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Abstract

A new characteristic mixed finite element method is developed for solving saltwater intrusion problem. In this algo-
rithm, the splitting mixed finite element (SMFE) method is applied for solving the parabolic-type water head equation, and the
mass-conservative characteristic (MCC) finite element method is applied for solving the convection-diffusion type concentration
equation. The application of the splitting mixed element method results in a symmetric positive definite coefficient matrix of
the mixed element system and separating the flux equation from the water head equation. While the mass-conservative char-
acteristic finite element method does well in handling convection-dominant diffusion problem and keeps mass balance. The
convergence of this method is considered and the optimal L2-norm error estimate is also derived. ©2017 All rights reserved.
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problem.
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1. Introduction

In this paper, we will consider the following coupled system composed of the water head equation
and the concentration (of C17) equation as a mathematical model of seawater intrusion problems (see
(2, 19]):

oH ~ oc p
(a) Ssgp = V- (RIVH —mees)) = —om + ~q,
a ~
(b) d)@*c +V. (uc — d)DVC) =cq, (1.1)
p ot
xe€Q,0<tLT,
with the initial-boundary conditions:
u-v=0, DVc-v=0, ondQ,
(1.2)

H(x,0) = H'(x), ¢(x,0)=c(x), x€Q,

where Q is a convex bounded domain in R? with the boundary 00}, S, is the specific retention, H = % —z
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is water head function, p stands for pressure, py represents the density of reference water (fresh water),
g is gravitational acceleration, z is the height of water containing layer; p is density dependent only on
the concentration of salt ¢, Hugakorn’s linearization p = po(1+ &) is adopted, ¢ is the concentration
corresponding to the maximum density, and ¢ is the density difference ratio e = -0, kK = 89k, nis
viscosity of the fluid, k is the permeability; n = C% is the density coupling coefficient; e3 = (0, o,1nT;
¢ is the porosity; and q is the source or sink term; ¢ stands for the concentration of C1~, ¢ is the salt
concentration near the source well, D is the diffusion matrix, u = —%K(VH —nmces) is Darcy velocity; v is
the unit vector outer normal to 9Q.

As we know, the seawater intrusion problem attracts great attentions recently since it causes great
damages to industrial and agricultural production, which is urgent to be tackled. Thanks to the increasing
interest, there are more and more literatures on the problem in recent years, see [2, 6, 8, 9, 13, 15].
Many numerical methods were also established for simulating this problem, for example, finite difference
method [22], finite element methods [19], upwind fractional-step finite difference methods [18, 20, 23],
alternating-direction methods [21, 24] and so on. However, these above proposed methods applied to
the convection-dominated problems do not work well, and produce excessive numerical diffusion or
nonphysical oscillation. Furthermore, solving the water head equation with the standard finite element
method or finite difference method cannot directly obtain the approximate flux which appears in the
concentration equation. The way to obtain the flux through differentiating the water head function will
cause extra error and reduce the accuracy. To obtain more accurate approximation of the flux function,
Lian and Rui gave a mixed finite element method combined with an inner penalty discontinuous Galerkin
finite element method in [11]. But the technique of the classical mixed finite element method leads to
some saddle point problem whose numerical solutions have been quite difficult because of losing positive
definite properties. In [17, 25-30], Yang, Zhang etc. proposed a class of splitting mixed element methods,
in which the mixed system is symmetric positive definite and the flux equation is separated from the
original equation.

Moreover, the concentration equation is normally convection-dominated diffusion equation, and a
more important property of the concentration equation is the mass balance. A variety of numerical tech-
niques have been introduced to obtain better approximations, such as higher-order Godunov scheme
[3], streamline diffusion method [10], least-squares mixed finite element method [16], and the Eulerian-
Lagrangian localized adjoint method (ELLAM) [4, 14]. Godunov schemes require that a CFL time-step
constraint be imposed. Streamline diffusion method and least-squares mixed finite element method re-
duce the amount of diffusion but add a user-defined amount biased in the direction of the streamline.
ELLAM conserves mass locally but it is difficult to evaluate the resulting integrals. The modified method
of characteristic (MMOC) finite element method [7], has much smaller numerical diffusion, nonphysical
oscillations, and time-truncation than those of standard methods, and can be used with a larger time step.
Unfortunately, MMOC fails to maintain mass conservation. In [12], Rui and Tabata presented a new char-
acteristic finite element method for convection-diffusion problems which not only keeps the advantages
of the classical characteristic methods, but also preserves the global mass conservation.

