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Abstract

Dendritic cells (DCs) are specialized phagocytes that internalize exogenous antigens and microbes at peripheral sites, and
then migrate to lymphatic organs to display foreign peptides to naı̈ve T cells. There are several examples where DCs have
been shown to be more efficient at restricting the intracellular replication of pathogens compared to macrophages, a
property that could prevent DCs from enhancing pathogen dissemination. To understand DC responses to pathogens, we
investigated the mechanisms by which mouse DCs are able to restrict replication of the intracellular pathogen Legionella
pneumophila. We show that both DCs and macrophages have the ability to interfere with L. pneumophila replication
through a cell death pathway mediated by caspase-1 and Naip5. L. pneumophila that avoided Naip5-dependent responses,
however, showed robust replication in macrophages but remained unable to replicate in DCs. Apoptotic cell death
mediated by caspase-3 was found to occur much earlier in DCs following infection by L. pneumophila compared to
macrophages infected similarly. Eliminating the pro-apoptotic proteins Bax and Bak or overproducing the anti-apoptotic
protein Bcl-2 were both found to restore L. pneumophila replication in DCs. Thus, DCs have a microbial response pathway
that rapidly activates apoptosis to limit pathogen replication.
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Introduction

Macrophages and dendritic cells (DCs) are the sentinels of the

innate immune system. They are key in sensing infection and

activating downstream antimicrobial responses [1,2]. These profes-

sional phagocytes are activated following stimulation of pattern-

recognition receptors, such as transmembrane Toll-like receptors

(TLRs) and cytoplasmic nucleotide-binding domain and leucine-

rich repeat containing receptors (NLRs) by pathogen-associated

molecular patterns (PAMPs). Signaling through these receptors

induces the expression and secretion of proinflammatory cytokines,

chemokines and other antimicrobial defense molecules [3–7].

Bacterial pathogens that are able to infect and establish residence

within macrophages and DCs provide a unique challenge to the

innate immune system, as many pathogens have evolved virulence

factors that subvert the cellular processes of these cells. One such

pathogen is Legionella pneumophila, the etiological agent of the severe

pneumonia known as Legionnaires’ disease [8,9]. L. pneumophila is

able to infect alveolar macrophages and modulate transport of the

phagosome in which it resides to avoid fusion with endosomes and

lysosomes [10]. L. pneumophila has the ability to recruit vesicles in

transit between the endoplasmic reticulum (ER) and Golgi

apparatus and use these vesicles to remodel the L. pneumophila-

containing vacuole (LCV) to create a unique ER-derived vacuole

that supports intracellular replication [10–17]. Modulation of

intracellular transport of the LCV requires a functional type IV

secretion system (TFSS) encoded by the dot and icm genes, which

translocates bacterial effectors directly into the host cytosol [18–21].

Many of the translocated effector proteins engage host factors

involved in vesicular transport and assist in LCV transport [22–29].

L. pneumophila mutants defective in the Dot/Icm system do not

replicate intracellularly, as they are unable to modulate intracellular

transport and occupy a more conventional phagosome that

undergoes rapid endocytic maturation [19,30].

Although L. pneumophila has evolved sophisticated strategies to

overtake phagocytic host cells, the mammalian innate immune

system is able to efficiently control bacterial infection and

replication. Responses controlled by the TLR adaptor protein

MyD88 effectively clear L. pneumophila from the lungs of infected

mice [31–33]. NLRs also contribute to the detection and control of

infection. Naip5 (Birc1e), an NLR encoded within the Lgn1 locus,

limits replication of L. pneumophila in mouse macrophages [34–37].

Naip5 is activated by a Dot/Icm-dependent signaling event that

presumably involves the delivery of the bacterial protein flagellin
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into the host cell cytosol [38–40]. Naip5 in conjunction with the

NLR protein Ipaf activates caspase-1, which limits L. pneumophila

replication in macrophages by inducing a pro-inflammatory cell

death pathway known as pyroptosis [37–40].

Naip5 control of caspase-1 activation does not seem to be the only

cellular mechanism used by innate immune cells to control L.

pneumophila replication. In DCs infected with L. pneumophila, although

phagosomes containing bacteria are able to mature into ER-derived

organelles, bacterial replication is limited [41]. DCs are still able to

process and present L. pneumophila antigens on MHC class II

molecules, and de novo synthesis of L. pneumophila proteins inside DCs is

critical for maximal stimulation of CD4+ T cells. This indicates that

restriction of L. pneumophila replication could be important to the

ability of DCs to present bacterial antigens to T cells and direct

subsequent adaptive immune responses [41]. Interestingly, DCs are

able to limit the intracellular replication of several other pathogens

that are capable of replicating in macrophages, such as Listeria

monocytogenes, Mycobacterium tuberculosis and Salmonella enterica Serovar

Typhimurium [42–45].

Thus, it appears that there are inherent differences between

DCs and macrophages with respect to their abilities to restrict

replication of intracellular pathogens. We show here that one of

these differences involves the ability of DCs to rapidly activate a

cell intrinsic apoptotic cell death pathway in response to the

intracellular pathogen L. pneumophila.

Results

Canonical pathogen surveillance pathways are not required
for restriction of L. pneumophila replication by DCs

Signaling through TLRs in macrophages results in enhanced

phagocytosis and phagosome fusion with lysosomes [46]. Thus,

innate immune recognition of L. pneumophila could activate cellular

processes that control bacterial replication in DCs. Cells deficient in

the adapters MyD88 or Rip2 were used to interfere with the TLR

and Nod signaling pathways respectively, to determine whether L.

pneumophila replication in DCs is restricted by activation of signaling

pathways controlled by innate immune receptors. Replication of L.

pneumophila was not detected in DCs derived from A/J mice, which

are defective for Naip5 signaling, or from A/J-derived mice deficient

in either MyD88 or Rip2 (Figure 1A). By contrast, exponential

replication of L. pneumophila occurred in the macrophages derived

from these mice (Figure 1A). L. pneumophila intracellular replication

was not observed in DCs derived from mice deficient in both MyD88

Author Summary

The immune system is designed to identify microbes that
enter the body and elicit responses that prevent the
replication and dissemination of these organisms. Dendritic
cells play an important role in regulating host immunity to
pathogens. Their phagocytic capacity enables DCs to
internalize and destroy most microbes, and the ability of
DCs to migrate to specialized lymphoid organs is important
for inducing antigen-specific immunity. Here, we analyzed
interactions between DCs and Legionella pneumophila, a
bacterial pathogen that can subvert phagocytic host cell
functions to create a vacuole that permits intracellular
replication. We found that L. pneumophila infection rapidly
induced DCs to commit cell death through apoptosis. Rapid
apoptosis was not observed after infection of macrophages,
which are the phagocytic cells that support L. pneumophila
replication in the lungs of infected animals. Using cells
derived from knockout mice, we found that DCs deficient in
the proteins Bax and Bak, which are essential for induction of
the apoptosis pathway, were unable to restrict the intracel-
lular replication of L. pneumophila. Likewise, overproduction
of Bcl-2, which is a negative regulator of apoptosis, resulted
in DCs that were permissive for L. pneumophila replication.
These data indicate DCs have the ability to rapidly undergo
apoptosis when infected with a microbe capable of
replicating intracellularly, and this response effectively
prevents pathogen replication. We hypothesize that this
response may be designed to interfere with the migration of
infected DCs through the lymphatic system, which would
prevent DCs from serving as a ‘‘Trojan Horse’’ that transports
pathogenic microbes from peripheral sites to central organs.

