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DOMAIN DECOMPOSITION AND MULTIGRID ALGORITHMS FOR
ELLIPTIC PROBLEMS ON UNSTRUCTURED MESHES ∗

TONY F. CHAN† AND BARRY F. SMITH‡

Abstract. Multigrid and domain decomposition methods have proven to be versatile methods
for the iterative solution of linear and nonlinear systems of equations arising from the discretization of
partial differential equations. The efficiency of these methods derives from the use of a grid hierarchy.
In some applications to problems on unstructured grids, however, no natural multilevel structure of
the grid is available and thus must be generated as part of the solution procedure.

In this paper, we consider the problem of generating a multilevel grid hierarchy when only a fine,
unstructured grid is given. We restrict attention to problems in two dimensions. Our techniques
generate a sequence of coarser grids by first forming a maximal independent set of the graph of the
grid or its dual and then applying a Cavendish type algorithm to form the coarser triangulation.
Iterates on the different levels are combined using standard interpolation and restriction operators.
Numerical tests indicate that convergence using this approach can be as fast as standard multigrid
and domain decomposition methods on a structured mesh.
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1. Introduction. Recently, unstructured meshes have become quite popular in
large scale scientific computing [9], [14]. They have the advantage over structured
meshes of the extra flexibility in adapting efficiently to complicated geometries and
to rapid changes in the solution. However, this flexibility may come with a price.
Traditional solvers that exploit the regularity of the mesh may become less efficient on
an unstructured mesh. Moreover, vectorization and parallelization may become more
problematic. Thus, there is a need to adapt and modify current solution techniques
for structured meshes so that they can run as efficiently on unstructured meshes.

In this paper, we present some domain decomposition (DD) and multigrid (MG)
methods for solving elliptic problems on unstructured triangular meshes in two space
dimensions. The class of DD methods we consider were introduced in Dryja and
Widlund [10] and Dryja [11]. These are among the most efficient algorithms for solving
elliptic problems. The application of multigrid methods to unstructured grid problems
has received some attention; see, for example, [14] and references therein. There has
been relatively little work on domain decomposition methods for unstructured grid
problems. Cai and Saad [3] considered overlapping domain decomposition methods
for general sparse matrices, which in principle can be applied to the stiffness matrices
arising from discretizations of elliptic problems on unstructured grids. However, if a
coarse grid is to be used (often necessary for fast convergence), it cannot be deduced
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from the algebraic structure of the sparse matrix alone and geometric information
about the coarse grid and the associated interpolation operators must be supplied.

For multigrid and domain decomposition algorithms, a hierarchy of grids, together
with the associated interpolation and restriction operators, is needed. For structured
meshes, this grid hierarchy is naturally available and is indeed exploited in these al-
gorithms. For an unstructured mesh, however, the coarser grids may not be given.
Thus, a procedure is needed that generates this grid hierarchy, as well as the associ-
ated interpolation and restriction operators. One approach is to generate the coarser
meshes independently, using a mesh generator, possibly the one that generated the
fine mesh in the first place. This approach has been used by Mavriplis [14], who con-
structed multigrid algorithms for the Navier-Stokes equations on unstructured meshes
in two and three space dimensions. Another approach is to generate the grid hierar-
chy automatically and directly from the given unstructured fine grid. This approach
requires less from the user because only the fine grid, on which the solution is sought,
is needed.

In this paper, we will follow the second approach. Our techniques generate a
sequence of coarser grids by first forming two maximal independent sets of the vertices
of the fine grid, one for the interior vertices and the other for the boundary vertices,
and then applying Cavendish’s algorithm [5] to form the coarser triangulation. With
this approach, the coarse mesh vertices form a subset of the fine mesh vertices. We
also consider a variant in which this nested property of the vertices does not hold.
Iterates on the different levels are combined using standard piecewise linear finite
element interpolation and restriction operators. The mesh can be multiply-connected.
Numerical tests indicate that convergence using both coarsening approaches can be as
fast as standard multigrid and domain decomposition methods on a structured mesh.

Our use of a maximal independent set for the construction of the coarse grid
is similar to the approach taken, independently, by Guillard [13]. For a recently
developed convergence theory for two level Schwarz domain decomposition methods
using nonnested coarse grids, see Cai [4], Chan and Zou [8], and Chan, Smith, and
Zou [7].

