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Abstract

We derive the partition function of the one-body and two-body systems of classical noncommutative

harmonic oscillator in two dimensions. Then, we employ the path integral approach to the quantum non-

commutative harmonic oscillator and derive the partition function of the both systems at finite temperature.
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1. Introduction

It seems natural to explore the noncommutative (NC) version of quantum mechanics as the one-particle
low energy sector of the noncommutative quantum field theory, which recently has gained a great interest
mainly due to the arguments based on the String/M theories [1–5]. The following set of relations among the

coordinates and momenta (setting � = 1) characterize the noncommutative version of the two dimensional
quantum mechanics:

[x̂i, x̂j] = iθij , (1)

[x̂i, p̂j] = iδij ,

[p̂i, p̂j] = 0.

Here, θij stand for the constant antisymmetric matrix. However, one may decide to maintain the usual
canonical structure of the quantum mechanics and implement the noncommutativity by defining a new set of
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commutating coordinates xi via the relation [6–11]

xi = x̂i +
1
2
θijpj , (2)

where the summation is implied over the repeated indices. Therefore, for the interaction potential Û(x̂i) defined
on a noncommutative plane, one gets the effective θ -dependent potential in usual commutative plane as

Uθ(xi, p̄i) = Uθ(xi − θijpj/2), p̄i = θijpj . (3)

On the other hand, a path integral approach to noncommutative quantum mechanics has resulted in
a series of recent works [12–14] in which the authors show how the noncommutativity of space could be
implemented in the Lagrangian formulation of quantum mechanics.

In this letter, we first derive the partition function of a two dimensional classical noncommutative
harmonic at finite temperature. We also consider a two-body system of particles bounded by a harmonic
oscillator potential. Then, we focus on the quantum one-body and two-body problem of noncommutative
harmonic oscillator and employ the formalism developed in [12–14] to incorporate the effect of noncommutativity
of space on the thermodynamics of a two dimensional harmonic oscillator. It is shown that the result is in
accordance with one obtained via the method based on the Hamiltonian approach to the noncommutative
harmonic oscillator.

2. Classical NC Harmonic Oscillator

The Hamiltonian governing the dynamics of a classical harmonic oscillator on a noncommutative plane
is

Ĥ =
1

2m
(p̂2

1 + p̂2
2) +

1
2
mω2(x̂2

1 + x̂2
2). (4)

On implementing the transformation (2), one finds the θ -dependent Hamiltonian in usual commutative space
as

Hθ =
κ

2m
�p 2 +

1
2
mω2�x 2 +

1
2
mω2�θ · �x × �p, (5)

with κ2 = 1 + 1
4
m2ω2θ2 and �θ = (0, 0, θ). Thus, the finite temperature partition function shall read

Zθ(β) =
∫ +∞

−∞
d2p

∫ +∞

−∞
d2xe−βHθ (�p,�x), (6)

=
∫ +∞

−∞
d2p e−

βκ
2m �p2

∫ +∞

−∞
d2xe−

1
2 mβω2�x2

e−
1
2mω2�θ·�x×�p,

=
(

2π

βω

)2 1
1 + κ − κ2

.

In the vanishing limit of the noncommutativity, i.e. θ → 0, the parameter κ in the above expression tends to
unity and one recovers the result which holds on the usual commutative plane.
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3. Quantum NC Harmonic Oscillator

In this section (mainly taken from [15]) we derive the partition function of a quantum noncommutative

harmonic oscillator by means of the results derived earlier in [12–14]. The corresponding Lagrangian of the θ -

dependent Hamiltonian (4) can be achieved by means of the Legender transformation Lθ(�̇x, �x) = �p · �̇x−Hθ(�x, �p),

upon replacing for the momenta from �̇x = ∂Hθ/∂�p . Hence, the Lagrangian associated with the Hamiltonian

(4) will be [12–14]

Lθ =
m

2κ
(ẋ2

2 + ẋ2
1) −

m

2κ
ω2(x2

2 + x2
1) +

θ

2κ
m2ω2(ẋ2x1 − ẋ1x2). (7)

The above Lagrangian admits the equations of motion as differential equations of rank four. When the solutions
are inserted in (7) and integrated out over the time variable τ , one finds for the action

Sθ(�x ′′, �x ′) =
mω

2
√

κ sin(ωτ
√

κ)

[
(�x ′2 + �x ′′2) cos(ωτ

√
κ) (8)

− 2(�x ′ · �x ′′) cos(ωτ
√

κ − 1) + 2(�x ′ × �x ′′)z sin(ωτ
√

κ − 1)
]
.

with boundary conditions �x ′′ = �x(τ ) and �x ′ = �x(0). Thus, one obtains the propagator (transition amplitude)

as [16]

Kθ(�x ′′, τ ; �x ′, 0) =
∫

D[ �x ] exp
(

i

∫ τ

0

dtLθ(�̇x, �x)
)

, (9)

=

√
det

(
− ∂2Sθ

∂�x ′′∂�x ′

)
eiSθ(�x ′′,�x ′),

=
mω

2πi
√

κ| sin(ωτ
√

κ)|e
iSθ(�x ′′,�x ′).