Figure 1. Restriction of L. pneumophila replication in DCs does not require signaling by MyD88, Rip2 or caspase-1. (A) BMMs (closed
bars) and DCs (open bars) from A/J, Myd882/2 and Rip22/2 mice were infected with L. pneumophila WT for 72 h. Intracellular replication is
determined by dividing L. pneumophila CFUs recovered at 72 h by the CFUs recovered at 1 h post infection. (B) BMMs (closed bars) and DCs (open
bars) derived from Casp12/2 or the Casp1+/+ littermate mice were infected with L. pneumophila WT. Intracellular replication is determined by dividing
L. pneumophila CFUs recovered at 72 h by the CFUs recovered at 1 h post infection. Cells were homozygous for the permissive Lgn1 allele from the A/
J mouse as indicated. Data are the mean6SD from three independent wells. N.D. = not detectable.
doi:10.1371/journal.ppat.1000478.g001

DC Restriction of L. pneumophila Replication
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and Trif (data not shown), indicating that the lack of both of these

TLR adaptor proteins did not restore L. pneumophila intracellular

replication in DCs. Thus, DC restriction of L. pneumophila replication

does not require TLR signaling through MyD88 and Trif or Nod1/2

signaling through Rip2.

Mouse macrophages restrict L. pneumophila replication by

inducing a cell death pathway controlled by Naip5 and caspase-

1 [37]. Mouse macrophages become permissive for L. pneumophila

replication if they are homozygous for the permissive Naip5 gene

encoded in the A/J mouse or if caspase-1 is absent [35–37].

Intracellular replication of L. pneumophila was examined in DCs

derived from Naip5-deficient mice to determine if the Naip5

protein produced by A/J-derived DCs retained an activity

sufficient to restrict replication. The Naip52/2 DCs did not

support replication of L. pneumophila (Figure S1). It remained

possible that proteins other than Naip5 might activate a caspase-1-

dependent pathway that prevented L. pneumophila replication in

DCs from A/J mice. To test this possibility, L. pneumophila

replication was measured in DCs derived from caspase-1-deficient

mice homozygous for the A/J Naip5 allele (Casp12/2). L.

pneumophila replication was not detected in Casp12/2 DCs,

whereas, L. pneumophila replication was similar in BMMs from

these same Casp12/2 and caspase-1-sufficient mice (Casp1+/+)

(Figure 1B). Thus, Naip5 and caspase-1 are not required for DC

restriction of L. pneumophila replication.

DC apoptosis occurs rapidly after L. pneumophila
infection

Although caspase-1-mediated cell death was not required for

DCs to restrict the replication of L. pneumophila, it remained possible

that another cell death pathway could be important for this process.

Thus, we examined whether apoptosis occurred upon L. pneumophila

infection of DCs. TdT-mediated dUTP-biotin nick end-labeling

(TUNEL) analysis was performed on DCs infected for 6 hours with

either wild type (WT) L. pneumophila or the isogenic DdotA strain that

has a nonfunctional Dot/Icm secretion system. Examination of DCs

that had internalized WT L. pneumophila revealed that 37% were

TUNEL positive (Figure 2A and 2B, top panel). Only 1% of DCs

containing the DdotA strain were TUNEL positive (Figure 2A and

2B, top panel). The majority of DCs were TUNEL positive

following induction of apoptosis with staurosporine (staur), a broad-

spectrum protein kinase inhibitor (Figure 2B, bottom panel). Similar

results were obtained using Casp12/2 DCs (Figure S2), indicating

that the absence of caspase-1 did not prevent apoptosis in DCs

infected with L. pneumophila.

Macrophages and DCs were infected with WT L. pneumophila to

compare the kinetics of apoptosis. At 1-hour post infection, infected

DCs became TUNEL positive, whereas, TUNEL-positive macro-

phages were not apparent until12-hours post infection (Figure 2C).

In addition to using TUNEL staining, the kinetics of apoptosis was

determined by measuring caspase-3/7 activity in DCs and

macrophages after L. pneumophila infection. At 4-hours post infection

there was a significant Dot/Icm-dependent increase in caspase-3/7

activity in DC extracts, but not in corresponding macrophage

extracts (Figure S3). A significant increase in Caspase-3/7 activity

was not observed for macrophages until 11-hours post infection

(Figure S3). Thus, apoptosis in DCs was induced by L. pneumophila

with faster kinetics than in similarly infected macrophages.

Caspase-3-mediated effector responses are induced by L.
pneumophila after DC infection

Caspase-3 mediates many of the downstream effector responses

in the apoptotic cell death pathway, including fragmentation of

DNA in the nucleus [47]. Caspase-3-deficient mice (Casp32/2) were

used to determine whether DNA fragmentation induced after L.

pneumophila infection of DCs was due to induction of the apoptotic

cell death pathway. TUNEL analysis performed on DCs derived

from Casp32/2 and Casp3+/+ mice 6 hours after infection with L.

pneumophila revealed that 57% of the infected Casp3+/+ DCs were

TUNEL positive, whereas only 9.5% of Casp32/2 DCs infected

with WT L. pneumophila were TUNEL positive (Figure 3A, left panel

and 3B). Both Casp32/2 and Casp3+/+ DCs infected with the DdotA

strain showed minimal TUNEL staining (Figure 3A, right panel and

3B). Thus, L. pneumophila infection of DCs rapidly activates

downstream components of the apoptotic cell death pathway.