2. Domain Decomposition and Multigrid Algorithms. For simplicity, we
consider the following elliptic problem:

−∇ · α(x, y)∇u = f(x, y), α(x, y) > 0,(2.1)

on a two dimensional (not necessarily simply connected) region Ω with appropriate
boundary conditions. We assume that Ω is triangulated into a fine grid, which can be
unstructured and non-quasi-uniform, and a finite element method is applied resulting
in the algebraic system Au = b. The DD and MG algorithms we construct are used
as preconditioners for A and are used in conjunction with a preconditioned Krylov
subspace method.

We first discuss the overlapping Schwarz domain decomposition algorithms of
Dryja and Widlund [10], [11] (a recent survey can be found in [6]). The fine grid
Ω is decomposed into p overlapping subdomains Ωi, i = 1, · · · , p, either as specified
by the user or automatically determined by a mesh partitioning algorithm. In this
paper, we use exclusively the recursive spectral bisection (RSB) method of Pothen,
Simon, and Liou [15] to partition the element vertices (and hence the unknowns) into
nonoverlapping subsets. The overlap is introduced algebraically by enlarging these
subsets to contain all vertices within a fixed number of edges from the original subset.
Note that even if the algebraic overlap is zero, the support of the finite element
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basis functions in neighboring subdomains does overlap. Associated with each Ωi are
restriction and extension operators Ri and RTi (Riu extracts the components of u
corresponding to Ωi and RTi ui is the zero-extension of an iterate ui on Ωi to Ω) and
the local stiffness matrix Ai ≡ RiARTi .

To achieve a good convergence rate, we also use a coarse grid consisting of the
union of a set of coarse triangles. We denote by Ω0 the coarse grid region that is the
union of these coarse triangles. In this paper, we do not require that Ω0 be the same as
Ω or that the coarse triangles be nested to the fine ones. We construct the associated
interpolation operator RTH , which maps an iterate u0 on Ω0 to Ω, as follows. If a fine
grid node lies within a triangle of Ω0, we use linear interpolation to obtain its value;
otherwise we set its value to zero. Once RTH is defined, the restriction operator RH is
defined to be its transpose. Finally, we compute the coarse grid stiffness matrix AH
by applying the piecewise linear finite element method to (2.1) on Ω0. Note that in
general AH 6= RHAR

T
H due to the non-nestedness of the grids.

With these operators defined, we now define the additive overlapping Schwarz
preconditioner (which corresponds to a generalized block Jacobi method) as follows:

M−1
as = RTHA

−1
H RH +

p∑
i=1

RTi A
−1
i Ri.

Thus, each application of the preconditioner involves restricting the residual vector to
each subdomain and performing a subdomain solve. In addition, a weighted restriction
of the residual vector is computed on the coarse grid and inverted by a coarse grid
solve. These local and coarse solutions are then mapped back onto the fine mesh
and added together to obtain the desired result. Multiplicative versions (e.g., Gauss-
Seidel) can also be defined analogously given an ordering of the subdomains.

Multilevel preconditioners (including classical multigrid methods) are closely re-
lated to domain decomposition methods, and their implementations can be treated
in the same framework. A grid hierarchy is needed, and the associated interpolation
and restriction operators can be defined analogously. For example, let the fine grid
be level 1 and the coarsest grid level l. Let Ri denote the restriction operator from
level 1 to level i, and let the transpose RTi denote the corresponding interpolation
operator. Then an additive multilevel preconditioner can be written in the following
form:

M−1
aml =

l∑
i=1

RTi SiRi,

where Si is a “smoother” on level i. For instance, for multi-level diagonal scaling, Si
is simply the inverse of the diagonal of the stiffness matrix on level i. One version of
the V-cycle MG method can be viewed as a symmetrized multiplicative versions of the
above preconditioner. Note that in practice the actions of Ri and RTi are computed
via a recursion that use mappings between adjacent grid levels.

