(Z Bmap ]ty N~ B anr|j-avk

ij>—2 i>-2,j<-2

P ) |i|-qyﬁB;"’”+Zm‘rm‘)wng

i<-2,5-2 ij<-2

< Clo, ¥, i, VIfIIZ, 2<p<1+28.

This together with (3.21) completes the proof of Theorem 1.2. O
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