Caspase-3 is involved in DC restriction of L. pneumophila
replication

To determine whether activation of the apoptotic cell death

pathway was important for DC restriction of L. pneumophila

replication, DCs from A/J-derived Casp32/2 and Casp3+/+ mice

infected with WT L. pneumophila were examined by fluorescence

microscopy. The efficiency of L. pneumophila internalization

determined 2 hours after infection was equivalent for Casp32/2

and Casp3+/+ DCs (Figure 4A, top panel). When DCs were

examined 10 hours after infection, there was a significant increase

in the percentage of infected Casp32/2 DCs that contained

vacuoles supporting L. pneumophila replication (R.V.) (19%)

compared to Casp3+/+ DCs (6%) (Figure 4A, bottom panel).

Representative images in Figure 4A show that the number of L.

pneumophila in vacuoles that supported replication was higher in

Casp32/2 DCs, and that most of the infected Casp3+/+ DCs had

condensed or fragmented nuclei. These data were corroborated by

determining colony-forming units (CFUs) over time. There was

roughly a 10-fold increase in L. pneumophila CFUs 72 hours after

Casp32/2 DCs were infected with WT L. pneumophila compared to

a slight decrease in CFUs recovered from Casp3+/+ DCs at

72 hours (Figure 4C). DCs eliminated the DdotA strain with equal

efficiency. Macrophages derived from these mice were infected in

parallel. The infected Casp3+/+ macrophages had normal nuclei

(Figure 4B) and supported L. pneumophila replication to similar

levels as the Casp32/2 macrophages (Figure 4B and 4D). These

data indicate that caspase-3 plays a role in restricting L. pneumophila

replication in DCs, but not macrophages.

Cell death mediated by Bax and Bak restricts L.
pneumophila replication in DCs

Bax and Bak play a central role in regulating apoptosis. When

activated by members of the BH3-only protein family, Bax and Bak

create a channel in the membrane of mitochondria that releases

cytochrome c. This results in activation of the apoptosome and the

subsequent activation of effector caspases, such as caspase-3 [48–51].

DCs derived from C57BL/6 (B6) and from mice deficient in Bak

(Bak2/2) or both Bax and Bak (Bax2/2Bak2/2) were analyzed to

determine if Bax and Bak have a role in cell death induced by L.

pneumophila. TUNEL analysis demonstrated that WT L. pneumophila

induced equivalent levels of cell death in DCs derived from B6 and

Bax2/2Bak2/2 mice (Figure 5A), suggesting that the Naip5-

dependent pathway of cell death remained functional in DCs. A L.

pneumophila strain containing an in-frame deletion of the flaA gene

encoding flagellin was used to bypass Naip5-mediated cell death [38–

40]. A dramatic reduction in cell death was observed for Bax2/2

Bak2/2 DCs infected with L. pneumophila DflaA (Figure 5A).

Measurements of caspase-3/7 activity following infection of DCs

confirmed that Bax and Bak were required for induction of apoptosis

by L. pneumophila DflaA (Table 1). Thus, L. pneumophila independently

DC Restriction of L. pneumophila Replication
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induces DC cell death by a Bax/Bak-dependent pathway and a

Naip5-dependent pathway.

Replication of WT L. pneumophila was not detected in either

Bak2/2 or Bax2/2Bak2/2 DCs (Figure 5B), which is consistent

with the Naip5-mediated pathway being operational in these cells.

L. pneumophila DflaA replicated to similar levels as WT L.

pneumophila in DCs derived from Casp32/2 mice homozygous for

the A/J Naip5 allele (Figure S4), indicating that eliminating

flagellin does not significantly enhance the capacity of L.

pneumophila to replicate in DCs with a genetic defect in the Naip5

signaling pathway. DCs from Bax2/2Bak2/2 mice supported

replication of L. pneumophila DflaA, whereas, replication of L.

pneumophila DflaA was not detected in DCs from control B6 mice

(Figure 5B). Limited replication of the DflaA strain was observed in

Bak2/2 DCs; however, replication was not as robust as that

observed in the Bax2/2Bak2/2 DCs (Figure 5B). Single cell

analysis revealed that the efficiency of infection was equivalent in

B6, Bak2/2 and Bax2/2Bak2/2 DCs (Figure 5C, top panel). Large

vacuoles harboring replicating bacteria were abundant in Bax2/2

Bak2/2 DCs infected for 10-hours with L. pneumophila DflaA

(Figure 5C, bottom panel), whereas, vacuoles containing replicat-

ing L. pneumophila DflaA were rare in the B6 and Bak2/2 DCs.

The development of vacuoles containing replicating L. pneumo-

phila DflaA was evaluated in DCs derived from B6, Casp32/2 and

Figure 2. L. pneumophila infection of DCs induces nuclear DNA fragmentation. (A) Fluorescence micrographs show TUNEL staining (green)
of DCs from A/J mice infected for 6 h with either L. pneumophila WT (top left panel) or DdotA (top right panel). Total DNA was stained with DAPI
(blue) and bacteria are red. Non-infected DCs (bottom left panel) or DCs treated with staurosporine for 5 h (bottom right panel) were used as
negative and positive controls, respectively. (B) Quantification of the percentage of infected cells that were TUNEL positive (top graph); Quantification
of the percentage of total cells that were TUNEL positive in the non-infected DCs and staurosporine-treated DCs (bottom graph). (C) Displayed are the
percentage of L. pneumophila WT infected DCs (closed bars) or BMMs (open bars) that were TUNEL positive at 1, 2, 4, 6 and 12 h after infection. Data
are represented by the mean6SD of 500 cells counted per each coverslip in triplicate. ** p,0.01. Bar = 10 mm.
doi:10.1371/journal.ppat.1000478.g002
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Bax2/2Bak2/2 mice. Vacuoles containing replicating L. pneumo-

phila DflaA were detectable in both Casp32/2, and Bax2/2Bak2/2

DCs at 8-hours post infection (Figure 6A). Large vacuoles

containing .10 L. pneumophila DflaA were frequent in the Bax2/2

Bak2/2 DCs at 12-hours post infection, but were found less

frequently in the Casp32/2 DCs (Figure 6A). Although Casp32/2

DCs exhibited enhanced resistance to cell death induced by L.

pneumophila DflaA, they were not as resistant to cell death as the

Bax2/2Bak2/2 DCs (Figure 6B), which likely explains why the

Bax2/2Bak2/2 DCs were slightly more permissive for replication

of L. pneumophila DflaA at 12-hours post infection compared to the

Casp32/2 DCs. These data indicate L. pneumophila activation of the

intrinsic cell death pathway in DCs is sufficient to limit

intracellular replication.

Bcl-2 overproduction antagonizes restriction of L.
pneumophila replication by DCs

Bcl-2 is a pro-survival protein that regulates apoptosis [52,53].