In our implementation of the domain decomposition algorithms, the coarse grid
Ω0 is obtained by a sequence of recursively applied coarsening steps (see the next
section), and hence the grid hierarchy is naturally defined for performing the multigrid
iteration as well. Of course, this is not the only way to construct the coarse grid for
a DD method. For example, one can use the subdomains to directly construct a
coarse grid without going through a grid hierarchy. We do not pursue these other
possibilities in this paper.
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3. Construction of the Grid Hierarchy. In this section, we describe our
techniques for constructing the coarse grid hierarchy, as well as the associated inter-
polation and restriction operators, directly from the given unstructured fine mesh. It
suffices to describe this for one coarse level; the procedure can be recursively applied
to obtain all the coarse meshes.

We need the notion of a maximal independent set of the vertices of a graph. A
subset of vertices V of a graph G is said to be independent if no two vertices of V are
connected by an edge. V is said to be maximally independent if adding any additional
vertex to it makes it dependent. Note that maximal independent sets of vertices of a
graph are generally not unique.

The procedure has four steps:
(i) Form a maximally independent set of the boundary vertices, and from these

construct a set of coarse boundary edges,
(ii) Form a maximally independent set of the interior vertices,
(iii) Apply a Cavendish type algorithm [5] (or any other suitable triangulation

algorithm) to triangulate the resulting collection of coarse boundary edges
and coarse interior vertices,

(iv) Construct the interpolation and restriction operators.
Step (i) is fairly straightforward. For each disjoint boundary segment, the bound-

ary vertices are ordered, say, in a clockwise direction, starting with a random vertex.
Then every other vertex is thrown out and the remaining ones are connected with new
coarse boundary edges. This forms a coarse representation of the boundary segment.
After several coarsenings, one may find that the boundary is no longer qualitatively
similar to the original boundary. This situation may be prevented however, by simply
retaining in the coarse grid boundary some of the vertices that would normally be
dropped.

Step (ii) uses a greedy wavefront type algorithm. A random interior vertex is
selected for inclusion in the maximally independent set. Then every interior vertex
connected to it is eliminated from consideration for inclusion in the maximally in-
dependent set. Next, one of the interior vertices connected to the newly eliminated
vertices is selected for inclusion, and the procedure repeats until all interior vertices
have been considered. An algorithm similar to this has been used by Barnard and
Simon [1] in designing graph partitioning algorithms. This procedure can be imple-
mented in linear time, i.e. proportional to the total number of interior vertices.

The input to Step (iii) is thus a collection of coarse boundary edges and coarse
interior vertices, which can then be triangulated by known triangulation algorithms,
such as Delaunay type algorithms. We used a version of Cavendish’s algorithm [5],
which is an advancing front technique and “grows” new triangles from those already
built by selecting an interior vertex to be “mated” to an existing edge. In doing so,
it tries to optimize the aspect ratio of the new triangle formed, preferring those that
are close to being equilateral. This algorithm may be implemented in linear time, i.e.
proportional to the number of interior vertices, but our current implementation is not
optimal.

Finally, in Step (iv), the interpolation operator is constructed in the form of a
sparse matrix and stored. In order to determine the entries of this interpolation
matrix, the coarse triangles are taken in sequence and the entries corresponding to all
the fine grid vertices within the coarse triangle are then computed by using a standard
piecewise linear interpolation. This procedure can also be implemented in linear time
because the fine grid triangles close to the vertices of the coarse triangle (which are
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also fine grid vertices) can be found by a local search. We emphasize that a simple
linear time algorithm is not possible if the coarser grids are generated completely
independently. The restriction matrix is then just the transpose of the interpolation
matrix. Clearly, higher order finite elements may also be used; then the interpolation
is piecewise polynomial and can still be calculated in a local manner and hence in
linear time.

In our variant of the above algorithm, only Step (ii) is changed. We consider a
candidate coarse vertex at the center of each element. Those adjacent to the selected
boundary nodes are then eliminated. We then construct a maximal independent set
of the remaining candidate vertices using the same approach as indicated above. This
procedure is equivalent to calculating a maximal independent set of the dual graph
of the mesh. It is important to note that the coarse grid vertices generated in this
manner will not lie in the same location as any fine grid nodes. In our experiments on
a few sample grids, the number of coarse grid nodes generated using this alternative
approach is slightly larger than that generated using the first approach outlined.