In this paper, in order to solve saltwater intrusion problem, the splitting mixed element method is
used to solve the water head equation of parabolic type and the mass-conservative characteristic finite
element method is used to solve the concentration equation of convection-diffusion type. The splitting
mixed element method has three advantages: 1. it can obtain more accurate approximation value to the
flux like classical mixed element methods; 2. the coefficient matrix of the new mixed system is symmetric
positive definite so that LBB condition required by classical mixed element methods is not necessary; 3.
the flux equation is separated from the water head equation, so that no coupled problem is solved. While
the mass-conservative characteristic finite element method not only keeps the advantages of traditional
MMOC and does well in handling convection-dominant diffusion problem, but also maintains the global
mass conservation. Here, the convergence of this combined method is considered and an optimal [2-norm
error estimate is also derived.

The structure of this paper is organized as follows: First, we present our method for saltwater intrusion
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problem and give the convergence theorem in Section 2. And then, we give some preliminaries, which
will be used to prove our convergence theorem in Section 3. Next, we consider the error estimates for
the concentration and the flux in Sections 4 and 5, respectively. Finally, we complete the proof of the
convergence theorem in Section 6.

2. Formulation of the method

Throughout this paper, the notations of standard Sobolev spaces are adopted as in [1]. Let (-,-) be
the inner product in [%2(Q). Introduce the space H(div; Q) = {v € 2(Q))3 V-v e [2(Q),V ={ve
H(div; Q); v-v = 0 on 9Q} and W = 1?(Q). For convenience of analysis, we assume that the problem
(1.1) is O-periodic, i.e., all functions will be assumed to be spatially Q-periodic throughout the rest of this
paper. This assumption is physically reasonable, because no-flow condition (1.2) is generally treated by
reflection, and boundary effects are of less interest than interior flow patterns.

2.1. The MCC for the concentration

0
Define the differentiation along the characteristic curves of the transport c[[;m +u-V,

o ¢o
tp(x,c,u)a =3 at—i—u-V,

where B = p(c)/po, W(x,c,u) = \/$2/B%(c) +[ul2. Note that the characteristic direction T depends on
x, the concentration ¢, and Darcy velocity u, which vary in space and time. It follows easily that the
concentration equation can be rewritten in the equivalent form

ll)%—i-v-uc—v-(d)DVC) =¢q. 2.1)

Define the time partition for the concentration 0 = t§ < tf < --- <ty <--- <t{_; < t{ =T, with
Aty =: ty, —t5_;. The characteristic derivative is approximated by

1LI)ac ~1 ¢t —ctloXn 9 ¢t —cloxn
Y L e A N
where ) ) )
e loXM = XY, XM(x) —x— S PT age gt = P
' ¢ " Po

And then the traditional continuous-in-space characteristic procedure of the concentration equation (2.1)
can be given by
(I) ch— Cnfl o XM
B At
As we know, this procedure can not keep the mass balance. In [12], a new mass-conservative characteristic
algorithm was established. By use of the similar technique, the continuous-in-space MCC procedure of
the concentration equation (2.1) can be written as follows

+V-u'c"—V-(¢DVc™) =cq™.

1
At (Bg)l e = BT(?l "o X“é“) _ V. (¢pDVCM) =g,

where 8™ is the Jacobian of the transformation X™, that is,
n oxX™ oul

Let T}, be one quasi-regular finite element partition of the domain Q, such that the elements in the
partitions have the diameters bounded by h.. Let My C H!(Q) be k-degree polynomial finite element
spaces defined on the partition 7},. The MCC finite element procedure can be given as follows:
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MCC Scheme. For given u' ! € Vy,, seek by c}* € My, such that

At% Bﬁil - Bﬁil o 7 Zh + ((I) VCh/ VZ]’L) - (Chq /Zh)/ Zh € h/ ( . )
where Bﬁfl = p(c{t*l)/po, X" (x) =x— At uaflﬁ’ﬁ*l/d).

As in [12], we will show the mass conservation of the MCC Scheme.

As we know that, the conversation of (1.1)-(b) requires

¢ oc J N
—— —dx = ¢qdx.
J o Bl

By integrating along time step, the discrete version of this equation can be written as

1 n 1 n—1
J e dx = J ey dx—l—J chqmdx,
Q Q Q

At Jo it At n—l

which can be regarded as a reasonable approximation.
In (2.2), we take z, = 1, and we have

1 bt 1 pen! N
e J nl‘l dx = Are J ( ;‘_1 )oX“é“dx—i—J chqtdx.
nJo By nJo By Q

Using the inverse transformation and Q-periodic boundary conditions, we know that

(bcﬁil ngn d)cﬁil nogny—1 d)C]TLlLil
oX™odx = O™ ( dy = ——dx,
JoGrrexmera= | (GRpwnentay = [ Tras

which implies that MCC Scheme keeps the mass balance.

