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Abstract

Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the
micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell
invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis.
Several previous studies have implicated rhomboid proteases in this step; however, their precise roles in vivo have not been
elucidated. Using a conditional knockout strategy, we demonstrate that TgROM4 participates in processing of surface
adhesins including MIC2, AMA1, and MIC3. Suppression of TgROM4 led to decreased release of the adhesin MIC2 into the
supernatant and concomitantly increased the surface expression of this and a subset of other adhesins. Suppression of
TgROM4 resulted in disruption of normal gliding, with the majority of parasites twirling on their posterior ends. Parasites
lacking TgROM4 bound better to host cells, but lost the ability to apically orient and consequently most failed to generate a
moving junction; hence, invasion was severely impaired. Our findings indicate that TgROM4 is involved in shedding of
micronemal proteins from the cell surface. Down regulation of TgROM4 disrupts the normal apical-posterior gradient of
adhesins that is important for efficient cell motility and invasion of host cells by T. gondii.
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Introduction

Motility by apicomplexan parasites occurs by a unique form of

locomotion called gliding, which relies on the apical secretion of

adhesins followed by translocation of adhesin-receptor complexes

along the cell surface to the back of the parasite [1]. Studies in T.

gondii have elucidated the essential role of parasite F-actin in this

process [2,3], as well as a small myosin anchored in the inner

membrane complex [4,5]. Gliding is extremely efficient and it

provides the motive force for tissue migration [6] and for rapid

invasion of host cells by T. gondii [7]. Similar forms of motility are

important in the invasion of host cells by sporozoites of

Cryptosporidium spp. [8,9] and Plasmodium sporozoites, both in its

insect and vertebrate hosts [10]. Host cell invasion also requires

the coordinated secretion of microneme proteins and rhoptries,

which aid in adhesion and the formation of the vacuole that will

ultimately house the intracellular parasite [11]. During invasion,

the parasite squeezes through a constriction known as the moving

junction, which demarks the closely apposed parasite and host cell

membranes [12]. Recent evidence implicates proteins derived

from the rhoptry neck (so called RON proteins) in forming this

junction [13,14] and several of the RON proteins are inserted

directly into the host cell membrane [15,16]. Aided by this

mechanism, T. gondii is able to invade virtually all types of

nucleated cells from a variety of warm-blooded animals.

Micronemes contain a family of adhesive proteins (referred to as

MICs) that contain a variety of domains involved in protein-

protein interactions, which likely contribute to the wide host range

of apicomplexans [17]. Microneme secretion depends on mobi-

lization of intracellular calcium in the parasite [18], and chelation

of this signal blocks microneme secretion and prevents attachment,

and consequently invasion of host cells [19]. Reverse genetic

studies have documented the essential role of the microneme

proteins AMA-1 [20] and MIC8 [21] in facilitating apical

attachment, and signaling rhoptry secretion. MIC2, which

contains an integrin A-like domain and a series of thrombospondin

repeats, is also essential for efficient invasion [22]. Conditional

suppression of MIC2 impairs both helical gliding motility and host

cell attachment, thus reducing invasion [23]. Similarly, the malaria

orthologue TRAP is essential for invasion into salivary glands and

liver hepatocytes [24,25,26,27]. In addition to mediating substrate

attachment via their extracellular domains, MIC2 and TRAP also

provide a connection to the parasite cytoskeleton, as shown by in

vitro studies demonstrating a tight molecular interaction between

their C-terminal tails and the F-actin-binding protein aldolase

[28,29]. Recent evidence confirms that the molecular interaction

between the tail of MIC2 and aldolase in T. gondii is essential for

efficient invasion of host cells [30].

Secretion of MIC2 onto the parasite cell surface is accompanied

by processing at the N-terminus [31], an event that may be
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important for binding to certain receptors including ICAM1 [32].

Shedding of MIC2 into the supernatant is associated with

proteolytic processing at the C-terminus [31], releasing the

extracellular domains into the supernatant. Shedding of adhesins

such as MIC2 may be important for breaking the connection

between the parasite and host cell, hence allowing completion of

cell invasion. Mass spectrometry experiments demonstrate that

shedding of MIC6 and MIC2 occurs by cleavage within their

transmembrane domains [33,34]. Shedding of surface adhesins in

malaria such as EBA175 also occurs by cleavage within the

transmembrane domain, and this event is essential for sialic acid-

dependent invasion of red blood cells by merozoites [35].

The conservation of a cleavage site between small hydrophobic

residues in the transmembrane domain of parasite surface adhesins

suggested that a rhomboid protease performed this task.

Rhomboids are conserved serine proteases that cleave their

substrates within the transmembrane domain [36], based on

unordered helical domains containing Ala and Gly [37]. In vitro

biochemical studies have shown that MIC transmembrane

domains function as substrates for heterologous rhomboids such

as Rom1 from fly [37]. Toxoplasma gondii contains six rhomboids,

one in the mitochondria, and five others that are expressed at

different life cycles stages and localized in different cellular

compartments [38,39]. ROM1, ROM4 and ROM5 are expressed

in tachyzoites of T. gondii [38], suggesting that one or more of these

proteases are important in the processing of adhesins, as described

above. Previous studies have shown that suppression of TgROM1,

which is localized in the Golgi and micronemes, has a very slight

effect on intracellular growth, but no effect on microneme adhesin

processing [40]. In vitro expression in a heterologous system has

been used to characterize the biochemical activities of TgROMs

[38,41]. TgROM5 was by far the most active, as well as expressing

activity against the widest range of substrates [38]. In contrast, no

activity was detected for TgROM4 in this system [38]. TgROM4

is uniformly distributed on the surface of the parasite, while

TgROM5 is localized at the back of the parasites, suggesting it

may be responsible for shedding adhesins as they are translocated

rearward [38]. Plasmodium spp. contains a similar diversity of

ROMs [39], and although it lacks a direct orthologue of ROM5,

the activity of PfROM4 shows broad specificity [35].

Although previous studies have suggested that apicomplexan

invasion depends on proteolytic shedding of adhesins, the

protease(s) involved in this final step has not been identified.

Moreover, their different localizations suggests that ROM4 and

ROM5 play different, although perhaps overlapping, roles in this

process. To address the role of ROM4 in shedding of microneme

proteins, we generated a conditional knockout (cKO) and tested it

using a variety of in vitro assays. Our studies demonstrate that

ROM4 plays an important role in the cleavage of surface adhesins,

and that in its absence, invasion is impaired.

Results

Generation of a Conditional Knockout of TgROM4
In order to determine the function of TgROM4, we initially

attempted gene disruption using double homologous crossover to

replace the endogenous gene with the cat selectable maker, as

described previously [40]. However, in three independent

experiments, in which more than 100 separate clones were

analyzed, we were unable to obtain gene knockouts by this

approach (data not shown). Therefore, we employed a conditional

knockout strategy based on a Tet-transactivator system, described

previously [5]. To accomplish this goal, a HA9-epitope tagged

copy of TgROM4 was transfected into a T. gondii line expressing the

Tet-transactivator, yielding a merodiploid clone. Addition of

anhydrotetracycline (Atc) to this line was shown to suppress

expression of the epitope-tagged copy (data not shown). The

endogenous TgROM4 gene was then disrupted in the merodiploid

by replacement of the endogenous gene with the chloramphenicol

acetyltransferase (cat) selectable marker under the control of a

SAG1 promoter and flanked by genomic regions of the TgROM4

gene. Successful replacement left only the regulatable HA9-tagged

copy of TgROM4 (Figure 1A). To verify proper integration at the

correct locus, PCR analysis was performed using primers from the

cat gene combined with primers to flanking genomic regions of the

endogenous ROM4 locus that lie outside of sequences included in

the knockout construct (Figure 1A). Amplification of a 1.5 kb

fragment with primer pairs F1-R1 (see Table S1 for sequences)

confirmed that proper integration was achieved (Figure 1B).