4. Numerical Results. All the numerical experiments were performed using
the Portable, Extensible Toolkit for Scientific computation (PETSc) of Gropp and
Smith [12] running on a Sun SPARC 10.

We next report numerical results for solving the Poisson equation on three differ-
ent unstructured triangular meshes. All of the meshes are enclosed in the unit square,
[0, 1]2. Two kinds of boundary conditions are used: (1) homogeneous Dirichlet, or
(2) a mixed condition: for x > 0.2, a homogeneous Neumann boundary condition is
imposed, with homogeneous Dirichlet imposed for x ≤ 0.2. We use piecewise linear fi-
nite elements for the discretization, and solve the resulting systems of linear equations
by either a V-cycle multigrid method (with a pointwise Gauss Seidel smoother, using
two pre and two post smoothing sweeps per level) or an overlapping Schwarz domain
decomposition method. In all cases, the discrete right hand side is chosen to be a
vector of all 1’s and the initial iterate set to zero. Both the MG and DD methods are
used as preconditioners, with full GMRES [16] as an outer accelerator. The iteration
is stopped when the l2 norm of the residual has been reduced by a factor of 10−6.
Our goal is to compare the performance of our versions of domain decomposition and
multigrid algorithms on unstructured meshes with that of the same algorithms on
similar structured meshes. For this purpose, we also use two structured meshes in our
experiments (a uniform mesh on a square and on an annulus).

Table 4.1 shows the number of MG iterations for the Eppstein mesh [2], shown
in Figure 4.1, a relatively small quasi-uniform unstructured mesh on the unit square.
Figures 4.2 and 4.3 show the coarser meshes using regular and dual graph coarsening.
These results should be compared with those for a uniform square mesh on the unit
square in Table 4.2, because the two meshes are topologically similar. We see that
although the performance of our MG algorithm on the unstructured mesh is slightly
worse than that on the structured square mesh, its performance is quite satisfactory
for both types of boundary conditions.

Next, we look at a more realistic mesh, the airfoil mesh (from T. Barth and
D. Jesperson of NASA Ames), shown in Figure 4.4. The coarse meshes are shown
in Figures 4.5, 4.6 and 4.7. One may note that several poorly shaped triangles are
generated on the coarsest grid. These do not seem to seriously affect the convergence
rate. In theory, these bad elements could be removed during a “cleanup” pass over the
mesh, after the Cavendish algorithm was applied. We see that the performance for
the Dirichlet boundary condition cases, given in Table 4.3, are quite comparable with
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Fig. 4.1. The Eppstein mesh: 547 nodes

Fig. 4.2. The Eppstein mesh: level 2. regular coarsening (left) and dual graph coarsening (right)

Fig. 4.3. The Eppstein mesh: level 3. regular coarsening (left) and dual graph coarsening (right)

Table 4.1

MG iterations for the Eppstein mesh, 547 nodes

Regular Coarsening Dual Graph Coarsening
MG Levels Dir. B.C. Mixed B.C. Dir. B.C. Mixed B.C.

2 4 4 3 4
3 4 5 4 6
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Table 4.2

MG iterations for the uniform square mesh, 4225 nodes

MG Levels Nodes Dir. B.C. Mixed B.C.
2 1089 3 3
3 289 3 3
4 81 3 3

Fig. 4.4. The airfoil mesh: 4253 nodes

that for the Eppstein mesh, but the performance is noticeably worse for the mixed
boundary conditions. Note there is essentially no difference in the performance for
both types of coarsening. The deterioration in performance for the mixed boundary
condition case is due to the fact that the coarser grid domains do not completely
cover the portion of the fine grid boundary on which Neumann boundary conditions
are applied. In Chan, Smith, and Zou [7], it is shown that in order to obtain an
optimal convergence rate the coarser grid must completely cover the Neumann part
of the fine grid boundary. We also compare the performance for the two types of
boundary conditions with that on a quasi-uniform mesh on an annulus region; see
Figure 4 and Table 4.4. Due to our treatment of the curved boundary, the fine
grid boundary is again not covered by the coarser grids and hence we obtain poor
convergence for the case of mixed boundary conditions. Overall, the performance of
our MG algorithm on the unstructured airfoil mesh is comparable with or better than
that on the structured annulus mesh.

