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Abstract: The thermodynamic properties of a relativistic spin-zero system are investigated via the Klein–Gordon

equation under the Cornell and generalized Morse potentials. In particular, the partition function and mean and free

energies are calculated and their behavior versus variations of the potential coefficients is presented.
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1. Introduction

Eigenfunctions and eigenvalues of wave equations give us all of the information required to describe a quantum

system. The solutions, on the other hand, can be used to model and investigate various physical systems.

In particular, the Klein–Gordon equation (KGE) has been a reliable basis to analyze spin-zero relativistic

systems such as scalar mesons. The equation normally introduces 2 types of potential: the 4 vector potential

V (r) and the space-time scalar potential S(r). In the case of S(r) = V (r) and S(r) = −V (r), the KGE

and Dirac equation share the same energy spectrum [1,2]. As a result, our old methods of nonrelativistic

quantum mechanics have been applied to the equation to solve it with various interaction terms. The list of

used methodologies is rather lengthy and includes the quantization rules [3], Nikiforov–Uvarov technique [4],

supersymmetry quantum mechanics [5,6], series expansion [7], and the ansatz method [8,9]. Moreover, we have

not yet been able to construct a unified potential that works well in all fields. Consequently, various authors

have considered different interaction terms such as linear, Coulomb, Eckhart, Yukawa, Pöschl–Teller, Morse,

Woods-Saxon, and many others (see Refs. [10,11] and references therein). Among these potentials, the Cornell

and generalized Morse potentials yield sound phenomenological consequences in particle and molecular physics,

respectively. The Cornell potential consists of 2 terms; the inverse term (Coulomb term) arises from the 1-gluon

exchange between the quark and its antiquark, and the linear term is included to take into account the confining

effects. The purpose of this work is to study the thermodynamic properties of spin-zero systems under such

2 interactions. To obtain the thermodynamic properties, we use the partition function, which is the building

block in statistical mechanics (or statistical thermodynamics), as is the wave function in quantum mechanics.

It describes the statistical properties of a system in thermodynamic equilibrium. Having found the partition

function, we can simply derive the other statistical quantities such as the total energy, free energy, entropy, and
pressure.
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The organization of this paper is as follows. The KGE under the Cornell potential is presented in Section

2 and the corresponding thermodynamics properties are discussed. In Section 3 we do the same for work for

the generalized Morse potential. Our conclusion appears in Section 4.

2. Thermodynamic properties under the Cornell potential

The s-wave KGE in the presence of vector and scalar potentials is written as [12]:

[
d2

dr2
+ E2

n + V 2(r)− 2EnV (r)−m2 − S2(r)− 2mS(r)]un(r) = 0, (1)

where m is the mass of particle; En denotes the energy; V (r) and S(r) are the vector and scalar potentials,

respectively; and n stands for the quantum number (n = 0, 1, 2,...). We consider both the scalar and vector

interactions of the Cornell type (alternatively called Funnel):

V (r) = V0r +
V1

r
, S(r) = S0r +

S1

r
, (2)

where V0, V1, S0 , and S1 are the potential constants. By substituting Eq. (2) into Eq. (1), we arrive at

[
d2

dr2
−A3 +

A1

r2
+

A2

r
−A4r −A5r

2]un(r) = 0, (3)

where

A1 = V 2
1 −S2

1 , A2 = −2EnV1−2mS1, A3 = −E2
n+m2+2S0S1−2V0V1, A4 = 2EnV0+2mS0, A5 = S2

0−V 2
0 . (4)

Let us now propose a series solution of the form

un(r) =
∞∑

n=0

anr
n+µepr+

1
2 qr

2

, (5)

whereµ , p , and q are the wave function parameters that we should determine. By substituting the latter

solution in Eq. (3), we find

∞∑
n=0

an(n+ µ)(n+ µ− 1)rn+µ−2 +
∞∑

n=1

2an−1p(n+ µ− 1)rn+µ−2

+
∞∑

n=2

[2qan−2(n+ µ− 2) + qan−2 + p2an−2]r
n+µ−2

+

∞∑
n=3

2qpan−3r
n+µ−2 +

∞∑
n=4

q2an−4r
n+µ−2 −A3

∞∑
n=2

an−2r
n+µ−2 +A1

∞∑
n=2

anr
n+µ−2 (6)

+A2

∞∑
n=2

an−1r
n+µ−2 −A4

∞∑
n=2

an−3r
n+µ−2 −A5

∞∑
n=2

an−4r
n+µ−2 = 0,

with
a0[µ(µ− 1) +A1] = 0, (7a)
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a1 =
−(A2 + 2pµ)