Overexpression of pro-survival proteins such as those from the Bcl-

2 family can block mitochondria membrane permeabilization and

prevent apoptosis [54–56]. DCs from transgenic mice expressing

human BCL2 under the control of the CD68 promoter (Tg(bcl2)

535rm) (Jamieson & Medhzitov, unpublished data) were used to

determine whether overproduction of Bcl-2 could interfere with

the ability of DCs to restrict L. pneumophila replication. Immunoblot

analysis confirmed that both macrophages and DCs derived from

Tg(bcl2) 535rm mice produced human Bcl-2, and that overpro-

duction of Bcl-2 did not affect the levels of Bax and Bak in these

cells (Figure 7A). Replication of WT L. pneumophila was not

observed in Tg(bcl2) 535rm DCs, presumably because these cells

produce a functional Naip5 protein (Figure 7B). Replication of the

DflaA strain was observed in the Tg(bcl2) 535rm DCs, but not in

control DCs from B6 mice (Figure 7B). Single cell analysis

confirmed replication of the DflaA strain in Tg(bcl2) 535rm DCs

(Figure 7C). At 10-hours post infection, 21% of the DflaA-infected

Tg(bcl2) 535rm DCs had large vacuoles containing replicating L.

pneumophila, and most of the infected Tg(bcl2) 535rm DCs were

devoid of apoptotic features, such as condensed and fragmented

nuclei, that were observed in infected control DCs derived from

B6 mice (Figure 7C). TUNEL staining confirmed that the Tg(bcl2)

535rm DCs were more resistant to apoptosis after infection by L.

pneumophila DflaA compared to control B6 DCs (Figure 7D). Thus,

Bcl-2 overproduction limited DC apoptosis in response to L.

pneumophila and resulted in enhanced intracellular replication.

DCs have a unique ability to efficiently restrict L.
pneumophila replication by apoptosis

Macrophages derived from Bax2/2Bak2/2 and Tg(bcl2) 535rm

mice were used to determine whether rapid induction of

programmed cell death as a mechanism to restrict L. pneumophila

replication was an exclusive property displayed by DCs.

Replication of WT L. pneumophila was restricted by the Bax2/

2Bak2/2 macrophages and Tg(bcl2) 535rm macrophages as

efficiently as control B6 macrophages (Figure 8A and 8B). When

the DflaA strain was used to bypass Naip5-mediated growth

restriction, bacterial replication was not enhanced in the Bax2/2

Bak2/2 macrophages or Tg(bcl2) 535rm macrophages compared

to control B6 macrophages (Figure 8A and 8B). Single cell analysis

confirmed these growth curve results, and showed that Bax and

Bak function was not required for Naip5-mediated growth

restriction of WT L. pneumophila and had no measurable effect

on limiting the growth of the DflaA strain in macrophages

(Figure 8C).

Previous studies have shown that macrophages infected with a

L. pneumophila mutant deficient in the effector protein SdhA

undergo rapid cell death by an unknown pathway [57]. This

Figure 3. Caspase-3 is required for nuclear DNA fragmentation following L. pneumophila infection. (A) Fluorescence micrographs show
TUNEL staining (green) of Casp3+/+ and Casp32/2 DCs infected for 6 h with either L. pneumophila WT (left panel) or DdotA (right panel). Total DNA
was stained with DAPI (blue) and bacteria are red. (B) The graph shows percentage of infected Casp3+/+ (closed bars) and Casp32/2 DCs (open bars)
that were TUNEL positive. Cells were homozygous for the permissive Lgn1 allele from the A/J mouse as indicated. Data are represented by the
mean6SD of 500 cells counted per each coverslip in triplicate. ** p,0.01. Bar = 10 mm.
doi:10.1371/journal.ppat.1000478.g003
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observation suggests that one possible reason DCs die quickly after

L. pneumophila infection is because a proposed anti-apoptotic

activity mediated by the translocated SdhA protein might not be

effective at preventing cell death in DCs. This would explain why

the phenotype of DCs infected by L. pneumophila capable of

translocating the SdhA protein appears to be similar to the

phenotype of macrophages infected by an sdhA mutant. If this

hypothesis is correct, then perturbing cell death pathways

activated by Bax and Bak should restore replication of an sdhA

mutant in macrophages, and the elimination of SdhA should not

affect replication of L. pneumophila in DCs deficient in Bax and Bak

signaling. To test this hypothesis we inactivated sdhA in the L.

pneumophila DflaA strain to generate L. pneumophila DflaA, sdhA::kan.

Elimination of Bax and Bak did not restore replication of L.

pneumophila DflaA, sdhA::kan in macrophages (Figure 9A) and the L.

pneumophila DflaA, sdhA::kan strain was unable to replicate in Bax2/

2Bak2/2 DCs (Figure 9B). After infection by L. pneumophila DflaA,

sdhA::kan, cell death levels measured by TUNEL staining were

similar in Tg(bcl2) 535rm macrophages and control B6 macro-

phages (Figure 9C). The L. pneumophila DflaA, sdhA::kan strain also

induced cell death in DCs derived from Tg(bcl2) 535rm mice

(Figure 9D). Thus, the L. pneumophila sdhA mutant phenotype was

similar in both macrophages and DCs, which indicates that SdhA

is necessary to prevent L. pneumophila from killing both macro-

Figure 4. Caspase-3 is required for the restriction of L. pneumophila replication in DCs but not macrophages. (A) Casp3+/+ and Casp32/2

DCs were infected with L. pneumophila WT (green) and fixed at either 2 or 10 h after infection. Total DNA was stained with DAPI (blue). On the right
are graphical representations of the percentage of infected Casp3+/+ and Casp32/2 DCs at 2 h post infection and the percentage of infected DCs with
vacuoles containing replicating L. pneumophila at 10 h post infection. (B) Fluorescence micrographs of Casp3+/+ and Casp32/2 BMMs (blue) that were
fixed at either 2 or 10 h after infection with L. pneumophila WT (green); On the right are graphical representations of the percentage of infected BMMs
at 2 h post infection and the percentage of infected BMMs with vacuoles containing replicating L. pneumophila at 10 h post infection. Data represent
the mean6SD of 500 cells counted per coverslip in triplicate. R.V. = vacuoles containing replicating bacteria. ** p,0.01. Bar = 10 mm. (C) DCs or (D)
BMMs from Casp3+/+ (triangles) or Casp32/2 mice (squares) were infected with either L. pneumophila WT (closed symbols) or DdotA (open symbols)
and intracellular bacterial replication was measured over a period of 72 h. The fold increase in replication was determined by dividing L. pneumophila
CFUs recovered at the indicated time point by the L. pneumophila CFUs recovered at 1 h post infection. Cells were homozygous for the permissive
Lgn1 allele from the A/J mouse as indicated. Data represent the mean6SD from three independent wells. * p,0.05.
doi:10.1371/journal.ppat.1000478.g004
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phages and DCs by a pathway that does not require Bax and Bak

function.