For a quantum mechanical system, the partition function can be defined in terms of the propagator of a
system as [16]

Zθ(β) = TrKθ(�x ′′, β; �x ′, 0). (10)

where the inverse temperature parameter is defined as β = iτ . The symbol Tr stands for the functional trace
which for a bi-local function A(�x, �x ′) in D dimensions is defined as

TrA(�x, �x ′) =
∫ +∞

−∞
dDxA(�x, �x). (11)

When the time parameter in (8) is replaced with the inverse temperature parameter β , the propagator

(9) modifies to

Kθ(�x ′′, β; �x ′, 0) =
mω

2π
√

κ sinh(ωβ
√

κ)
e−SE

θ (�x′′,�x′),
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with Euclidean action

SE
θ (�x ′′, �x ′) =

mω

2
√

κ sinh(ωβ
√

κ)
[
(�x ′ 2 + �x ′′2) cosh(ωβ

√
κ) (12)

− 2(�x ′ · �x ′′) cosh(ωβ
√

κ − 1) + 2(�x ′ × �x ′′)z sinh(ωβ
√

κ − 1)
]

where we have invoked the well-known trigonometric identities cos iα = i cosh α and sinhα = −i sin iα . Thus

from definition (11) we find for the trace of the term e−SE
θ

Tr e−SE
θ (�x′′,�x′) =

π
√

κ

mω

sinh(ωβ
√

κ)
cosh(ωβ

√
κ) − cosh(ωβ

√
κ − 1)

. (13)

Therefore, one is left with the partition function as

Zθ(β) =
mω

2π
√

κ sinh(ωβ
√

κ)
Tr e−SE

θ (�x′′,�x′), (14)

=
1

4 sinh
[

ωβ
2 (

√
κ +

√
κ − 1)

]
sinh

[
ωβ
2 (

√
κ −

√
κ − 1)

] .

Again, one recovers the familiar result holding on the commutative plane in limit θ → 0 (κ → 1). The above
result for the partition function is derived earlier in the context of the Hamiltonian formulation of the problem
[10].

4. Classical NC Two-Body Problem

For the several particles living on the noncommutative plane the θ -deformed canonical structure (1)
generalizes to

[x̂A
i , x̂B

j ] = iθijδ
AB, (15)

[x̂A
i , p̂B

j ] = iδijδ
AB,

[p̂A
i , p̂B

j ] = 0,

where superscripts A and B label the particles. In particular, for the two particles a and b bounded by a
harmonic oscillator potential, one finds the θ -dependent Hamiltonian [11]

Hθ =
1

4m
�P 2

X +
κ

m
�P 2

Y +
1
4
mω2 �Y 2 +

1
2
mω2�θ · �Y × �P Y , (16)

where

�X =
1
2
(�xa + �xb), (17)

�Y = �xa − �xb,

�PX = �pa + �pb,

�PY =
1
2
(�pa − �pb)
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and
[X̂i, X̂j ] = [Ŷi, Ŷj] = 2iθij . (18)

Hamiltonian (17) consists of a freely moving part and a θ -dependent bounded term. The bounded part is same

as the one-body case, equation (5), except that its mass and noncommutativity parameters are changed to m
2

and 2θ , respectively. Under these transformations parameter κ remains unchanged. So, contribution of the
bounded part of Hamiltonian (17) to the partition function will be identical to the one made by the one-body

Hamiltonian, equation (5). The contribution made by the free part is the familiar result of a particle of mass
2m moving freely through a usual commutative plane. Hence

Zθ(β) =
∫ +∞

−∞
d2pa

∫ +∞

−∞
d2pb

∫ +∞

−∞
d2xa

∫ +∞

−∞
d2xb e−

βκ
2m (�p2

a+�p2
b) (19)

× e−
1
2mβω2(�xa−�xb)

2
e−

1
2mω2�θ·(�xa×�pa+�xb×�pb),

=
∫

d2X

∫ +∞

−∞
d2PX

∫ +∞

−∞
d2PY

∫ +∞

−∞
d2Y e−

κ
m β �P2

Y e−
1

4m β �P2
X

× e−
1
4βmω2 �Y 2

e−
1
2βmω2�θ·�Y ×�P Y ,

=
(

4πm

β

)(
2π

βω

)2
A

1 + κ − κ2
,

where A denotes the area of the plane and appears after integration over X.

5. Quantum NC Two-Body Problem

By following the same steps which led to the action (8), one obtains the Euclidean action of the two-body
bounded system as

SE
θ ( �X′′, �Y ′′; �X′, �Y ′) =

m

β
( �X′′ − �X′)2 (20)

+
mω

4
√

κ sinh(ωβ
√

κ)
[
(�Y ′ 2 + �Y ′′ 2) cosh(ωβ

√
κ)

− 2(�Y ′ · �Y ′′) cosh(ωβ
√

κ − 1)

+ 2(�Y ′ × �Y ′′)z sinh(ωβ
√

κ − 1)
]
.

Once again, the action (21) consist of a free part and a bounded part with mass reduced to m
2 and noncommu-

tativity parameter raised to 2θ . So, the imaginary time propagator takes the form

Kθ( �X′′, �Y ′′, β; �X′, �Y ′, 0) =
m

πβ
· mω

4π
√

κ sinh(ωβ
√

κ)
e−SE( �X′′, �X′)e−SE

θ (�Y ′′,�Y ′), (21)

which from (10) and (11) leaves us with the partition function as

Zθ(β) = TrKθ( �X′′, �Y ′′β; �X′, �Y ′, 0), (22)

=
m

πβ
· A

4 sinh
[

ωβ
2 (

√
κ +

√
κ − 1)

]
sinh

[
ωβ
2 (

√
κ −

√
κ − 1)

] .
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which, as expected, is just the partition function of a freely moving particle with mass 2m, multiplied by the
partition function of the one-body harmonic oscillator.

6. Conclusions

In this letter we derived the partition function of a classical harmonic oscillator on a noncommutative
plane. We also calculated the partition function of a two-body system of particles interacting through the
harmonic oscillator potential. The quantum mechanical partition function of both systems has been derived
by calculating the trace of imaginary time propagators of the systems. In the limit θ → 0, one recovers the
familiar results on the usual commutative plane.
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