µ(µ+ 1) +A1
, (7b)

a2 = −2a1p(µ+ 1) + (2a0qµ+ a0q + a0p
2)−A3a0 +A2a1

(µ+ 1)(µ+ 2) +A1
, (7c)

a3 = −2a2p(µ+ 2) + (2a1q(µ+ 1) + a1q + a1p
2) + 2a0qp−A3a1 +A2a2 −A4a0

(µ+ 2)(µ+ 3) +A1
, (7d)

an = − (q2 −A5)an−4 + (2pq −A4)an−3 + [2q(µ+ n− 2) + q + p2 −A3]an−2 + [2p(µ+ n− 1) +A2]an−1

(µ+ n)(µ+ n− 1) +A1

(7e)

On the other hand, the series must be bounded for a typical n = nr to have a well-defined solution. This

condition gives

µ(µ− 1) +A1 = 0, (8a)

q2 −A5 = 0, (8b)

2pq −A4 = 0, (8c)

2q(µ+ n− 2) + q + p2 −A3 = 0, (8d)

2p(µ+ n− 1) +A2 = 0, (8e)

or equivalently

µ =
1±

√
1− 4A1

2
, (8f)

q = ±
√
S2
0 − V 2

0 , S0 > V0, (8g)

p = ±2EnV0 + 2mS0

2
√
S2
0 − V 2

0

. (8h)

The acceptable physical limit is the negative sign for p and q and the positive sign for µ . Therefore, the energy

relation, from Eqs. (8a), (8c), (8d), and (4), takes the following form [12]:

E2
n +

2V0

4(S2
0 − V 2

0 )
En + (−m2 − 2S0S1 + 2V0V1 + 3

√
S2
0 − V 2

0 − 2n
√

S2
0 − V 2

0

−
√
S2
0 − V 2

0 (1 +
√

1 + 4(S2
1 − V 2

1 )) +
mS0

2(S2
0 − V 2

0 )
= 0, (9)

Let us now continue with basic thermodynamic properties. The partition function is calculated via [13]

z =

∞∑
n=0

e−βEn , β =
1

kT
, (10)

where kdenotes the Boltzmann constant . The terme−βEn is known as the Boltzmann factor, which is a

weighting factor that determines the relative probability of a particle to be in a state n in a multistate system

in thermodynamic equilibrium at temperature T . By solving Eq. (9) with respect to En and substituting En
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into Eq. (10), the partition function of the system can be obtained. It is observed that the partition function

depends on potential constants. In Figure 1, the behavior of Z vs. β is shown for different values of V1 and

the increasing behavior of Z for increasing V1 is depicted. The behavior of Z versus S1 and V1 is represented

for different values of β in Figure 2, which demonstrates the way the partition function (Z) depends on the

potential parameters and consequently how the partition functions differs from one system to another. It is

clear that the partition function has an increasing behavior as V1 increases and decreases with increasingS1 .

The mean energy is simply calculated via

U = − ∂

∂β
ln(z). (11)

The behavior of U vs. β is shown in Figure 3 for different values ofV1 . It is seen that as V1 decreases, the mean

energy increases. In Figure 4, we have plotted the mean energy vs. S1 and V1 for different values ofβ . Figure

4 indicates that the mean energy depends on the potential parameters and it is increasing with increasingS1 .

Other thermodynamic quantities frequently present in physical studies are the free energyF , the entropy S ,

and the specific heat C , which are defined via

F = − 1

β
ln(z), (12)

C =
∂

∂T
U, (13)

S = K ln(z) +KT
∂ ln(z)

∂T
= K ln(z)−Kβ

∂ ln(z)

∂β
, (14)

respectively. The behavior of F vs. β is indicated in Figure 5 for different values ofV1 . It is clear that for

decreasing V1 , the free energy increases. In Figure 6, we have plotted the free energy vs. S1 and V1 for different

Z

0

1

2

3

4

2 3 4 5 6 7 8 9 10

Z

0

1

Figure 1. The behavior of Z versus β for m = 1,

S0 = 2, V0 = 1, and S1 = 3.

Figure 2. The behavior of Z versus{
a)S1

b)V1
for

{
m = 1, S0 = 2, V0 = 1
m = 1, S0 = 2, V0 = 1

and

{
V1 = 2
S1 = 3.
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values of β . It is obvious that the free energy increases with increasing S1 but decreases for increasing V1 .

Figures 7 and 8 depict the variation of entropy and specific heat vs. β . We see that when β increases, both

the entropy and the specific heat increase.
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Figure 3. The behavior of U versus β for m = 1,

S0 = 2, V0 = 1, and S1 = 3.

Figure 4. The behavior of U versus{
a)S1

b)V1
for

{
m = 1, S0 = 2, V0 = 1
m = 1, S0 = 2, V0 = 1

and

{
V1 = 2
S1 = 3.
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Figure 5. The behavior of F versus β for m = 1,

S0 = 2, V0 = 1, and S1 = 3.