Discussion

Two cell death pathways were found to restrict L. pneumophila

replication in DCs. The first pathway was described previously in

macrophages and involved activation of Naip5 by a process

requiring L. pneumophila flagellin [37–40]. It had been shown

clearly that stimulation of Naip5 by L. pneumophila flagellin results

in the activation of caspase-1 [37–40], which is a critical mediator

of pyroptosis. Recent data indicate that Naip5 activation of

caspase-1 also results in the activation of caspase-7 [58], and that

Naip5-dependent activation of caspase-7 is important for restric-

tion of L. pneumophila replication in mouse macrophages. Many

details of the Naip5 signaling pathway remain to be determined,

including the full repertoire of proteins required for Naip5-

mediated cell death and all the cell types capable of restricting the

replication of L. pneumophila by this pathway. Our data help to

answer some of these questions by showing that components of the

Naip5 pathway required for flagellin sensing and downstream

effector responses are functioning in DCs. Additionally, the

Figure 5. Bax and Bak are required for L. pneumophila growth restriction in DCs. (A) The graph shows percentage of B6 (open bars) and
Bax2/2Bak2/2 DCs (closed bars) infected with L. pneumophila WT, DdotA or DflaA that were TUNEL positive at 6 h post infection. Data represent the
mean6SD of 300 cells counted per coverslip in triplicate. ** p,0.01. (B) B6, Bak2/2 and Bax2/2Bak2/2 were infected with either L. pneumophila WT
(white bars) or DflaA (black bars) for 36 h. Intracellular replication was determined by dividing L. pneumophila CFUs recovered at 36 h by the CFUs
recovered at 1 h post infection. Data for each time point are the average of values obtained from three independent wells. ** p,0.01. (C)
Fluorescence micrographs of B6, Bak2/2 and Bax2/2Bak2/2 DCs that were infected with L. pneumophila DflaA and fixed at either 2 h or 10 h post
infection. DCs were stained with an antibody specific for MHC II (red), DAPI (blue) and an anti-L. pneumophila antibody (green). On the right are
graphical representations of the percentage of B6, Bak2/2 and Bax2/2Bak2/2 DCs infected at 2 h and the percentage of infected B6; Bak2/2 and
Bax2/2Bak2/2 DCs with vacuoles containing replicating bacteria at 10 h post infection. Data represent the mean6SD of 500 cells counted per
coverslip in triplicate. All cells had a dominant Lgn1 allele producing a functional Naip5 protein. R.V. = vacuoles containing replicating bacteria.
N.D. = not detectable. ** p,0.01. Bar = 10 mm.
doi:10.1371/journal.ppat.1000478.g005
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observation that overproduction of Bcl-2 or elimination of Bax and

Bak did not affect restriction of WT L. pneumophila replication in

macrophages and DCs with a functional Naip5 protein provides

evidence that this pathway is not functionally dependent on the

mitochondrial pathway of apoptosis. Thus, both macrophages and

DCs have the capacity to undergo Naip5-dependent pyroptosis. In

addition to restricting pathogen replication, activation of caspase-1

during this response generates bioactive IL-1b and IL-18 to

stimulate additional antimicrobial responses and promote the

recruitment of other immune cells [59–62]. This suggests that

pyroptosis is a general innate immune response mediated by both

macrophages and DCs to initiate early pro-inflammatory events at

the site of microbial infection.

A second cell death pathway, which involved Bax and Bak

regulation of caspase-3 activation, was found to efficiently restrict

L. pneumophila replication in DCs. When the pyroptosis pathway

was inactivated, either by using DCs with a defective Naip5 allele

or by using L. pneumophila that had the gene encoding flagellin

deleted, the cell death pathway regulated by Bax and Bak was as

efficient as the pyroptosis pathway at restricting replication of L.

pneumophila. A similar number of replicating L. pneumophila were

contained in vacuoles in DCs deficient in Bax and Bak at 10-hours

post infection (Figure 5C) when compared to macrophages

Figure 6. Enhanced replication of L. pneumophila in DCs correlates with reduced apoptosis. (A) The graph shows the percentage of
infected B6 (black bars), Casp32/2 (gray bars) or Bax2/2Bak2/2 DCs (white bars) that form vacuoles containing 4–5, 6–9 or .10 replicating L.
pneumophila DflaA at 4, 8 and 12 h post infection. The index of bacterial load was calculated by dividing the percentage of vacuoles containing the
indicated number of bacteria at the time points given by the percentage of infected DCs at 2 h p.i. and multiplying this number by 100. (B) The graph
shows the percentage of total B6 (black bars), Casp32/2 (gray bars) and Bax2/2Bak2/2 DCs (white bars) that had condensed nuclei at 1, 4, 8 and
12 hours after L. pneumophila DflaA infection. All cells had a dominant Lgn1 allele producing a functional Naip5 protein. Data represent the
mean6SD of 300 cells counted per coverslip in triplicate.
doi:10.1371/journal.ppat.1000478.g006

Table 1. Caspase-3/7 activity 6 h post-infection in relative
fluorescence units.

L. pneumophila B6 DCs6SD Bak2/2 DCs6SD
Bax2/2Bak2/2

DCs6SD

non-infected 1913361950 134336680 100006624

DflaA 3246761358 123336404 85676321

DdotA 1763361357 106666404 843361001

doi:10.1371/journal.ppat.1000478.t001
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(Figure 8C). Additionally, the number of L. pneumophila recovered

from DCs deficient in caspase-3 was similar after 24-hours of

infection when compared to macrophages (Figure 4). Because the

addition of bacteria stimulates the maturation of DCs in culture,

and mature DCs become non-phagocytic, L. pneumophila replica-

tion in cultured DCs was not amplified by reinfection. This

explains why replication subsided after L. pneumophila exited

infected DCs at 24-hours post infection, but continued over a

72-hour period in macrophages (Figure 4). Thus, rapid activation

of the intrinsic cell death pathway appears to be the primary

mechanism by which DCs from permissive strains of mice restrict

the intracellular replication of L. pneumophila.

L. pneumophila was capable of replication in DCs deficient in

caspase-3; however, DCs deficient in both Bax and Bak were more

permissive. This suggests that deletion of Bax and Bak more

acutely blocks the apoptotic pathway, perhaps because other

effector caspases can compensate for caspase-3 deficiency.