Similarly, amplification with primers F2-R2 generated a 2.4 kb

PCR fragment, demonstrating replacement of the endogenous

gene with cat (Figure 1B). Based on PCR screening, two

conditional knockout (cKO) clones (i.e. cKO1 and cKO2), were

selected for further analysis. The degree of HA9-ROM4 down-

regulation in the presence of Atc was quantified using quantitative

RT-PCR to detect transcripts of the tagged gene compared to

actin mRNA levels as an internal control. Following growth in the

presence of Atc for 96 hr, expression at the mRNA level was

reduced to ,28% for cKO1 and ,13% for cKO2 relative to wild

type ROM4 levels (Table 1).

To visualize expression of the HA9-ROM4 protein, intracellu-

lar parasites were grown in the absence or presence of Atc for 72h,

fixed and stained for immunofluorescence using a mouse anti-HA

mAb followed by goat anti-mouse IgG conjugated to Alexa488

(green) (Figure 1C). In the absence of Atc, TgROM4-HA9 was

distributed on the surface of intracellular parasites as shown by co-

localization with T. gondii surface antigen 1 (SAG1) (red). However,

following treatment with Atc there was no detectable staining of

the HA9-tagged TgROM4 protein, although staining of the

surface SAG1 antigen was unchanged (red) (Figure 1C). To

quantify the suppression of HA9-ROM4, parasite lysates were

Author Summary

Apicomplexan parasites invade host cells using a multi-
step process that depends on regulated secretion of
adhesins, attachment to the cell, and active penetration.
Coordinating these activities requires control of proper
timing and release of surface proteins that mediate
adhesion. Parasites like Toxoplasma gondii attach direc-
tionally to their host cells due to the selective discharge of
adhesive proteins at their apical end. The resulting
complexes are then translocated along the long axis of
the parasite, thus propelling the parasite into the cell.
Completion of cell invasion also requires that these
interactions ultimately be severed to allow detachment.
Shedding is accomplished by proteolytic cleavage of the
adhesive proteins at the point where they span the
parasite outer membrane. By disrupting the expression of
the intramembrane protease rhomboid 4 (ROM4), we
demonstrate that it is important for shedding of adhesins.
In the absence of ROM4, a subset of surface adhesive
proteins was over-expressed on the parasite cell surface.
Although ROM4 knockdown parasites bound better to
host cells, they lost their ability to do so directionally, and
hence were impaired in cell entry. Our findings demon-
strate that host cell invasion by apicomplexan parasites
relies on constitutive shedding of surface adhesins for
efficient infection.

Processing of Surface Adhesins
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analyzed by western blot following growth in Atc for different

intervals. Expression of HA9-ROM4 was substantially reduced

following culture in Atc for 48h, and the protein was essentially

undetectable by 96h (Figure 1D). When the signals from western

blots were quantified by densitometry, and compared to loading

standards of untreated parasites, the level of shutdown was $99%

at the 96h time point. In contrast, no change was observed in actin

levels following growth in Atc. Collectively, these findings indicate

TgROM4HA9 was greatly reduced following extended treatment

with Atc. Consequently these conditions were used to examine the

phenotype of the TgROM4 cKO.

Suppression of TgROM4 Partially Impairs Lytic Growth
Without Affecting Intracellular Replication

To analyze the phenotype of TgROM4 suppression, we tested

the ability of parasites to form plaques on monolayers of HFF cells

using standard methods reported previously [42]. Suppression of

TgROM4, did not lead to a defect in plaque formation (data not

shown), a result that is similar to the suppression of MIC2, reported

previously [23]. To provide a more sensitive and quantitative

assessment of growth, we examined the ability of the parasite to lyse

monolayers of HFF cells as determined by absorbance at 570 nm

following staining with crystal violet. Following growth in Atc for a

total of 96h, suppression of TgROM4 in the cKO clones resulted in

significantly decreased monolayer lysis when compared to untreated

clones at an inoculum of 104 parasites/well (open vs. closed symbols

in Figure 2A). This effect was overcome at higher inocula where a

single round of replication was sufficient to cause substantial lysis of

the monolayer. The slightly decreased lysis of the Atc-treated

merodiploid vs. the untreated merodiploid parasites at the 104 dose

may be a consequence of prolonged exposure to Atc (open vs. closed

red circles, Figure 2A). However, the Atc-treated cKO and

merodiploid clones showed statistically significant differences

(P#0.005), indicating that the decrease in monolayer lysis was

due to absence of TgROM4 and not due to nonspecific effects of Atc

exposure. Since the lytic assay was unable to distinguish between

effects on invasion, replication, egress, or reinvasion of host cells, it

was necessary to employ other assays to determine the exact nature

Figure 1. Generation of a conditional knockout of TgROM4. Genetic confirmation of the conditional knockout (cKO) of TgROM4. (A) Diagram of
the cKO genotype. On the right, the Tet-repressible allele of HA-9 tagged ROM4 (HA9-ROM4) is controlled by the pTetOSAG4 promoter. On the left, the
endogenous gene has been replaced by the cat selectable marker driven by the SAG1 promoter (green box) and flanked by 59 and 39 regions of TgROM4
(blue boxes). Position of primers used to verify the proper integration of the knockout cassette are shown by arrows. (B) PCR analysis of two cKO clones
(cKO1 and cKO2). Primer pairs F1-R1 and F2-R2 can only generate products following the successful replacement of the endogenous gene with the cat
cassette. Merodiploid line was used as a negative control. (C) Immunofluorescence staining of HA9-ROM4 suppression following a total of 72h growth in
1.5 mg/ml of Atc. HA9-ROM4 was detected using mouse anti-HA followed by goat anti-mouse IgG Alexa 488 (green), followed by mouse anti-SAG1
directly conjugated to Alexa 594 (red). Parasite and host cell nuclei were visualized with DAPI (blue). Scale bar = 5 mm. (D) Western blot analysis with mAb
against the HA9 tag showing suppression of HA9-TgROM4 following culture in presence of Atc for 48 or 96h. Western blotting was performed on
parasite lysates using mAb against HA9. Rabbit anti-actin was used as a loading control. Asterisks denote minor cross-reactive bands.
doi:10.1371/journal.ppat.1000858.g001

Table 1. qPCR results for Tet-suppression of HA9-TgROM4.

2 Atca + Atc 96ha

Clone 22DDCt 22DDCt % Remaining expressionb

cKO1 0.539 0.387 28%

cKO2 0.777 0.128 13%

aFold change relative to wild type TATi line. Data is a representative of 3
independent experiments.

bRelative to wild type TgROM4.
doi:10.1371/journal.ppat.1000858.t001

Processing of Surface Adhesins
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of the cKO phenotype. Parasites were grown in the presence or

absence of Atc for 96h and then the number of parasites per vacuole

was quantified at different time periods over a single round of

intracellular replication. When expressed as the average number of

parasites/vacuole it was evident that the suppression of HA9-

ROM4 had no effect on the rate of intracellular replication

(Figure 2B). Collectively these results imply that normal expression

of TgROM4 is not essential for cell replication but that it functions

to facilitate another step in the lytic cycle.