Figure 6. The behavior of F versus{
a)S1

b)V1
for

{
m = 1, S0 = 2, V0 = 1
m = 1, S0 = 2, V0 = 1

and

{
V1 = 2
S1 = 3.
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Figure 7. The behavior of S versus β for m = 1,

S0 = 2, V0 = 1, V1 = 2, and S1 = 3.

Figure 8. The behavior of C versus β for T = 300,

m = 1, S0 = 2, V0 = 1, S1 = 3, and V1 = 2.

3. Thermodynamic properties under the generalized Morse potential

Now we consider the vector generalized Morse potential

V (r) = V ′
1e

−2a(r−r0) − V ′
2e

−a(r−r0), (15)

where V ′
1 and V ′

2 are potential constants, a is the potential width, and r0 denotes the equilibrium distance.

In this section, we just consider the vector generalized Morse potential and solve the KGE with vanishing

scalar potential. Substitution of the generalized Morse potential into Eq. (1), using the change of variable

x = r−r0
r0

, α = ar0 as well as applying the transformations z = e−αx and un(z) =
1√
z
ϕn(z), we arrive at

[
d2

dz2
−A3 +

A1

z2
+

A2

z
−A4z −A5z

2]ϕn(z) = 0, (16)

with

A1 = Q2(E2 −m2) +
1

4
, A2 = 2Q2V ′

2 , A3 = Q2(V
′2
2 + 2V ′

1m), A4 = 2Q2V ′
1V

′
2 , A5 = Q2V

′2
1 . (17)

By applying the same approach as in Section 2, the corresponding energy after algebra is found as [14]:

En = ±
{
m2c4 +

1

Q2
(2n+ 1 +QṼ1)

2

} 1
2

, (18)

where

Ṽ1 =
V

′2
2

2V ′
1

+mc2, Q2 =
1

ℏ2c2α2
. (19)
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By the same token, from Eqs. (6) through (10), the thermodynamic properties of the system can be obtained.

The behavior of the partition function (z), mean energy (U), free energy (F ), entropy (S), and specific heat

(C) of the system are represented in Figures 9–13, respectively. In Figures 14–16, the behavior of the partition

function (z), mean energy (U), and free energy (F ) vs. V ′
1 and V ′

2 are shown for different values of β . Figures

9, 10, 12, and 13 show the decreasing behavior of the partition function, mean energy, entropy, and specific

heat for increasing β . Figure 11 indicates that as β increases, the free energy tends to a constant value. We

understand from Figures 15 and 16 that for positive values of V ′
1 , the mean energy (U) and free energy (F ) of

the system decrease, and for negative values of V ′
1 these quantities increase.
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20

30

0 2 4 6 8 10

2

Figure 9. The behavior of Z versus β for c = 1, ℏ = 1,

m = 1, α = 0.01, V ′
1 = 0.01, and V ′

2 = 0.01.

Figure 10. The behavior of U versus β for c = 1, ℏ = 1,

m = 1, α = 0.01, V ′
1 = 0.01, and V ′

2 = 0.01.
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Figure 11. The behavior of F versus β for c = 1, ℏ = 1,

m = 1, α = 0.01, V ′
1 = 0.01, and V ′

2 = 0.01.

Figure 12. The behavior of S versus β for c = 1, ℏ = 1,

m = 1, α = 0.01, V ′
1 = 0.01, and V ′

2 = 0.01.
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Figure 13. The behavior of C versus β for T = 300,

c = 1, ℏ = 1,m = 1, α = 0.01, V ′
1 = 0.01, and V ′

2 = 0.01.

Figure 14. The behavior of Z versus{
a)V ′

2

b)V ′
1

for

{
m = c = ℏ = 1, α = 0.01
m = c = ℏ = 1, α = 0.01

and{
V ′
1 = 0.01

V ′
2 = −0.1.
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Figure 15. The behavior of U versus{
a)V ′

2

b)V ′
1

for

{
m = c = ℏ = 1, α = 0.01
m = c = ℏ = 1, α = 0.01

and{
V ′
1 = 15

V ′
2 = 0.01.

Figure 16. The behavior of F versus{
a)V ′

2

b)V ′
1

for

{
m = c = ℏ = 1, α = 0.01
m = c = ℏ = 1, α = 0.01

and{
V ′
1 = 15

V ′
2 = −0.1.
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4. Conclusions

The wide application of Cornell and generalized Morse potentials, as well as the presence of many relativistic

spin-zero systems in various physical and chemical sciences, motivated us to consider the corresponding thermo-

dynamics properties of such systems when adopting the KGE. In our study the basic thermodynamics quantities,

including the partition function, mean energy, free energy, entropy, and specific heat, have been depicted as the

function of various potential parameters and quantum numbers. On the basis of the fits obtained by us, our

results can be used for several systems.
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