Consistent with this explanation, Bax2/2Bak2/2 mice have severe

developmental defects and most die perinatally, whereas, Casp32/2

mice are viable and have fewer developmental defects [63–65].

Accordingly, L. pneumophila infection induced the mitochondrial

pathway of apoptosis in Casp32/2 DCs, but the absence of caspase-

3 was sufficient to delay cell death for a long enough period of time

that vacuoles containing replicating L. pneumophila were detected. By

contrast, apoptosis was not induced upon L. pneumophila infection of

Bax2/2Bak2/2 DCs and in the absence of cell death L. pneumophila

was able to replicate for a longer period of time as was indicated by

an increase in the number of large vacuoles containing over 10

bacteria. These data also suggest that cell death, as opposed to

another activity mediated specifically by caspase-3, was sufficient to

restrict L. pneumophila replication.

The finding that overproduction of Bcl-2 resulted in enhanced

bacterial replication in DCs supports the hypothesis that the

mitochondrial pathway of apoptosis is important for restriction of

Figure 7. L. pneumophila replication occurs in DCs overexpressing Bcl-2. (A) Immunoblot analysis of total human Bcl-2, Bax and Bak
expression in Tg (bcl2) 535rm BMMs and DCs or the respective B6 littermates. Blots were reprobed for actin as a loading control. (B) B6 and Tg (bcl2)
535rm DCs were infected with either L. pneumophila WT (white bars) or DflaA (black bars) for 36 h. Intracellular replication was determined by
dividing the CFUs recovered at 36 h by the CFUs recovered at 1 h after infection. Data for each time point are the average of values obtained from
three independent wells. * p,0.05. N.D. = not detectable. (C) Fluorescence micrographs of B6 or Tg (bcl2) 535rm DCs that were infected with L.
pneumophila DflaA and fixed at either 2 h or 10 h post infection. DCs were stained with an antibody specific for MHC II (red), DAPI (blue) and an anti-
L. pneumophila antibody (green). On the right are graphical representations of the percentage of infected B6 or Tg (bcl2) 535rm DCs at 2 h post
infection and the percentage of infected DCs with vacuoles containing replicating L. pneumophila DflaA at 10 h post infection. Data represent the
mean6SD representative of 500 cells counted per coverslip in triplicate. R.V. = vacuoles containing replicating bacteria. ** p,0.01. Bar = 10 mm. (D)
The graph shows the percentage of B6 (open bars) and Tg (bcl2) 535rm DCs (closed bars) infected with L. pneumophila WT, DdotA or DflaA that were
TUNEL positive at 6 h post infection. All cells had a dominant Lgn1 allele producing a functional Naip5 protein. Data are represented by the
mean6SD of 300 cells per coverslip in triplicate. ** p,0.01.
doi:10.1371/journal.ppat.1000478.g007
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L. pneumophila replication in DCs. Bcl-2 functions as a negative

regulator of Bax and Bak function, preventing their activation and

insertion into the mitochondrial membrane [66,67]. Thus, the

observation that Bcl-2 overproduction phenocopies a deficiency in

Bax and Bak indicates that L. pneumophila infection of DCs triggers

a cell-autonomous response that activates the mitochondrial

pathway of apoptosis, leading to restriction of intracellular

bacterial proliferation.

Previous studies in macrophages and macrophage-like cells have

demonstrated that L. pneumophila is capable of activating the

mitochondrial pathway of apoptosis [68–71]; however, our data

indicate that the timing of this response is different in DCs

compared to macrophages. In macrophages the response is slower,

and morphological signs of apoptosis were typically not observed

in cells until the late stages of infection after robust bacterial

replication had occurred. Host cell apoptosis induced by L.

pneumophila in both macrophages and DCs required a functional

Dot/Icm secretion system, but not bacterial replication. This

suggests that apoptosis is activated in response to either direct

activities of bacterial effector proteins translocated by the Dot/Icm

system or by host cell disturbances that are caused by the

cumulative actions of multiple effector proteins.

The balance of pro-apoptotic to anti-apoptotic factors is

important in the regulation of the mitochondrial pathway of

apoptosis. Microbial infection affects this balance both by

triggering the activation of pro-apoptotic factors and by inducing

expression of anti-apoptotic proteins [49,72–74]. For many non-

pathogenic bacteria, these two events are balanced and apoptosis

is prevented. The added stress on cells infected with pathogenic

microbes, however, will typically result in apoptosis unless the

pathogen has the ability to alter the function of proteins involved

in regulating cell death [75,76]. Thus, differences in the expression

of Bcl-2 family members or in the functioning of effector proteins

could account for the faster kinetics of apoptosis in DCs compared

to macrophages following L. pneumophila infection.

Two effector proteins translocated into host cells by the L.

pneumophila Dot/Icm system have been implicated in preventing

cell death. The effector protein SidF appears to interfere with the

function of pro-apoptotic Bcl-2 family members BNIP3 and Bcl-

Rambo [77]. Although macrophages infected with a sidF mutant

show increased apoptosis 14-hours after infection, this increase in

apoptosis does not impact bacterial replication greatly [77]. By

contrast, the effector SdhA is required to prevent macrophage cell

death during infection by a mechanism that is not understood, and

the cell death induced by an sdhA mutant greatly reduces bacterial

replication in macrophages [57]. We found that the sdhA mutant

induced cell death in both macrophages and DCs, and that this

cell death pathway was not inhibited by Bcl-2 over-expression or

elimination of Bax and Bak. Additionally, intracellular growth of

the sdhA mutant was not restored in macrophages deficient in

caspase-3 (data not shown). Thus, both macrophages and DCs are

equally susceptible to cell death induced by the sdhA mutant, and

the cell death pathway triggered by the sdhA mutant does not

require several of the central components of the apoptosis

pathway. These data are consistent with there being an intrinsic

difference between macrophages and DCs with respect to their

ability to activate the mitochondrial cell death pathway in response

to L. pneumophila.