Suppression of TgROM4 Results in Impaired Invasion of
Host Cells

To determine the role of TgROM4 in host cell invasion, we

utilized a red-green differential antibody staining assay to quantify

parasite attachment and invasion into host cells following a brief

infectious pulse, as described previously [40]. Following growth in

Atc for 96h, host cell invasion was significantly reduced in both

cKO clones, albeit more strongly in cKO2 consistent with greater

suppression (Figure 3A, Table 1). In contrast, the number of

extracellular parasites was increased by 2–4 fold for both Atc-

treated cKO clones (Figure 3A, red bars). Conversely, the

addition of Atc to the parental merodiploid parasites had no effect

Figure 2. Intracellular growth is unaffected in TgROM4
conditional knockouts. Growth in human cells was monitored in
vitro using two standard assays. (A) Host cell monolayer integrity was
observed following 96h parasite growth in 1.5 mg/ml of Atc. Absor-
bance at 570 nm of crystal violet-stained host cells was used to
calculate % lysis of host cells at specific parasite concentrations/well.
Results obtained from conditional knockouts cKO1 (blue lines) and
cKO2 (green lines) were plotted and compared to parasites in the
absence (closed symbols) and presence (open symbols) of Atc. Parental
merodiploid parasites (red lines) were used as a control. Values
represent mean, n = 4 replicates each from two pooled experiments.
** P#0.005, *** P#0.001 (B) Intracellular growth during a single
infectious cycle. The number of intracellular parasites/vacuole was
quantified during a single intracellular cycle, following 96h pregrowth in
1.5 mg/ml of Atc vs. control. Samples were taken every 12h, fixed for IF
and quantified by counting the number of parasites/vacuole. Values
represent means 6 SD, n = 3, from a representative experiment.
doi:10.1371/journal.ppat.1000858.g002

Figure 3. Host cell invasion is impaired in TgROM4 conditional
knockouts. (A) Comparison of the invasion efficient of cKO clones vs.
the merodiploid. Invasion into HFF monolayers grown on coverslips was
determined by microscopic examination and counting the number of
extracellular (red bars) vs. intracellular (green bars) parasites following
staining with antibodies to the parasite cell surface (see methods). The
invasion assay was conducted using a 15 min pulse-invasion assay after
pretreatment with 1.5 mg/ml Atc (+Atc) vs. control (2Atc) for 96h.
Values represent means 6 SD, n = 3, from a representative experiment.
(B) Comparison of cKOs and parental merodiploid parasites in the
absence (closed bars) and presence (open bars) of Atc. Invasion
efficiency is expressed as % of total parasites. Assays were conducted
following 48h or 96h of pretreatment with 1.5 mg/ml Atc (+Atc) vs.
control (2Atc). Values represent means 6 SEM, n = 3 experiments.
* P#0.05, ** P#0.005, *** P#0.001.
doi:10.1371/journal.ppat.1000858.g003

Processing of Surface Adhesins
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on the proportion of parasites that attached or invaded into host

cells (Figure 3A). When the data from multiple experiments was

combined and expressed as the % of total parasites that were

intracellular, treatment with Atc for 96h resulted in 48% decrease

in invasion for cKO1 (P#0.05) and 73% decrease in invasion for

cKO2 (P#0.001) (Figure 3B). Similar defects in cell invasion for

cKO1 and cKO2 treated with Atc were observed when parasites

were allowed to invade for up to 120 min (data not shown),

indicating that the phenotype for decreased cell invasion was not

simply a consequence of the short invasion pulse. We also

examined the effect of ROM4 suppression on egress from host

cells, a process that relies on microneme secretion. Stimulation of

intracellular parasites (36 h post-invasion, total for 78 h Atc

treatment) with calcium ionophore using a protocol described

previously [43], showed normal levels of egress by the cKO clones

grown in the absence and presence of Atc (data not shown).

Together these results indicate that suppression of TgROM4

decreased the efficiency of host cell invasion while concomitantly

increasing attachment by T. gondii.

Suppression of TgROM4 Reduces the Frequency of
Moving Junction Formation

During host cell invasion, the parasite makes intimate contact

between its apical end and the host cell plasma membrane. At this

interface, the host cell and parasite plasma membranes are in close

contact and there is a visible constriction as the parasite migrates

through a narrow waist, referred to as the moving junction (MJ)

[7]. Although appreciated for decades from light and electron

microscopy studies, the true dynamics of this interface only

recently became known with the identification of protein

components that reside there, including the rhoptry neck protein

4 (RON4) [13,15]. RON4 is discharged early in invasion and it

marks the MJ by the presence of a tight ring, visible by

immunofluorescence staining. Consequently, localization of

RON4 provides a convenient means of staging the process of

invasion. We used a modified immunofluorescence staining

protocol to evaluate the ability of T. gondii to properly form a

MJ and migrate into host cells. To determine the location of the

MJ during invasion, parasites were scored based on the location of

the RON4 ring (in green) (Figure 4A). In combination, we

evaluated migration of the parasite through the junction using

differential staining of the surface antigen SAG1; first to detect the

extracellular portion (in red, prior to detergent) and then to detect

the intracellular portion of the parasite (in blue, following

detergent). Individual parasites were thus classified as being

attached, but not forming a MJ complex (no ring), or having

initiated invasion, in which case they were classified based on the

degree of progression past the junction (Figure 4A). Following

prolonged treatment with Atc to suppress TgROM4, the cKO

clones were largely unable to form a MJ, as seen by the large

percentage of parasites being classified as having no ring

(Figure 4B). Consistent with this, the cKO clones grown in Atc

also showed lower numbers of intracellular parasites, when

compared to culture in the absence of Atc (Figure 4B). The

cKO2 clone showed a greater impairment in junction formation

and also showed a lower frequency of apically positioned RON4

rings (Figure 4B). Those cKO parasites that did correctly form a

MJ, migrated through this interface with a similar efficiency, as

shown by the fact that the proportion of parasites at the middle

and posterior stages did not differ between the merodiploid and

cKO clones, regardless of whether cultured in Atc or not

(Figure 4B). Taken together, these results indicate that in the

absence of TgROM4, parasites attach to the host cell but fail to

form a moving junction.

Suppression of TgROM4 Affects Parasite Gliding Motility
The ability of T. gondii tachyzoites to move across substrates or

host cell surfaces has been previously characterized using video

microscopy [44]. Productive gliding, which leads to invasion, is

characterized by a clockwise, helical pattern that produces a net

forward motion. In contrast, circular gliding and twirling, while

commonly observed, do not lead to invasion of host cells

[18,44,45]. To assess the effect of TgROM4 suppression on

parasite gliding motility, we captured parasite gliding by time-lapse

video microscopy and classified the types of motility based on

previously reported patterns. When the time-lapse images were

merged together into a composite frame, helical gliding (H)

appeared as a series of crescent-shaped arcs, while circular gliding

(C) was seen as a tight circular pattern (Figure 5A). Similar to wild

type control parasites, these patterns predominated in the cKO

clones grown in the absence of Atc (Figure 5A, see supplemental

Videos S1, S3). Treatment of the cKO parasites with Atc resulted

in a preponderance of the third pattern called twirling (T), which

appeared as a ‘‘pin-wheel’’ pattern in the merged images

(Figure 5A, see supplemental Videos S2, S4). Quantification

of these patterns from a series of time-lapse videos revealed that

the majority of cKO parasites treated with Atc displayed twirling

movements (Figure 5B). Conversely, the untreated cKOs more

often underwent helical and circular gliding, similar to the

merodiploid control (Figure 5B). Of the minority of Atc-treated

cKO parasites that did not undergo twirling motility, most of these

showed helical rather than circular gliding (Figure 5B). A

predominance of helical trails was also seen when the cKO clones

were treated with Atc and evaluated using a static gliding assay

based on staining of trails for surface membrane proteins that are

deposited on the substrate (data not shown), as described

previously [44]. However, the static assay failed to detect the

large proportion of twirling parasites, which do not leave

detectable trails on the substrate. Comparison of the rates of

movement between the cKO and merodiploid parasites treated

with Atc did not detect a difference in average speed of motion

(data not shown).