2.2. The splitting mixed element scheme for water head and flux

As we know, the water head equation is a parabolic type equation. Now we deal it with the splitting
positive definite mixed finite element method. Define the flux o as follows:

2

o =—kK(VH —n1ce3) = ﬂu.
Polt
So we have u = a(c)o, a(c) = por/gp?. A mixed weak form of the system (1.1)-(a) is given by:
oH oc
(b) (xlc)o,v)—(H,V-v)=—(nces,v), VveY,
where «(c) =1/x and B = 1/Ss. From (2.3)-(b) we derive
0 oH oc
(5 (@le)o), v) = (55,7 -¥) = —(n-es,v). 4
Taking w = V - v in (2.3)-(a) and substituting it into (2.4), we get the mixed system
(a) (%(oc(c)o),v) +(BV-0,V-v)=(BBq,V- v)— (qu%,v V) — (1’]%83,V), Yvevw,
(2.5)
oH

b) (5

From system (2.5) we can see that the flux equation is separated from the water head equation and then
the water head function H, if required, can be obtained from (2.5)-(b) straightly.

We define a temporal partition on the time interval [0, T] for the head water and flux grid by 0 =
tit <t <o <th <o <t <t =T, with At]] =t} —t!l || Each water head step is also

,w) = (B[Bq—V-o],w)— (Bd)n%,w), YweW.



J. Zhang, Y. Zhang, Z. Liu, ]J. Nonlinear Sci. Appl., 10 (2017), 6102-6118 6106

a concentration step, i.e., for each m there exists n such that t& = t!i. Let T}, Th,, be two families of
quasi-regular finite element partitions of the domain (O which may be the same one or not, such that the
elements in the partitions have the diameters bounded by hg, hy, respectively. Let Vi, C V, Wy, C W be
T and l-degree polynomial finite element spaces defined on the partitions T}, and Ty,,, respectively. A
splitting mixed element procedure for water head and flux can be given as follows:

SMEFE Scheme. Seek (o', H') C Vi, x Wy, for given concentration cy, € My, such that

m—l) m—1

a(e™ o™ — afc o
(a) ( n h AtHh h ,Vh)—i-(BV'O‘ﬂl,v-Vh)
m
BATG™ v ) (B A TR oy SR e v
— (Bth /v Vh) (Bdm AtH /v Vh) (T] AtH e3,Vh), \V/Vh € Vh,
m m
Hm™ — Hmfl cm _ Cmfl
(b) (%/Wh) = (BIBhq" =V opl,wh) — (Bd)ﬂ%,wh)/ Vwn € Wh.
m m

2.3. The combined approximation procedure

Next, we will present a new mass-conservative characteristic splitting mixed finite element (MCC-
SMFE) method for solving saltwater intrusion problem. For convenience, we define a uniform time
partition: 0 = tg < t; < -+ <th =nAt < - < tn_1 < tn =T, with At = t; —t,_1. Combined the
method of mass-conservative characteristics with the splitting mixed element procedure, a new numerical
method can be established:

MCC-SMFE Algorithm. Give an initial approximation (c(})l, H(})I, 0'?1) = (Prc?, QurHO, TTHo0) € My, x Wy x
Vi, forn=1,2,...,N, seek (c, o, HY) € My, X Vi, x Wy, such that

(a) Kt - o X™o sZh |+ (CbDVCh, vz’h) = (Chq /Zh)/ VZh € Mhl

B! B!
ny~n __ n—1y .n—1
(b) (“(Ch)ch Xich )%k ,Vh)+ (BV -0}, V- vy)
n.mn C{LL — Cﬁil C% — Cﬁil
= (BBhq™, V- -vn) — (BCIJT]T,V'Vh) — (T]Tte?nvh)r Vvh € Vh,
HY —H ! et —cenl
(c) (%;Wh) = (B[Brq™ — V- o], wh) — (BcbﬂhTth,Wh), Vwy € Wy,

where the definitions of the projection operators Py, IT,, and Qn, can be found in Section 3.

For convenience of analysis, we assume that K and ¢ indicate a generic constant and a small positive
constant independent of mesh parameters hy, hyy, he and time increment At, which may be different
at their occurrences. We assume that the diffusion matrix D is independent on the concentration c as in
[11, 19], and make the following hypotheses

0<de <d<d*, 0<D.,<D<D* 0<S,<Ss <S8,
<B< <a<

D<o, <a<a®, 0<p. B*, O<ay<a< da, 2.6)
da(c)| [0B(c)|  |dale)| |0%alc) . '
<
' ac || o | T ae | T e | S K
Moreover, we also assume the regularities of the solution of (1.1)-(1.2) as follows:
0
¢ e LO(H*1) n12(Wh), a{ € L2(H1) N L= (L%),
Pc a2 oo (yl+1 2(12
3 € L7(L9), H e L®(H"") nH (L), (2.7)
0 02
o e L®(H™+1nWl), ait’ e L2(H™ 1) A L™(1%), aT‘; e 12(12).