Figure 8. Interfering with Bax and Bak function does not enhance L. pneumophila replication in macrophages. (A) B6, Bak2/2 and Bax2/2

Bak2/2 BMMs or (B) B6 and Tg (bcl2) 535rm BMMs were infected with either L. pneumophila WT (white bars) or DflaA (black bars) for 72 hours.
Intracellular replication is determined by dividing the L. pneumophila CFUs recovered at 72 h by the CFUs recovered 1 h after infection. Data are the
average of values obtained from three independent wells. N.D. = not detectable. (C) Fluorescence micrographs of B6 and Tg (bcl2) 535rm BMMs that
were infected with L. pneumophila DflaA and fixed either at 2 h or 10 h post infection. BMMs were stained with DAPI (blue) and an anti-L. pneumophila
antibody (green). On the right are graphical representations of the percentage of B6 or Tg (bcl2) 535rm BMMs infected at 2 h and the percentage of
infected BMMs with vacuoles containing replicating L. pneumophila at 10 h post infection. Data represent the mean6SD of 500 cells counted per
coverslip in triplicate. All cells had a dominant Lgn1 allele producing a functional Naip5 protein. R.V. = vacuoles containing replicating bacteria.
Bar = 10 mm.
doi:10.1371/journal.ppat.1000478.g008
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Figure 9. L. pneumophila sdhA mutants induce rapid cell death in macrophages and DCs by a pathway that does not require Bax and
Bak. (A) Intracellular replication of L. pneumophila DflaA, DdotA and DflaA, sdhA::kan was measured in B6 (black bars) and Bax2/2Bak2/2 BMMs (white
bars) at 72 h after infection. The fold increase in intracellular replication was determined by dividing L. pneumophila CFUs recovered at 72 h by the
CFUs recovered at 1 h post infection. (B) Intracellular replication of L. pneumophila DflaA, DdotA and DflaA, sdhA::kan in B6 DCs (black bars) and Bax2/2
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In addition to L. pneumophila, there are many other reports

demonstrating that DCs are able to restrict the replication of

pathogens capable of growing within macrophages [42–45]. DCs

are very proficient at migrating from peripheral tissues to the host

lymphatic system following exposure to maturation stimuli, such as

encounters with microbes. Because of this property, it has been

suggested that DCs can function as a ‘‘Trojan Horse’’ capable of

systemic dissemination of pathogens internalized at peripheral sites

of infection [42,44,78]. Here we show that rapid cell death is one

mechanism DCs use to avoid being subverted by an intracellular

pathogen. In addition to preventing pathogen replication and

dissemination, apoptotic DCs harboring intracellular pathogens

would become substrates for phagocytosis by neighboring DCs

and macrophages, and most mechanisms used by intracellular

pathogens to subvert host cellular function would be ineffective as

long as the pathogen were residing in an apoptotic cell. Thus,

apoptotic bodies containing pathogens would be degraded in

lysosomes, resulting in the release of pathogen-derived molecules

that could stimulate innate immune receptors and trigger adaptive

responses by being presented on the cell surface in association with

host MHC proteins. Based on these data, we hypothesize that

rapid pathogen-induced apoptosis by DCs is an important innate

immune response to intracellular pathogens.

Materials and Methods

Bacterial cultures
L. pneumophila serogroup 1 strain, Lp01 [18], an isogenic dotA

mutant strain (DdotA), and a flagellin-deficient mutant strain (DflaA)

[79] were cultured on charcoal yeast extract agar (CYE) [80] for 2

days prior to use in experiments. The DflaA, sdhA::kan strain was

cultured on CYE with 10 mg/mL kanamycin. The plasmid

pAM239 was used to produce DSred or GFP in the L. pneumophila

strains indicated [81]. For experiments utilizing bacteria express-

ing DSred or GFP, L. pneumophila was grown on plates

supplemented with chloramphenicol (6.25 mg/ml), and DSred or

GFP expression was induced after infection by adding IPTG

(0.2 mM) to the tissue culture medium.

Mice
A/J and C57BL/6 (B6) mice were purchased from Jackson

Laboratories. Caspase-12/2 (Casp12/2), Caspase-32/2 (Casp32/2),

Myd882/2, Rip22/2 (Ripk22/2;Rick2/2), Bak2/2, Bax2/2Bak2/2

and Naip52/2 mice have been described [59,63,65,82–84].

Myd882/2Trif2/2 mice homozygous for the B6 Lgn1 allele were

provided by R. Medzhitov. Myd882/2 and Rip22/2 mice were

crossed with A/J mice to generate progeny homozygous for the A/

J Lgn1 allele as described previously [31]. Casp12/2 and Casp32/2

mice homozygous for the permissive A/J Lgn1 allele were

backcrossed to the A/J background for 4 and 5 generations

respectively. Transgenic C57BL/6 mice over expressing human

BCL2 under the control of the CD68 promoter (Tg(bcl2) 535rm)

(Jamieson & Medhzitov, unpublished data), were kindly provided

by R. Medzhitov. All animals were maintained in accordance with

the guidelines of the Yale Institutional Animal Use and Care

Committee.

Macrophage and dendritic cell cultures
Bone-marrow derived macrophages (BMMs) were prepared as

described previously with some modifications [85]. Briefly, bone

marrow was collected from the femurs and tibiae of mice. Cells

were plated on non-tissue culture-treated dishes and incubated at

37uC in RPMI-1640 containing 20% heat-inactivated fetal bovine

serum (FBS), 30% macrophage colony-stimulating factor (M-

CSF)-conditioned medium, and 1% penicillin-streptomycin. On

day 7, cells were harvested and resuspended in RPMI 1640

containing 10% FBS and 15% M-CSF-conditioned medium. Cells

were then plated in 24-well tissue culture-treated plates and

incubated at 37uC. Bone marrow derived-DCs (BMDCs) were

prepared as described in Lutz et al. [86]. Modifications were as

follows. Cells were plated on non-tissue culture-treated dishes and

incubated at 37uC in RPMI-1640 supplemented with 10% heat-

inactivated FBS, 50 mM 2-mercaptoethanol, 1% penincillin-

streptomycin and 1% GM-CSF (DC medium). Cells were

harvested and used on day 10.

Intracellular replication assays
Intracellular replication of L. pneumophila in BMMs was

measured as described previously [79] and modified slightly for

DCs. L. pneumophila was added to DCs at a multiplicity of infection

(MOI) of 20. The plates were centrifuged at 150 g for 5 minutes

(min) and then incubated at 37uC for 30 min. Cells were removed

from the wells and DCs were positively selected on magnetic

columns using anti-CD11c-coated magnetic beads (Miltenyi

Biotech). To remove extracellular bacteria, DCs were washed

36 with PBS containing 2 mM EDTA and 0.5% BSA while

bound to the column. DCs were eluted and 26105 DCs were

added to individual wells in 48-well plates. Adherent and non-

adherent DCs were taken from individual wells and lysed with

sterile H2O at the indicated times after infection, and these

fractions were pooled with the culture supernatants. Dilutions

from the pooled fractions were plated on CYE agar to determine

bacterial CFUs. Data are the mean CFUs recovered from three

independent wells6SD. Bacterial replication was calculated by

determining the fold increase in CFUs.

Single cell immunofluorescence assays to measure L.
pneumophila uptake and formation of vacuoles
containing replicating bacteria (RV)

L. pneumophila uptake and intracellular growth in both Casp32/2

and Casp3+/+ DCs was performed as previously described [41].