Suppression of TgROM Leads to Increased Levels of
Surface Adhesins

Thus far, the phenotype of the TgROM4 cKO consisted of

impaired motility and cell entry, while adhesion to host cells was

increased. Together with the previous suggestions that TgROM4

may process surface adhesins [41], lead us to examine the steady

state levels of microneme proteins on the surface of extracellular

parasites. Normally micronemal proteins are rapidly released from

the surface following constitutive secretion, such that the steady

state surface levels are quite low [31,46]. The exception to this

pattern was AMA1, which remains detectable on the surface for

much longer than the others [17], presumably due to slower

turnover. To determine if the absence of TgROM4 activity leads

to an increase in cell surface adhesins, we examined the cKO

parasites for the levels of MIC1 through MIC6, AMA1, and SAG1

by staining with specific antibodies and flow cytometry. Following

96h of culture in Atc, the cKOs had increased levels of MIC2,

MIC3 and AMA1 detectable on their surface, in comparison to

the untreated cKO parasites (Figure 6A). The levels of MICs 1, 4,

5 and 6 detected on the cell surface were unchanged by the

suppression of TgROM4 (data not shown). SAG1, which is not

cleaved by surface proteases, remained unchanged and was used

as an internal control (Figure 6A). These results suggest that in

the absence of TgROM4, surface adhesins accumulate to higher

levels than normal. This increase is seen for proteins that normally

have low surface expression such as MIC2, and also those that

Processing of Surface Adhesins
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have a higher steady state level of surface staining, such as AMA1.

Collectively, these results imply that TgROM4 affects the rate of

shedding of a variety of substrates, independent of their intrinsic

turnover rates.

Previous studies have revealed that MIC2 is initially secreted at

the apical end, rapidly translocated to the posterior pole, and

shed from the surface by proteolysis [19,47]. To visualize

differences in the surface expression of MIC2, extracellular

parasites were stimulated with ionophore and then stained by

immunofluorescence. Parasites were examined cells at 2 min and

15 min post-stimulation to compare the surface expression of

MIC2. At 2 min post-stimulation, surface MIC2 staining was

upregulated, consistent with previous reports, and this result was

similar in the merodiploid and cKO1 clone grown both in the

absence and presence of Atc (data not shown). In contrast, the

pattern of surface staining at 15 min post-stimulation was

radically different. Although the merodiploid grown under either

condition or the cKO1 line grown in the absence of Atc had

cleared the majority of MIC2 from the surface, substantial

staining was still detected for the cKO1 clone grown in the

presence of Atc (Figure 6B). A similar result was observed for

cKO2 under Atc treatment (data not shown). The pattern of

surface staining for MIC2 in the cKO clone grown in Atc was

diffuse and extended across the majority of the surface, rather

than being confined to either pole (Figure 6B).

MIC2 Processing Is Affected by TgROM4
Previous studies have emphasized that following secretion of

MIC2 onto the apical end of the parasite, rapid proteolysis results

in shedding of the extracellular domain into the supernatant [31].

Figure 4. Formation of the moving junction during parasite invasion is diminished in TgROM4 conditional knockouts. Invasion was
quantified based on the ability of the parasite to form a moving junction as defined by TgRON4 immunofluorescence staining. Progression into the
host cell was based on the position of the RON4 ring; apical, middle, posterior, or fully intracellular. Adherent parasites that did not invade where
classified as ‘‘no ring’’. (A) Representative images of the stages of junction formation during host cell invasion. RON4 was visualized with rabbit anti-
TgRON4 followed by goat anti-rabbit Alexa 488 (green). DG52 Alexa 594 (red) was used to stain extracellular parasites, while DG52 Alexa 350 (blue)
was used after permeablization to stain all parasites. (B) Results from conditional knockout parasites, cKO1 (blue) and cKO2 (green), and parental
merodiploid parasites (red) were classified based on the respective categories described above. Invasion was compared between parasites grown in
the absence (closed bars) and presence (open bars) of 1.5 mg/ml Atc for 96h. Values represent means 6 SEM, n = 3 experiments. * P#0.05, ** P#0.005,
*** P#0.001.
doi:10.1371/journal.ppat.1000858.g004
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This event is thought to occur due to the action of a rhomboid

protease, although the precise protease(s) involved has not been

defined [38,41]. The flow cytometry data provided evidence that

TgROM4 may facilitate cleavage of surface adhesins that are

constitutively released and that in its absence, surface adhesins

accumulate. Previous studies have defined several potent triggers

that activate calcium-dependent microneme secretion, and this

can readily be detected by examining supernatants for the

extracellular portion of MIC2, which is shed into the supernatant

[31,47]. We examined the ability of TgROM4 cKO clones to

process and shed MIC2 into the supernatant following secretion.

The level of shedding of MIC2 was markedly decreased in the Atc-

treated cKO2 clone compared to the untreated control (2Atc)

(Figure 7A, top blot). Reduced shedding was a result of the

suppression of TgROM4, since merodiploid parasites were able to

cleave MIC2 at similar rates in the presence or absence of Atc

(Figure 7A, bottom blot). Quantification of the efficiency of

processing revealed that there was an almost 6-fold decrease in the

level of MIC2 shed into the supernatant by the Atc-treated cKO2

clone (Figure 7B). In three independent experiments, the average

level of suppression of shedding of MIC2 into the supernatant was

,80% (data not shown). Together with data presented above,

these findings indicate that TgROM4 facilitates cleavage of MIC2

and that in its absence this adhesin accumulates to higher levels

than normal on the parasite surface.

Discussion

Cell motility and invasion by apicomplexans requires the

coordinated control of polarized secretion of adhesins at the apical

end, translocation along the parasite surface, and shedding into the

supernatant. Previous studies have suggested that proteolytic

processing at the C-terminus of MICs releases key surface adhesins

from the cell surface, although the role of specific proteases in this

process has not been established. Using a regulated expression

system, we demonstrate that ROM4 plays an important role in

shedding of cell surface adhesins for T. gondii. Suppression of

ROM4 led to increased levels of MIC2, and a subset of other

adhesins, on the parasite cell surface, as well as decreased shedding

into the supernatant. Absence of ROM4 led to enhanced twirling

motility and increased cell attachment; however, parasites were

unable to efficiently form a tight apical junction, hence host cell

invasion was severely impaired. Our findings indicate that ROM4

acts to increase the efficiency of cell surface micronemal protein

processing, which in turn maintains the apical to posterior

gradient of adhesive proteins that appears necessary for efficient

cell invasion.