J. Zhang, Y. Zhang, Z. Liu, ]J. Nonlinear Sci. Appl., 10 (2017), 6102-6118 6107

For MCC-SMFE Algorithm, we have the following main result.

Theorem 2.1. Assume that the hypotheses (2.6) hold and the solution of system (1.1)-(1.2) has the regular properties
(2.7). If the mesh parameters h, hg, and /At satisfy the relations

3

At = o(h2) = o(h3), 2.8)
then there hold the priori error estimates
(a) max lc™ — |2 + max o™ — o™z < K{hET +hi +hi 4+ At}
(b) max|[H™ — Hit|l 2 <K {RE R 4+ hi +hET + ALY
where K is a constant independent of the parameters At, hy, hg, he; 1, k > 0, 1 > 0 denote some integers, vy =1
in cases of BDDM, BDM, and BDFM elements, or v = r + 1 in cases of RT and Nedelec elements.
3. Some preliminaries

We assume that finite element spaces V1, and Wy, have the approximate properties (see [5]) that there
exist some integers r, 11 > 0 and 1 > 0, such that, for 1 < q < oo,

inf ||v—vnlle < KhE Ve, Vv e H(div; Q) nWTha(Q),

VhEVH
ing IV - (v—vn)|lLe < KihD |V -v]wra, Vv e H(div; Q) nwWntha(Q),
VRhEVHh
inf [[w—wn|[Le <KihiHwllwiaa, Yw e L2(Q)nWHLA(Q).
wp EWR

It is well-known that, in any one of the classical mixed finite element spaces, there exists an operator
Ty, from V onto Vy,, see [5], such that, for any 1 < q < 400,

(@) (V- (v—=TIgv),V-vy) =0, VvpeVy,
() |[v—TThv[rs < KhG[viyyrera,
() V- (v—=TIh v)llLa < Kh |V v|[wria.
And we define a projection operator Py, from H!(Q) onto My, such that, for all z;, € My, and ¢ € H!,
(d)DVC, VZh) = (C])DVPhC, VZh).

By use of the inverse property and approximate properties of the finite element space My, (see [5]), the
following error bounds were given: for some integer k > 0,

(@) |lc—=Pnclliz +he||V(c—Pre)|li2 < Kh]é+l”CHHk+1,
(b)  ||[VPre|lLe < K(c) < 400,

(@ (2= Pne)

oc
3t Itz < KREFYlell e + ||aHHk+l}-

Meanwhile, we also introduce the L? projection operator Qy, from L[2(Q) onto Wy, such that
(H=QnH,wy) =0, Vwy e Wy
It is well-known that the a priori error estimate: for 1 > 0
IH— QuHll2 < Khif![H] e, Vwe HY(Q)

holds.
Next, we will give a lemma which is important to prove our theoretical result in the following sections.
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Lemma 3.1 ([17]). Assume that the finite element space Vy, is any one of the classical mixed finite element spaces
defined in [5]. The super-approximation,

(V- (v—TInv), V- vy)
3
< Kho ||V - vpl[z min(|| @1 ||V - (v = TThv) || oo, min(|| @ ||y, ho 2|V - (v =TTV ) || 12)

holds, for each function @ € WY, v € V and vy, € Vy,.

4. Error estimate for the concentration

In order to derive the error estimate for the concentration, we make an induction hypothesis as follows:

hz
At

Obviously, from MCC-SMFE Algorithm, we know that the induction hypothesis (4.1) holds when
n = 0. Moreover, we assume that (4.1) holds until n = N —1. Set £ = ¢t —Prc™ and (¢ = c™ — Ppc™.
By the definition of projection operator P}, we have the error residual equation:

max [[uft[|oo < kho [~ 22, 4.1)
n

o &gt
(55—, zn) + (§DVEY, Vzp)
el At " n
(I) aC Tl n— Tl 1 d) n (I) n— nNe<n
<BE proan e VT t(ﬁ{tlc ~gpeTex ))
b(BE— ") dc 1 & oty ynen . O ns (42)
M e )

d) n n—1 L d) n—1 __ (I) n—1 o Xmngn
+<BR 1At(c —Ce )/Zh>+<A <BE1CC ( TPI71CC ) o X™$ >,zh>

+ (V- (0" =g e™), deed) + (q"E 2n) — (4" CF 2n).
We have the following approximate result.