Intracellular replication in B6, Bak2/2, and Bax2/2Bak2/2 DCs

was performed following the same protocol described previously

with some modifications to the immunofluorescence staining [41].

Briefly, after permeabilization for 15 min at room temperature

(R.T.) in RPMI containing 0.05% saponin, coverslips were

incubated for 1 h at R.T. in permeabilization solution containing

anti-MHC II I-Ab+d+q, I-Ed+k antibody (TIB 120; American Type

Culture Collection (ATCC), Rockville, MD). Coverslips were

washed 36 in RPMI containing 0.05% saponin. Coverslips were

incubated 45 min at R.T. with Alexa Fluor 568- conjugated goat

anti-rat (Invitrogen-Molecular Probes) in permeabilization solu-

tion and then washed 36with PBS. Coverslips were mounted on

Bak2/2 DCs (white bars) at 36 h after infection. The fold increase in intracellular replication was determined by dividing L. pneumophila CFUs recovered
at 36 h by the L. pneumophila CFUs recovered at 1 h post infection. Data are the mean6SD from three independent wells. N.D. = not detectable. (C) The
graph shows the percentage of B6 and Tg (bcl2) 535rm BMMs or (D) DCs infected with L. pneumophila DflaA, DdotA or DflaA, sdhA::kan that were TUNEL
positive at 1 h (black bars), 4 h (gray bars) and 8 h (white bars) after infection. All cells had a dominant Lgn1 allele producing a functional Naip5 protein.
Data are represented by the mean6SD of 300 cells counted per each coverslip in triplicate.
doi:10.1371/journal.ppat.1000478.g009

DC Restriction of L. pneumophila Replication

PLoS Pathogens | www.plospathogens.org 12 June 2009 | Volume 5 | Issue 6 | e1000478



slides and examined by fluorescence microscopy. TIB 120 staining

of MHC II was used to identify DCs. Assays to measure uptake

and formation of vacuoles containing replicating L. pneumophila in

BMMs were conducted similarly [14]. Data are represented by the

mean number of cells observed in three independent coverslips.

TUNEL staining
DCs previously selected by CD11c magnetic beads were

infected with L. pneumophila at an MOI of 25 or treated for 5 h

with staurosporine (1 mg/ml) and assayed for nuclear DNA

fragmentation by TUNEL with the in situ cell death detection kit

(Roche). Samples were then analyzed by fluorescence microscopy

and all data points represent the average number of TUNEL

positive cells6SD obtained from three independent coverslips.

Immunoblotting
BMMs and DCs were directly lysed in SDS-PAGE sample buffer.

Lysates were separated by SDS-PAGE, and proteins were

transferred (Wet Transfer Cell; Bio-Rad) at 100 V for 1 h to

Immobilon P membranes (Millipore) in transfer buffer (50 mM

Tris, 40 mM glycine, and 10% methanol). Membranes were

blocked for 1 h at 25uC in Tris-buffered saline (TBS), 5% nonfat

dry milk, and 0.1% Tween-20. Membranes were incubated with

primary antibody overnight at 5uC and incubated with horseradish

peroxidase-conjugated secondary antibody 1 h at R.T. Rabbit anti-

human Bcl-2, rabbit anti-Bax, and rabbit anti-Bak (Cell Signaling

Technology) were used. Western Lightning Chemiluminescence

Reagent Plus (Perkin Elmer) was used for antibody detection.

Caspase-3/7 activity
Macrophages and DCs were plated in 96 well plates at a

concentration of 56104 cells/well. Cells were infected with L.

pneumophila at an MOI of 50, incubated at 37uC for 1, 2, 4, 6 and

11 hours and then frozen at 220uC to lyse the cells. Caspase-3/7

activity was measured using the Apo-One Homogeneous caspase-

3/7 kit (Promega). Relative fluorescence units (RFU) measured at

each time point is proportional to the amount of caspase-3/7

activity. All data points represent the average values6SD obtained

from three wells assayed independently.

Gene ID numbers
MyD88: 17874; Rip2: 192656; Caspase-1: 12362; Caspase-3:

12367; Bax: 12028; Bak: 12018; Human Bcl-2: 596; Naip5: 17951.

Protein ID numbers
MyD88: P22366; Rip2: P58801; Caspase-1: P29452; Caspase-3:

P70677; Bax: Q07813; Bak: O08734; human Bcl-2: P10415;

Naip5: Q8CGT2.

Supporting Information

Figure S1 Naip5-deficient DCs restrict L. pneumophila replication.

Quantification of the percentage of L. pneumophila WT or DdotA

infected B6 (black bars) and Naip52/2 DCs (white bars) with

vacuoles containing replicating bacteria at 10 h post-infection.

Data represent the mean6SD of 500 cells counted per coverslip in

triplicate. R.V. = vacuoles containing replicating bacteria.

Found at: doi:10.1371/journal.ppat.1000478.s001 (0.46 MB EPS)

Figure S2 Nuclear fragmentation in DCs induced by L.

pneumophila is caspase-1-independent. Quantification of the per-

centage of B6 (closed bars) and Casp12/2 DCs (open bars) infected

with either L. pneumophila WT or DdotA that are TUNEL positive

6 h after infection. Data are represented by the mean6SD of 300

cells counted per each coverslip in triplicate.

Found at: doi:10.1371/journal.ppat.1000478.s002 (0.46 MB EPS)

Figure S3 L. pneumophila-induced activation of caspase-3/7

occurs faster in DCs compared to macropahges. (A) DCs and (B)

BMMs were infected with either L. pneumophila WT or DdotA for

1 h, 2 h, 4 h, 6 h and 11 h as indicated. Caspase-3/7 activity is

indicated as relative fluorescence units (RFU) measured at each

time point. Data are expressed as mean6SD obtained from 3

independent wells. * p,0.05. **p,0.01.

Found at: doi:10.1371/journal.ppat.1000478.s003 (0.49 MB EPS)

Figure S4 L. pneumophila WT and DflaA replicate to similar levels

in caspase-3-deficient DCs homozygous for the A/J Lgn1 allele.

Intracellular replication of L. pneumophila WT, DflaA or DdotA was

compared in Casp32/2 DCs at 36 h after infection. The fold

increase in intracellular replication was determined by dividing L.

pneumophila CFUs recovered at 36 h by the CFUs recovered at 1 h

post infection. Data are the mean6SD from three independent

wells. N.D. = not detectable.

Found at: doi:10.1371/journal.ppat.1000478.s004 (0.46 MB EPS)
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