Protein secretion, translocation, and processing are critical for

motility and cell invasion by apicomplexan parasites. Studies of the

micronemal protein MIC2 have played a significant role in our

understanding of these events. MIC2 is delivered to the apical end

Figure 5. Gliding motility is altered in TgROM4 conditional knockouts. Comparison of cKO and merodiploid lines by time-lapse video
microscopy. (A) Merged video frames from time-lapse images of gliding tachyzoites (,1 min video taken at ,1 frame/sec and merged into a
composite image). Representative patterns are labeled: H, helical glide; C, circular glide; T, twirling. See also supplemental videos S1, S2, S4, S4. (B)
Patterns for the conditional knockout parasites, cKO1 (blue) and cKO2 (green), and parental merodiploid parasites (red) were defined as described
above from a series of time-lapse images. Comparisons were made between parasites grown in the absence (closed bars) and presence (open bars) of
Atc for 96h. Results are displayed as % of total parasites. Values represent means 6 SEM, n = 3 or more experiments. * P#0.05.
doi:10.1371/journal.ppat.1000858.g005
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of the parasite surface by exocytosis of micronemes; this process

occurs constitutively and appears to be strongly upregulated on

contact with host cells [46]. Similar to most micronemal proteins,

MIC2 does not enter the vacuole but is swept backward during

invasion, ultimately being shed from the surface prior to entry

[46]. This process can be mimicked in the absence of host cells by

artificially elevating the levels of MIC2 on the parasite surface by

inducing secretion [19]. Shedding into the supernatant involves

processing at the C-terminus [31], which occurs in the

transmembrane domain [34], consistent with rhomboid proteases

being responsible. The rearward translocation of MIC2 requires a

functional actin cytoskeleton in the parasite and progression is

blocked by cytochalasin D, although interestingly shedding is not

inhibited in this circumstance [19]. MIC2 connects with the actin

cytoskeleton via the bridging function of aldolase both in vitro [29]

and in vivo [30], facilitating the rearward translocation of MIC2 by

the motor complex. Release of the adhesins from the parasite

membrane is also important to break contacts with the substrate

and hence allow forward migration, or completion of cell entry.

Support for this model comes from a mutant of MIC2 containing

Ala-Ala substitution of a Lys-Lys motif just outside the

transmembrane region: this mutant form of the protein resists

normal shedding resulting in a dominant negative phenotype [48].

In these MIC2 processing mutant cells, adhesion is enhanced but

parasites lose polarity and are inefficient at establishing apical

attachment and invasion of cells [48].

Apicomplexan parasites contain a conserved family of rhom-

boids that have been implicated in processing of cell surface

adhesins [39], although the functions of these proteases have not

been extensively studied in parasites. Toxoplasma gondii and related

Figure 6. Micronemal adhesins are upregulated on the surface of the TgROM conditional knockout. (A) Tachyzoites were screened for
changes in the levels of surface proteins using antibodies specific for TgMIC2, MIC3 and AMA1, followed by goat anti-mouse IgG conjugated to Alexa
488 and analysis by flow cytometry. Surface SAG1 staining was used as a control. Results displayed as the percent change in mean surface
fluorescence of conditional knockouts cKO1 (blue) and cKO2 (green) vs. wild type RH strain parasites. Comparisons were made between parasites
grown in the absence (closed bars, 2Atc) and presence (open bars, +Atc) of 1.5 mg/ml of Atc for 96h prior to analysis. Values represent means 6 SD,
n = 3, from a representative experiment. * P#0.05, *** P#0.001. (B) Immunofluorescence staining of surface MIC2 expression in control (2Atc)
merodiploid and cKO1 parasites and following 96h growth in 1.5 mg/ml of Atc (+Atc). Extracellular parasites were stimulated to secrete micronemes
by treatment with calcium ionophore (0.2 mM A23187) for 15 min prior to fixation. Surface MIC2 was detected using mAb 6D10 (MaMIC2) followed by
goat anti-mouse IgG Alexa 488 (green). After saponin permeablization, parasites were stained with rabbit anti-MIC2 (RaMIC2) followed by goat anti-
rabbit IgG Alexa 594 (red). Parasite nuclei were visualized with DAPI (blue). Arrows denote apical end. Scale bar = 5 mm.
doi:10.1371/journal.ppat.1000858.g006
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coccidians contain two rhomboid paralogues known as ROM4

and ROM5 that are expressed in tachyzoites and bradyzoites of T.

gondii [38]. Previous experiments indicate that ROM5 is highly

active based on a heterologous assay, while ROM4 is not [38].

Combined with their different cellular localizations, it was

suggested that ROM5 was the more likely enzyme to process

MICs, since it concentrates at the posterior end of the parasite

[38]. In contrast, ROM4 has a peripheral surface pattern that

would place it in the proximity of substrates before they reach the

posterior end, hence risking their premature release from the

surface. Thus, it was unclear from previous data whether these two

enzymes share the role of processing surface adhesins, or if ROM4

performs a completely different function.

To address the function of ROM4, we attempted gene knock out

studies using a double crossover strategy. After repeated attempts, we

were unable to generate knockouts by this strategy, suggesting the

gene was essential, or at least that knockouts likely have a distinct

disadvantage in vitro. Instead we turned to a regulated expression

system, which has been used previously to study essential genes in T.

gondii [49]. We were able to achieve very tight down-regulation of

HA9-ROM4 in the conditional knockout background. Under the

conditions used here, we observed .90% suppression of ROM4 at

the protein level, resulting in a significant impairment of cell invasion,

yet no discernable effect on parasite replication. Using a different

strategy to disrupt function (dominant over-expression of a

catalytically inactive enzyme) others have reported a defect in

intracellular replication (Dominique Soldati pers. comm.). This

difference may reflect a separate role for ROM4 during intracellular

replication that is not apparent under conditions we have tested here,

where low levels of residual ROM4 activity remain. Defining the

requirement for low levels of TgROM4 expression could be further

explored by generating a clean knockout using the newly developed

methods for enhanced homologous recombination in Ku80 deficient

cells [50]; a methodology that was not available in T. gondii at the

outset of this work. Nonetheless, we were able to appreciate highly

significant phenotypes in cell attachment and invasion that were

associated with substantial suppression of ROM4. Somewhat

surprisingly, ROM4 was observed to affect the efficiency in

processing of cell surface adhesins including MIC2, AMA1 and

MIC3. Shedding of MIC2 was reduced by approximately 80%,

suggesting residual ROM4 or another protease, perhaps ROM5, was

still able to process this protein, albeit less efficiently. The simplest

interpretation of our findings is that ROM4 acts as a sheddase by

directly cleaving micronemal proteins that have a conserved

rhomboid site in their transmembrane domains. Under this

assumption, ROM4 is expected to directly cleave MIC2 at a

conserved site for rhomboid proteases present in the transmembrane

domain [37]. In contrast, MIC3 does not contain a transmembrane

domain, but rather has been reported to associate with MIC8 [51],

another putative rhomboid substrate. Such an in vivo activity for

ROM4 was not anticipated from prior studies using a heterologous

assay where it failed to show any activity [38]. This difference may

reflect a necessary co-factor for activation that is only present in the

parasite. As expected, suppression of ROM4 did not affect the soluble

micronemal protein MIC5, which lacks a transmembrane domain.

Somewhat surprisingly, suppression of ROM4 also did not affect the

complex of MIC1, MIC4, and MIC6, only the latter of which has a

transmembrane domain [52]. The rhomboid recognition sequence in

the transmembrane domain of MIC6 is highly similar to MIC2 [37],

so the absence of an effect on MIC6 is intriguing. These findings may

indicate that ROM4 has distinct preferences for regions outside the

direct cleavage site, which is otherwise highly conserved among these

substrates [53], or alternatively that processing of MIC6 is influenced

by different sensitivity to the level of shutdown achieved here. An

alternative possibility is that ROM4 does not act directly on MIC

substrates, but rather enhances the activity of another sheddase,

possibly ROM5. Such an accessory role has not been previously seen

for rhomboids, but cannot be strictly ruled out from the data

presented here.