Lemma 4.1. Assume that B, B, a, a’, ¢, and ¢’ are bounded, then there exists an estimate

N
D lldefat+(IVEYNF
=

4.3)
K {Nzl EETT2 + 185172 + IVEE 2] At 4R 4+ hg™ + (Atf} :
Proof. Denote d;f™ := (f“n:lfnl) JAt. Taking z;, = d¢&] in (4.2), then we have
G 5 qp)+ 4DV VaED)
:< g’ i gt +up Vet +Voup et Alt ( §_1cn—( §_1cn—1)oxnén> ,dtag>
+ (Wat dé“) (Alt(( rs;?—l N az‘—l),dta‘;) -
+ ( i —c2—1),dt62> ' < N ( T () oxnan> ,dtst)

F (V- (™ —ule™), de&gM) + (qMER, deER) — (T, zn).
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The left-hand side of (4.4) is bigger than the quantity

1
~(de(pD)VERTL, VEDTY),

1
S&((OD)VER, VED) —

(X* 2
Sl 5

and
1 _ _ - _
S (Ae(@DIVEY ™, VERT) <KL+ [[dep™ M5 00) [VEE 2

Now we multiply the relation (4.4) by At, sum over 1 < n < N and denote the resulting right-hand terms
by Ty, Ty, ..., Ts. We turn to analyze these terms one by one.

N
1
T1:Z<d’ %+urh‘ Lver +V uf e — t( S eng d’lcnl)ox“zs“),dtag) At

Z \ppTot BT BL
N
¢ Odc -1 o) ¢t — Cnf1 oX™
= nZ—l <BT}11 a + U‘}r: Vet — Efl AL , dta? At
N
, (4.5)
+ Z (V up L E— <( [3:3) e Ho XM — ( BT(lbl ¢ ho Xn> , dt&?) At
n=1 h

—%ZZ_<£H’(Iy11 1)oX“——Bf10“_1oX“>,d£$>lﬁt
h
=Ti1 + T + Ti3.

For T;; we have the estimate

N
T11\K||at2|| otz e Y [dETTAL (4.6)

n=1

Based on the definite of 8™ and Taylor expansion, T1, can be decomposed as

N
To=) (v ul e+ i <(Bj) M oXnem — (Bd{lcnl) OXn> 'dt5n> ot

n
n=1 n
N
Z V uﬂ, 1 7Cn—1 OXn), dtall) At (47)
n=1
N & 5™ —1
2|V e o X o (et T o XM diEl | At
= BT At
N
<KAt2HCH%—11(LZ)ﬂCO(H2) +e Z ||dta?||2L2At’
n=1

where we have used the induction hypothesis (4.1). Substituting (4.6) and (4.7) into (4.5), we have

N
2 2
Tl <||C||H1 LZ + ||C||CO Hz + || at2 || OT L2 ))>At +€ Z Hdt‘(-»](?HLZAt

n=1
For T,, Ty, we have
N N
T2+T7<KZ{||E,?|| z—i-AtHatH 0T ))}At—i_sz||dt£§||%_2At+Kh%k+2.
n=1 =
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For T3, using the fact that £ = 0, we have

N (ﬁgllasfl)oxnén——ﬁg’,lay* )
E:é i LA &R | At
N
1 (b n—1 ngn q) n—1 n
. ( Evc )OX 5 - n— Evc /E‘C
té( Bt pr! )
1« ( ¢ b
- ( — agfl)oxnén_ — 521,5,21)
At%( pr ! By
A ¢ ¢
=Y [ dell g eroxmem — — = ay%yl)
nzz< pr Bp !
N-—-1 N-—-1 XN5N _ N—-1 N-—-1
. ((cbac /BR o AL /B ,a§> T

Note that

¢ 6271) o XM — ¢ 5’271)’ E.Ell)

n=2 ( Bﬁ_l Brhl_l

d) n—1 ngn E"Etfl_a'gfloxn
(gt o X", = At

N
d) n—1 ngn d) n—2 n—lgn—1 a}l—loxn>
+ ( n— Evc )OX 6 7( n— Evc )OX 6 r T AL
_ i ( b gno1 & no 52_1>
n=2 [5271 BE_Z At
N
C[) n—1 ngn ‘E?_l — 52—1 ° Xn)
=Y (a2 en Ty oxmsm), At
N n—1,xn—1_ gn—1,xn
+ ~ (( BLCII)—Z 5?72) o Xnilénil, b AL & ) At =Tz11 + T312,

where we have used the fact in the third equation that

h h

h h

For fixed Z, considering the transformation

un-lgn-t
¢

we can find that det(Dfz) = O(6™) with 0 < z < 1. For all z(x)

y="~fz(x)=x— AtZ,

(pnoxn_(pn

n—1lpn—1
R (6“)1/2||2—(AtZ)Jﬂ(cp“(x)—cp“(x—wAtn%“dx

Cb n—1 ngn agfloxn _ Cb n—1 Eﬁciil
(( Tl*]E'C )OX 6 7 At >_< n_f]E'C 7 At 7

Cb n—2 n—lgn—1 E’?*loxnfl o d) n—2 5271
<( poabe X T ) T et A )
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1 a(pn un 1Bn 1 un 1[571—1 5
< (A2 J J X — Atz) - Atdz) 8™ dx
(2| (] 5 % )
1 un 1anl
< KJ J Vo™ (x — ———— Atz)]? - 8™dxdz
0lJa ¢