In Table 4.5, we show results for a larger unstructured mesh around an airfoil,
namely the Barth mesh (from T. Barth of NASA Ames), shown in Figure 4.9. The
levels 2 and 4 coarse meshes are shown in Figure 4.10 (not all the grid points are
shown). We include only the Dirichlet boundary condition results. Observe that the
MG performance is quite comparable with that of the other unstructured meshes
(i.e. airfoil, Eppstein) and the structured meshes (i.e., square, annulus). Again, both
coarsening strategies work equally well.

Finally, we show in Table 4.6 the results for the multiplicative version of the over-
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Fig. 4.5. The airfoil mesh: Level 2. Regular (left) and dual graph coarsening (right).

Fig. 4.6. The airfoil mesh: Level 3. Regular (left) and dual graph coarsening (right).

lapping Schwarz domain decomposition algorithm on the airfoil mesh. The column
labeled Overlap refers to the algebraic overlap into the interior of its neighbors. Thus,
an overlap of 0 means there is no overlap at all in the nodes. That is, the sets of
nodes in each subdomain are disjoint. There is, however, overlap in the support of
the finite element functions in neighboring subdomains. The column labeled Level of
Coarse Grid refers to that level of the grid hierarchy that is used as the coarse grid
in the DD algorithm. The 16 subdomains computed by the recursive spectral bisec-
tion method are shown in Figure 4.11. We can make several observations from these
numerical results. First, the use of a coarse grid (even a relatively coarse one, e.g.,
level 4 in Table 4.6) reduces the number of iterations significantly. Second, the use
of some overlap is very cost effective, but the number of iterations levels off quickly
as the overlap increases. This behavior is well known from numerical studies of the
overlapping Schwarz methods on structured grids. Finally, there is little difference in
performance between the two coarsening strategies. These results for the overlapping
Schwarz methods are also very similar to those obtained for structured grids.

5. Summary. We have constructed domain decomposition and multigrid algo-
rithms for solving elliptic problems on general unstructured meshes, which in our
limited experience perform nearly as well as these algorithms would perform on sim-
ilar structured meshes. Only the fine mesh is needed; all auxiliary components of
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Fig. 4.7. The airfoil mesh: Level 4. Regular (left) and dual graph coarsening (right).

Table 4.3

MG iterations for the airfoil mesh, 4253 nodes

Regular Coarsening Dual Graph Coarsening
MG Levels Nodes Dir. B.C. Mixed B.C. Nodes Dir. B.C. Mixed B.C.

2 1180 4 8 1507 4 8
3 518 4 9 328 4 9
4 89 4 10 171 5 10

Fig. 4.8. The annulus mesh: 576 nodes

Table 4.4

MG iterations for the annulus mesh, 2176 nodes

MG Levels Nodes Dir. B.C. Mixed B.C.
2 576 4 18
3 160 5 18
4 48 5 18
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Fig. 4.9. The Barth mesh: 6691 nodes

Fig. 4.10. The Barth mesh: Level 2, 1614 nodes (left) Level 4, 112 nodes (right)

the algorithms, such as the coarse grid hierarchy, the interpolation operators, and the
domain partitioning, are computed automatically. The algorithms can, in principle,
be extended to three space dimensions and to indefinite, non-self-adjoint and higher
order problems.
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Table 4.5

MG iterations for the Barth mesh, 6691 nodes

Regular Coarsening Dual Graph Coarsening
MG Levels Nodes Dir. B.C. Nodes Dir. B.C.

2 1614 5 1810 5
3 405 6 574 6
4 112 7 189 6

Table 4.6

Multiplicative DD iterations for the airfoil mesh. 16 Subdomains

Overlap Level of Regular Dual Graph
(no. elements) coarse grid Coarsening Coarsening

0 None 56 56
0 4 21 22
0 3 15 12
1 None 16 16
1 4 10 10
1 3 7 7
2 None 14 14
2 4 8 8
2 3 5 5

Fig. 4.11. The airfoil mesh: 16 subdomains computed by RSB
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