The phenotypes of the ROM4 cKO allow us to place it in the

cascade of events that occurs during cell invasion by T. gondii.

Previous studies have shown that MIC2 facilitates binding to host

cells and hence is important for efficient invasion [23]. MIC2 may

also participate in invasion directly by providing a linkage between

the motor proteins and attachment, thus driving the parasite

through the junction, although this role has not been specifically

demonstrated [54]. AMA1 is necessary for tight apical binding and

for initiation of the junctional complex, and in its absence, parasites

are able to secrete the contents of rhoptries but remain peripherally

attached and do not invade efficiently [20]. MIC8 is also essential in

this pathway as conditional mutants fail to secrete rhoptries and

hence cannot form a junction or invade the host cell [21]. In

contrast to these prior conditional mutants that either decrease

attachment to the host cell (AMA-1) or show normal binding

(MIC8), TgROM4 cKO parasites actually bound better to host cells

by a factor of 3–4 fold. This is likely attributable to decreased

processing of cell surface adhesins such as AMA1, MIC2, and

Figure 7. Shedding of MIC2 into the supernatant is decreased
in the TgROM4 conditional knockout. Comparison of the shedding
of MIC2 into the supernatant following stimulation of secretion in the
merodiploid and the cKO2 clone. (A) MIC2 shed into the supernatant
(cleaved) vs. that found in intact cells (uncleaved MIC2) was detected
using mouse anti-MIC2 Ab (6D10). Shedding was induced by addition of
3%FBS or 3%FBS/2% ethanol. Input standards (diluted 1:3, 1:6 and 1:12
based on the total numbers of cell used in the assay) were used to
visualize the total MIC2 levels in unstimulated parasites. Actin, used as a
control for inadvertent lysis and as a loading control, was visualized
with rabbit anti-TgActin antiserum. Cells were grown in the presence
(+Atc) or absence (2Atc) of 1.5 mg/ml Atc for 96 h prior to induction of
secretion. (B) MIC2 shedding was quantified from the Western blot and
displayed as % secretion compared to the total cellular MIC2 from the
input standards. Data from a representative experiment is shown.
doi:10.1371/journal.ppat.1000858.g007
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MIC3, all proteins that have previously been implicated in

attachment. The lack of correlation between enhanced binding

and invasion can be explained by the finding that ROM4 cKO

parasites have lost directional attachment and hence fail to form an

apical complex. This phenotype is similar to that of a MIC2

processing mutant described previously [48], and strongly suggests

that the phenotype resulting from suppression of ROM4 is due to

the effect on MIC2 shedding, and perhaps other adhesins. Hence,

while TgROM4 is not absolutely essential for survival, its presence

affects adhesin shedding, and as such it is necessary for efficient

invasion. The exact role of ROM5 in processing adhesin complexes

is still not precisely defined. Its position at the posterior pole of the

parasite, and its extremely high activity, still make it the best

candidate for shedding of adhesin-receptor complexes, prior to

completion of cell invasion. Thus far it has not been possible to

directly disrupt TgROM5, and efforts are underway to generate

conditional knockouts, thereby better defining its function(s).

The importance of ROM4 in processing surface adhesins seems

at odds with the previously proposed model that adhesive

complexes should translocate to the posterior end of the cell prior

to being released. If ROM4 processes adhesins along the entire

length of the cell, this might decrease the efficiency of

translocation, and hence impede motility. To reconcile the model

with these new observations, we hypothesize that TgROM4 acts as

a sheddase to remove unnecessary adhesins that normally

accumulate on the cell surface, perhaps selectively removing those

that are not productively engaged in attachment. By acting as a

constitutive sheddase, ROM4 may help maintain an apical to

posterior adhesin gradient that would accomplish several impor-

tant goals (Figure 8). First, it would help mask the adhesins from

the immune system and potential neutralization by antibodies.

Secondly, it would facilitate apical attachment, as well as assure

directional motility. The phenotype of the ROM4 cKO is

particularly informative in this regard as in the absence of this

protease, the parasite expresses MIC2 in a peripheral rather than

apical pattern and consequently the parasite binds non-discrimi-

nately to host cells. Additionally, gliding is impaired as the parasite

remains stuck by the posterior end. Although it is able to twirl

extensively, it apparently cannot break the attachment to the

substratum in order to move forward. Collectively these defects

impede the parasite’s ability to form a tight apical junction and

hence successfully invade the host cell. In summary, our studies

suggest that ROM4 is important to maintain an apical to posterior

gradient of microneme adhesins, thus assuring directional gliding,

apical attachment, and efficient host cell invasion.

Materials and Methods

Host Cell and Parasite Cultures
T. gondii tachyzoites were maintained by growth on monolayers

of human foreskin fibroblasts (HFF) in Dulbecco’s Modified Eagles

Medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented with

Figure 8. Model for the role of TgROM4 in parasite invasion. TgROM4 is required to maintain an apical to posterior gradient of adhesins such
as MIC2. Wild type parasites maintain a gradient of adhesins, undergo normal helical gliding, and readily invade host cells (top). TgROM4 cKO
parasites show increased surface levels of adhesins, exhibit twirling movement, and bind laterally to host cells, hence impairing their ability to invade
host cells (bottom).
doi:10.1371/journal.ppat.1000858.g008
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10% fetal bovine serum (FBS), 2 mM glutamine, 20 mM HEPES

(pH 7.5), and 20 mg/ml gentamicin. Chloramphenicol (20 mg/ml)

(Sigma-Aldrich, St. Louis, MO), phleomycin (5 mg/ml) (Invitro-

gen), and anhydrotetracycline (Atc) (1.5 mg/ml) (Clontech, Palo

Alto, CA) were added to culture medium as indicated. Parasites

were harvested after natural egress and passed through a 3.0

micron polycarbonate filter to remove host cell debris, as described

previously [40].

Genetic Deletion of TgROM4
A knockout construct referred to as plasmid pDR4 was

engineered using the selectable marker cat, which confers resistance

to chloramphenicol, controlled by 59 and 39 SAG1 flanking

sequences. This cat cassette was in turn flanked by 2 kb of

sequences upstream of the start and downstream of the stop codons

of TgROM4 (sequences retrieved from http://ToxoDB.org). Two

tandem YFP genes expressed under the control of the T. gondii alpha

tubulin promoter (provided by Boris Striepen) were inserted

downstream into the SacII site of pDR4 generating the plasmid

pDR4YFP. Direct KO of TgROM4 in RH stain parasites was

attempted by transfection of the pDR4YFP plasmid into wild type

parasites in three independent experiments. After several rounds of

positive selection with chloramphenicol, the population was sorted

for YFP negative cells by FACS (DAKO, Glostrup, Denmark) and

3 parasites/well were deposited into 96-well plates containing HFF

monolayers. Following growth in complete media for 7 days, wells

containing a single plaque were screened using PCR analysis (Table

S1), amplifying a 400 bp fragment of the HA9 tagged copy and a

119 bp fragment of a 59-end intron within the endogenous gene.

Clones were considered as potential knockouts only if they

contained the larger 400 bp fragment and lacked the smaller

intron DNA fragment. More than 100 YFP-negative clones were

screened by PCR; however, no direct knockouts were detected.