< KJQ Vo™ (y)P - dy < K[Ve™ ()|,

then we get

N N
Tan < sZ dee2 M T At +K D IVES AL T <K )Y (IVEX R+ &2 )AL
n=2 n=2
For T3;, we have
N-1 NsN_ _d ¢N-1
T — (ﬁﬁ rbe ) e X0 Bhilac N
32 At 7 >C
(o EN1) o XNEN (o2 EN"1) o XN&N
_ [ _PBn N Pr ENoxN
At T At T
¢ N1 NN Eot — &N o XN
<(BE 1& Jo X6 At
N sNy1/2 EN o X™ N2
S K[(PENH o XN (N2 2 H—t(é ) 2

<Klee i + el vee It
it implies that

N N
T<e) [deed M At +KIEYN TR + el VEX T2 +K D (IVEE T2 +lEd " F2) At

n=2 n=2

Now, we consider Ts. We have

i (Bn 1Cn l)oxnén S 1Cn 1
Ts = ( h h dtag)ﬂt
At
n=1
n—1y,xngn _ n—1 n—1y,xngn _ n—1
:Z(Bﬁlc ) o X™6 BRIC a“) ((Bﬁlc ) o X" g;l‘: anl)
At roc At C
N d) (Bn 1CN l) XNéN = 1&N 1
= pC& o XM — —F ), ! +< . . ,aCN>
L (il B ) =

With the same argument as T3, we can get

N
T <KD (1@ T + IV T + G IT)At + Kl + el VERIIT

N
KEF2 4 Y [[VER Y7240 + ¢ VEY|Z,

n=1
T4 can be easily bounded as follows

N 7(2 Cn 1

T:Z B BR] LdeEN )AL
4 At te

n=1

N N N
<KDY el lfAt+e ) e 20t < Kllelfy o hd +e ) el {24t

n=1 n=1
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And it is easy to see
N
Te = Z <V . ((u“ - uTh‘*l)c“), dtci?) At
n=1
N
= Z —(u™— u{l‘_l,c“thE,Q)At
n=1
N th Qdu
<) {|(J 3cdt- e VAN +((aleq) — alep™))e™ 1 e VD)
n=1 tn
+l(alet MEF T e™, VD) + l(alep Hep c“,thaw}At
N
<3 I I R+ e+ 1 0 G B e O
n=1
N
red (uvamr%z ~IvE )
2142 2k+2 12 12
<SK(RF+2 4 h242) 4 K Z JERTR + lEn T2 4+ £t 22 ot =2 oz
n=1
N
re ) (IRl - veri3:)
n=1
and
N N N
Ts <KD [ICTAt+e ) [AeE2[F2At S Kleff g he 2 +e ) &l [Tt
= n=1 n=1
Combining these above estimates, we can easily get the inequality (4.3). O
5. Error estimate for the flux
Set £ = op —Tlho™, (g = o™ —Tlho™, &) = H — QpH™, and ¢y = H™ — QnH™. We have to
estimate bounds of &, and &, which satisfy the error residual equations:
(el EN — e hgnT!
(= Vi) + (BV - £5, V- Vi)
0 a(c™)o™ —a(c™ o ! dc ¢t —cn!
= (5 (x(c)o) - = Vi) + (Bon(5 — ), V- vi)
dc ¢t —cn! () — afepH)ent
+ (G — 5 Jes, Vi) + - Vi)
[a(c™) — a(c)]o™ — [a(c™ 1) — e )™ (5.1)
+ ( /vh)
At
+(BV - (5, V-vn) + (Bq™(Br —B™), V- vn)
r—gnt gn—gnt
+(Bdn At ,V-vh) (Bq)T]T/V'Vh)
Cn _ Cnfl En _ E'nfl
+ (ﬂ%eavh) - (ﬂ%es,vh), Vvh € Vi
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and

g -t

( At

;wh) =(Bq"(Br — B™), wn) = (BV - (o — ™), wn)

oc ch— Cnfl Cn _ Cnfl
B _—— Bbn=<t ¢
+(Bén(5, Apwn)+ (Bén——r
g —En!
At

—(Bén ,Wh),  Vwp € Wy

To obtain the error estimate for the flux, we also make other induction hypotheses as follows:

3
_1hZ
n < 2(_€13
mTiiX HChHoo X kvhc [At]zl (53)
3 3
ma €2 + max £ 2 = o <ma><(hé,hé)> | (5.4)

From MCC-SMFE Algorithm, we can easily show that (5.3) and (5.4) hold when n = 0. Now, we assume
that (5.3) and (5.4) hold for n =1,2,...,N —1, we have the following results.