Generation of Conditional Knockouts (cKO) of TgROM4
To generate a tagged copy, the TgROM4 open reading frame

(NCBI accession number: AY596193) was amplified with primers

that added a N-terminal HA9 tag and inserted in the previously

described vectors p7TetOS1 and p7TetOS4 (provided by Domi-

nique Soldati), between an EcoR1 and Pac1 restriction site,

downstream of the tetracycline inducible promoters [49]. The

resulting plasmids were called pS1HA9-ROM4 and pS4HA9-

ROM4. Transactivator-expressing parasites, referred to as TATi

[49], were cotransfected by electroporation with pS4HA9-ROM4

and a plasmid containing the ble selectable marker driven by SAG1

flanking sequences, conferring the resistance to phleomycin, as

described previously [40]. Following 2 rounds of selection, clones

were obtained by limiting dilution on HFF monolayers grown in 96-

well plates. Single cell merodiploid clones containing a copy of the

endogenous ROM4 gene and an epitope-tagged (S4HA9-ROM4)

copy, were identified by SDS-PAGE and Western blotting or

immunofluorescence microscopy using an anti-HA9 mouse mono-

clonal antibody (mAb) F-7 (Santa Cruz, Santa Cruz, CA) to detect

the tagged copy of the gene. A single parasite clone expressing the

tagged, regulatable copy of HA9-TgROM4 was used to generate

conditional TgROM4 knockout lines following transfection by

electroporation with 50 mg of pDR4YFP linearized with PspOMI

restriction endonuclease. Following positive and negative selection,

single cell clones were screened to identify knock-outs of the

endogenous TgROM4 locus by PCR, as described above.

Immunofluorescence Microscopy
Parasites were grown in the presence of 1.5 mg/ml Atc for 48h,

harvested as described above, and used to infect HFF cell

monolayers grown on glass coverslips. Parasites were grown an

additional 24h (72 h total) in the presence of 1.5 mg/ml Atc,

washed 3 times with PBS and fixed with 4% paraformaldehyde for

20 min. Samples were permeabilized in 0.1% TritonX-100

(Sigma) for 10 min and subsequently blocked with 5% FBS and

5% normal goat serum (Gibco) for 20 min. To detect the HA9

epitope, mAb F-7 was added to the coverslips for 1h, washed and

followed by goat anti-mouse IgG Alexa 488 (green) secondary

antibody (Invitrogen) for 1h. Coverslips were then blocked with

normal mouse sera and incubated for 1h with mAb DG52 against

surface antigen 1 (SAG1) directly conjugated to Alexa 594.

Coverslips were washed and mounted with Prolong Gold antifade

reagent containing 49, 6-diamidino-2-phenylindole (DAPI) (Invi-

trogen). Fluorescence images were obtained with a Zeiss Axioplan

microscope equipped with phase-contrast and epifluorescence

optics using a 636 oil immersion lens (N.A. = 1.3). Images were

collected with a Zeiss AxioCam cooled CCD camera directed by

Zeiss Axio Vision software (Version 4.5) and processed using

similar linear adjustments in Adobe Photoshop CS2 (Adobe

Systems Inc., San Jose, CA).

Quantitative Reverse Transcriptase PCR
Parasites were cultured in presence or absence of 1.5 mg/ml Atc

for two lytic cycles (96h total) and total RNAs were extracted as

described previously [40]. One microgram of total mRNA was

used to reverse transcribe TgROM4 and TgACT1 using Super-

Script III reverse transcriptase according to the manufacturer’s

instructions (Invitrogen). Quantitative PCR (qPCR) was per-

formed using a SmartCycler (Cepheid, Sunnyvale, CA), 2 ml of

reverse-transcribed cDNA and primer pairs (see Table S1) to

amplify TgROM4 and TgACT1. Data analysis was conducted using

SmartCycler software (Cepheid). The relative TgROM4 expression

levels were calculated as the fold change using the formula

22DDCT, where DCT threshold cycle (CT) of actin - CT of

TgROM4 and DDCT = CT of wild type parasites grown in absence

of Atc - DCT of TgROM4 parasites grown in the presence of Atc,

as described previously [40]. Three independent experiments were

performed and values are representative of one experiment.

Lytic and Growth Assays
Parasites were cultured in the presence of 1.5 mg/ml Atc 24h prior

to inoculation of 96-well plates seeded with confluent HFF

monolayers. Infected monolayers were cultured in the presence of

1.5 mg/ml Atc for an additional 72 h, washed in PBS, fixed with

100% ethanol and stained with 0.1% crystal violet (Sigma). Parasite

growth was determined by the loss of monolayer integrity as

monitored by absorbance at 570 nm using an EL800 multiwell plate

reader (Bio-Tek Instruments, VT). Values were expressed as means of

4 replicates each from two separate experiments that were pooled.

To monitor the rate of intracellular growth, parasites were grown

for 96h in 1.5 mg/ml Atc, harvested following natural egress, and

used to infect monolayers of HFF cells grown on coverslips. Infection

was performed by incubation of parasites with the host cells for 1 hr,

followed by extensive rinsing and return to culture in complete

medium with or without Atc. At 12, 24 and 36 hr post infection,

coverslips were fixed and stained by immunofluorescence as

described above. The average number of parasites per vacuole was

determined by microscopic examination and counting 50 or more

vacuoles from each of three coverslips at each time point per sample.

Values represent mean 6 SD from a representative experiment.

Invasion Assay
Invasion assays were performed based on differential staining

of intracellular vs. extracellular parasites as previously described
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[40], with minor modifications. Parasites were grown for 96h in

1.5 mg/ml Atc, harvested following natural egress, and resus-

pended in HHE buffer (Hanks Balanced Salts (Sigma), 1 mM

EGTA, and 10 mM HEPES, pH 7.4). Freshly egressed parasites

were added to glass coverslips containing sub-confluent mono-

layers of HFF cells. After 15 min incubation at 37uC/5% CO2,

coverslips were washed in PBS, and fixed in 4% paraformalde-

hyde in PBS. Extracellular parasites were detected by staining

with DG52 directly conjugated to Alexa-594 (red), followed by

washing. Monolayers were permeabilized with 0.25% Triton X-

100 and the total parasite population (extra- and intracellular)

was stained with mAb DG52 directly conjugated to Alexa-488

(green). Coverslips were washed and mounted with Prolong Gold

antifade reagent containing DAPI (Invitrogen). Slides were

examined by epifluorescence microscopy and the numbers of

intracellular (green), extracellular parasites (red) and host cell

nuclei (blue) were counted from 5 fields per coverslip. Values

were expressed as the average number of parasites/host cell and

the percentage of total parasites. Values represent means 6 SEM

of 3 independent experiments.

Formation of the Moving Junction during Invasion
Parasites were grown for two lytic cycles in 1.5 mg/ml Atc,

harvested following natural egress, and resuspended in invasion

media (DMEM, 20 mM HEPES, pH7.4 and 3% FBS). Parasites

were added to glass coverslips containing sub-confluent monolay-

ers of HFF cells for a 15 min invasion pulse, followed by washing

and fixation in 4% paraformaldehyde in PBS. Extracellular

parasites were detected by staining with mAb DG52 directly

conjugated to Alexa 594 (red). The moving junction was detected

using a rabbit polyclonal antibody to TgRON4, provided by John

Boothroyd, and visualized using a goat anti-rabbit IgG Alexa 488

(green) secondary antibody. Monolayers were permeabilized with

0.05% saponin (Sigma) and the total parasite population (extra

and intracellular) was stained with mAb DG52 directly conjugated

to Alexa 350 (blue). Coverslips were mounted with Prolong Gold

antifade reagent containing DAPI. Slides were examined by

epifluorescence microscopy to define the orientation of the parasite

relative to the host cell. For those parasites that were actively

invading, their orientation was defined based on the position of the

RON4-ring; i.e. apical, middle, posterior. Additionally, parasites

that had not formed a junction were classified as peripherally

attached with no ring. Parasites were scored from 5 random fields

on 3 separate coverslips. Values were expressed as a percent of the

total parasite population and represent means 6 SEM of 3

independent experiments.

Video Microscopy
Freshly harvested tachyzoites were resuspended in Ringer’s

Media (155 mM NaCl, 3 mM KCl, 2 mM CaCl2, 1 mM MgCl2,

3 mM NaH2PO4, 10 mM HEPES, 10 mM glucose) and added to

glass bottom culture dishes (MatTek, Ashland, MA) that were pre-

coated with 50 mg/ml bovine serum albumin (BSA) for 30 min at

37uC. The culture dish was placed on a Zeiss Axiovert phase-

contrast microscope and heated using a temperature-controlled

stage (Medical Systems Corp., Greenvale, NY) at 37uC. Parasites

were imaged under extremely low light using an intensified CCD

C2400 camera (Hamamatsu Photonics K.K., Hamamatsu City,

Japan) at 406magnification. Time-lapse images were taken with

exposure times ranging from 50–100 milliseconds with 1 second

between exposures, using the OpenLab software package

(Improvision, Waltham, MA). Images were imported into ImageJ

and the Particle Tracker 3D plug-in [55] was used to track cell

motility. The Cell Counter plug-in (http://rsbweb.nih.gov/ij/

plugins/cell-counter.html) was used for quantification of the types

of motility as assessed by the experimenter based on visual

inspection. Percent motility was then calculated from selected

videos. For quantitative analysis, a total of 12 videos were recorded

for each sample from four independent experiments, split over two

separate days. Within each video 40–50 separate parasites tracks

were analyzed to determine the percent motility, based on

classifications determined by visual examination and assignment

of individual tracks to specific categories by the experimenter. The

relative speed of movement was calculated from 20–30 individual

tracks based on the change in distance over time as calculated in

Excel. Prior to averaging the speed, tracks were assigned a

beginning and ending frame based on visual inspection by the

experimenter. Values represent means 6 SEM of 3 or 4

independent experiments.

Flow Cytometry
Parasites were grown in the presence of 1.5 mg/ml of Atc for 2

lytic cycles, tachyzoites harvested following natural egress and

resuspended in HHE. Parasites were added to wells of a 96- well

plate, centrifuged at 750g for 5 min and the parasites fixed in 4%

paraformaldehyde in PBS for 20 min at 4uC. following antibodies

were used to detect parasite proteins: MIC1 was detected with

mAb T4-4F8 provided by Jean Francois Dubremetz; MIC2 was

detected with 6D10 [22]; MIC3 was detected with mAb T4-283

provided by Jean Francois Dubremetz; MIC4 was recognized

with polyclonal rabbit antiserum provided by Dominique Soldati;

MIC5 was detected with polyclonal rabbit antiserum provided by

Vern Carruthers; MIC6 was detected with polyclonal rabbit

antiserum provided by Dominique Soldati, SAG1 was detected

with mAb DG52 provided by John Boothroyd, and AMA1 was

detected with mAb B3.90 provided by Gary Ward. Samples were

washed 3 times in PBS/1% normal goat serum, centrifuged as

described and blocked in 10% FBS. Samples were incubated in

primary antibodies for 1h followed by incubation with Alexa 488

secondary antibodies (goat anti-mouse or goat anti-rabbit IgG)

for 1h. Samples were analyzed in a Becton Dickinson

FACSCantoTM flow cytometer in the FITC channel, measuring

up to 10,000 events / sample. All samples were done in

quadruplicate and the mean fluorescence values were calculated

for each sample using FloJo 7.4 software (Tree Star Inc., Ashland,

OR). Data was graphed as the mean fluorescence of samples vs.

wild type RH strain parasites, which was considered 100%.

Values represent means 6 SD of 4 samples, from a representative

experiment.

Shedding Assay
Shedding of MIC2 into the supernatant was performed as

previously described [48] with the following modifications.

Parasites were grown up to 96h in 1.5 mg/ml Atc, harvested

following natural egress, and resuspended in D0 medium (DMEM,

20 mM HEPES, pH 7.5). Tachyzoites were added to equal

volumes of D0, D0+6% FBS or D0+6%FBS / 4% EtOH. Samples

were incubated on ice or at 37uC for 15 min and the assay was

stopped by placing the tubes on wet ice at 4uC for 10 min.

Supernatants were collected after removing the parasites by

centrifugation twice (1,000g, 5 min, at 4uC). Proteins in the

supernatants were resolved by SDS-PAGE and detected by

Western blotting using mAb 6D10 to MIC2 [22] and rabbit

anti-actin [56] followed by secondary antibodies conjugated to

HRP and ECL Plus detection (GE Healthcare, Piscataway, NJ),

and quantified using an FLA-5000 phosphorimager (Fuji Film

Medical Systems, Stamford, Ct).
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Surface Immunofluorescence Staining of MIC2 on T.
gondii Tachyzoites

Parasites were grown in the presence of 1.5 mg/ml Atc for 96h,

harvested as described above and maintained at 18uC, unless

otherwise stated. Tachyzoites were treated with 0.2 mM of

A23187, Ca2+ ionophore (EMD Chemicals, Gibbstown, NJ) for

2 min or 15 min at 37uC in DMEM, before being transferred to

an equal volume of 26 fixative (5% paraformaldehyde, 0.04%

glutaraldehyde and PBS) on ice for 15 min. Fixed cells were

washed 3 times with PBS, blocked with 5% FBS/5% NGS for

10 min and then incubated for 1h with a mouse monoclonal anti-

MIC2 antibody (6D10) followed by Alexa goat anti-mouse 488

(green) secondary antibody. Parasites were then permeabilized

with 0.05% saponin, incubated with rabbit anit-MIC2 for 1h

followed by Alexa goat anti-rabbit 594 (red) secondary antibody.

Parasite suspensions were incubated on poly-L-lysine coated slides

for 10 min and coverslips were mounted using Prolong Gold

(Invitrogen) containing DAPI. Cells were examined by epifluor-

escence microscopy and images obtained as described above.

Statistics
Statistical comparisons between means were conducted in Excel

using the Student’s t-test assuming equal variance, unpaired

samples, and using a 2-tailed distribution.

Supporting Information

Table S1 Table of primers for PCR

Found at: doi:10.1371/journal.ppat.1000858.s001 (0.03 MB

DOC)

Video S1 Video microscopy of parasite helical gliding, untreated

clone cKO1. 75 frames played at 7 fps. Corresponds to Fig. 6A

cKO1.

Found at: doi:10.1371/journal.ppat.1000858.s002 (0.61 MB

MOV)

Video S2 Video microscopy of parasite twirling, 96h Atc treated

clone cKO1. 75 frames played at 7 fps. Corresponds to Fig. 6A

cKO1 + Atc.

Found at: doi:10.1371/journal.ppat.1000858.s003 (0.26 MB

MOV)

Video S3 Video microscopy of parasite helical and circular

gliding, untreated clone cKO2. 75 frames played at 7 fps.

Corresponds to Fig. 6A cKO2.

Found at: doi:10.1371/journal.ppat.1000858.s004 (0.47 MB

MOV)

Video S4 Video microscopy of parasite twirling, 96h Atc treated

clone cKO2. 75 frames played at 7 fps. Corresponds to Fig. 6A

cKO2 + Atc.

Found at: doi:10.1371/journal.ppat.1000858.s005 (0.49 MB

MOV)
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