Lemma 5.1. Assume that o, &', and «"" are bounded, then the priori estimate

[(c™) — a(e)]o™ — [x(c™ 1) — (e )]o™ T
At
< KLIESNT2 + &8I + 168 2T + &6 %A
+HIEF 2R + IV - wnllf2 + R+ hE T2 4+ (A2} + 8| lval 2

(

V)
(5.5)

holds, for any vy, € Vy,.
Proof. Note that

1
o(ch) — oc(c{tfl) :J oc’(c{tfl +s(ch — c{ﬁl))ds(cﬁ1 — c{tfl).
So we have
[o(e™) — a(e™ )] — [x(ce]) — “(Cg_l)]

1 1
= | et sep e st —n2 ) - | wleR !+ s(e — e s er —£27)

1 tn ac 1 tn oc
] e st - laas | Star- | rer teser - e Dlatas | Stat
0 th1 0 th
Utilizing this equation, we can easily get
(loxle™) — afef)lo™ — (e - afeq Dlo™ ! |
At s Vh
oe™) —ax(ep) = (x(e™ ) — (e ))lo™ ne1 no1y 1 Jt“ oo
= ( o ;i) + (lo(e™ ) — x(epy )]E ot dt, vp)
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1 o — Cnfl
- (J o (e 4 s(eft —eph))dso™ et — A <—,Vh)
0 t
—( 5 o/ (e s(el — c“_l))dsanigg —&
] h h h At

! n—1 n n—1 " o" tn ac
“o[CC +s(CF— ¢ ) dSAthlatdt'vh) (5.6)

1l . 1 om [t dc
s (el - )]oc”dsAtJ at )

1 (™ 9
+ ([OC(Cn_l) — (X(C{t_l)]ﬂ J afzdt,vh) =F+F+F+F+Fs

,Vh)

tho

tho1

Using Lemma 4.1, we can derive

Fu+ Fo+ Fa+ Fs SKEIERIR + 1801 + €220 + 1631

_ (5.7)
HIES 2T + IV - vilfo + A2+ M2 4 (A2} + 8[| o
For F,, we have

n__n—1 1
Fa =( O Lok ,J

T AL o (e s(eft — ) dso™ - v B/ o)
h

0

n_ gn—1 1 5.8
(o EE R Rl el (e el Ndso™ v B /00 5
h 0

<KL I + 187 M T2 + 188 IT2 + 1V - vallfa + R+ hETH2 4+ (AD2} + 5wl
where Ry is a weighted L2-projection operator from L?(Q) onto M}, such that

( j)—1 (z—Rmz),zn) =0, Vzel?(Q), zn € My,.
h

Substituting (5.7) and (5.8) into (5.6), we get the estimate (5.5).

Lemma 5.2. Under the conditions of Lemmas 4.1 and 5.1, we have the following estimate

nygn _ n—1lygn—1
(O((Ch)((—,o- Xich )E'U ,Vh) + (BV ngvvh)

2 —1)2 —2)12 —1)12 2 i 7
<K{||£1c1||L2+||5£L T2+ 168 T2+ 1&5 M2 H &5 “llf2 + IV - villT2
+RIT2 LRI LRI 4 (A2} 4 8 |vn 3

Proof. 1t is easily seen that

( 0 (x(c)o™) — a(c™)o™ — a(c™ on !

a At /Vh)
oc ¢t —cnt dc ¢t —cnl
B == . i
FBOn(5e — S ), Vo) + (5 — S Jes, i)
?u(c)o 5 2% » »
< K{At[HTHLZUn;LZ) + H@“Lz(]n;]_z)] + HV : Vh||]_2}+ 5||VhHL2,

(Bq™(BR —B™), V- vn) < K{[EX |22 + ImP 122 + |V - v 32}
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and

-t v — 2 242 2
(Bmet V-vh)+(n%e3,vh) < K{HV-vhHLz +ha<t }—I—éthHLz

As noted above, we know that

1

o) =afcht) — Jo o (et s(eft — e )ds(ep — e Y
1

el — L o/ (P4 s(el — e ))ds (£ — 1)

1 1 th dc
]t stel - e naste - - el sieh e as [ S
tn 1
So we have

ny/n __ n—1y,n—1
‘X(Ch)Cg gich )CU i)

n_ n—1 1 n_ gn—1
= (a(cﬁ)%,vh) + (Jo cx’(c{t_1 +s(cy — cﬁ_l))dscg_l%,vh)

(

1 1 1 1cn_cn71
—( J o/ (e s(el — e s e e )

0 o At
! /e n—1 n n—1 1 tn dc
+ ( . o' (cn " +sley —epn Yyaseh At ), at —dt, vy)

¢ Ev:rzl — E,? ! ! /(-m—1 n n—1 n—1 n—1
< 1 At Rl . o (e Fs(ep —cpy ))dsCy B/l
h
K 0Co 2 n—12 2
+ {AtH ot ||L2 (J;L2) + 15 ||L2+ ”VhHLZ}
<SK{E TR + €57 T2 + IV vhlif2 + 02+ hET2 + (At)*} + 8| va 2.
By Lemma 3.1 and the inverse property of the finite element space Vy,, we have the estimate
(BV -3, V- vi) < Kho[|V - (& ll2l|V - whlliz < KRG 4 8[|V - wall7
Utilizing the similar technique as in (5.8), we can get the following inequality

n—1 n_ gn—1
(Bon ™5 Vv 455 e v

<KL& + 1E5 T2 + IV - vhllfz +hETF2 + W2 4 (A2} + 8||va 2.
Substituting these estimates into (5.1), we complete the proof of Lemma 5.2. O

Lemma 5.3. Under the conditions of Lemma 5.2, we have the estimate

N
D lldeshAt+ (V-8
=

(5.10)
N-—-1
<K{ZUEEH%2+H£2H 2+ |V ERIRIAL+ hE T2 + R 4 W22 4 (A2 5

n=1
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Proof. Taking vy, = d¢&y in (5.9), and noting that

a(cP)ER — (e EnT
At

( ’ E,E) = (a(CR)dtég‘, th,I}) + (dt(oc(CL‘))EE_l, dtég‘),

and

(BY-£N, V- di&h) > ~dy(BY- £, V- &£1) — L(dBV - &2, v . &n 1)

2
> ~d(BV- &£}, V- £ — K| V- E2711%

=N

N

Under the inductive induction hypothesis (5.4), using the similar technique as in (5.8) and Lemma 4.1, we
get

1
[(leR)dees, deey) — (delaleR)) & deed)] + < (IV - €512 = V- &7 = K[V - &7

—12 —2/2 —12 —2/2
SK{IEL IR + €5 1T + 182 IT2 + 1682 IF2 + 15 1T + 165211
F [V - vifo + R+ RIS 4 (A1) 4 5w 3.

(5.11)

Multiplying (5.11) by 2At and summing it over n, for sufficiently small 5, we get the estimate (5.10). O

6. The proof of Theorem 2.1
Now, we can complete the proof of Theorem 2.1.

Proof. Note the fact that

N N
lo™IT> = 0°17 <K D [l™ITAt+€ Y [ldeo™ At (6.1)
n=1

n=1

Using Lemmas 4.1 and 5.3, we can get

N N
IENIZ + NES 12+ IV - ES T2 + IVEN T2 4+ ) IIdeER |74+ ) [|deER ]2 At
n=1

n=1

N—1
<K {At 3 UIERIRe + €+ 17 - €313+ [ VER ) + hE2 4 n2e2 4 n2e2 (w} .
n=1
Applying the discrete Gronwall’s inequality, we have

N
HEN 2+ NEX 12 + IV - ENIZ2 + I VEN 22+ At D [Ide&q[F2 + [ deER 2]

i=1

(6.2)
SK{NT P2+ R P2 4 v 4 (A2}

It is clear that the optimal error estimate (6.2) is derived under the inductive hypotheses (4.1), (5.3),
and (5.4). Now we have to check it when n = N. Under the condition (2.8), for the integers 1, k, 11 > 0,
using (6.2) we know that

[uR lloo = la(eR)oR floo < K {IMho™ oo + [1€5 lloo }

_3
<K {|mhoN||oo+hgzua‘§||Lz}
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_3 1
<K {IIWhG“Hoo +ho? (AL ot pkrd 4 At)} < Khg? |-2

lek oo < K {IIPhe™ oo + [1E2 loo }

_3

< K{||Pth|oo+hc ZHaCNHLz}
_3 1

<K {IIPhc“Hoo +he 2 (AL 4 R pkd At)} <Khe?|-S

and
€ T2 + 11E5 Iz < K {hG +hgH T 4 het 4+ At}

So, we know that the inductive hypotheses (4.1), (5.3), and (5.4) are true for n = N.
Finally, we consider the bound of &y. Taking wy, = &}} in (5.2) and using the estimate (6.2), we can
easily get
max | ]} 172 < K{hZ*F2 + hZ T2 4 v+ h3t2 4 (At)? )

This ends the proof of Theorem 2.1. O
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