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Abstract
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1 Introduction

First of all, we will restate some definitions of dependent structures.
Definition 1.1 A finite family of random variables {X;,1 < i < u} is called negatively asso-

ciated (NA) if for any disjoint subsets A and B of {1,2,...,n}, and any real coordinatewise

non-decreasing functions f; on R4 and f; on R2,

Cov(fi(X,i € A),/2(X;,j € B)) <0, (1.1)

whenever this covariance exists. An infinite family of random variables {X,,,n > 1} is NA

if every finite subfamily is NA.

For two nonempty disjoint sets S and T of real numbers, let o (S) and o (T') be the o -fields
separately generated by {X;,i € S} and {Xj,i € T'}. Let dist(S, T') = min{|j — k|,j € S,k € T}.

Definition 1.2 A sequence of random variables {X,,n > 1} is called p (or p*)-mixing if

(s) = sup{p(S, T): S, T C N,dist(S, T) = s} > 0 ass— oo, (1.2)
where
\EXY — EXEY| }
ST)=supy ———————; X € Ly(0(S)), Y € Ly(o(T)) ;.
0151 = sup| L e Lo O) Y € Lo )
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Definition 1.3 A sequence of random variables {X,,, n > 1} is said to be ANA if
p~(s) =sup{p~(S,T):S, T C N,dist(S,T) > s} - 0 ass— oo, (1.3)

where

P (S T)=0v sup{ Cov(fi(X;,i € 8),L(X;,j € T)) }’

(Varfi(X;,i € S))*(Var fy(X;,j € T))"?

where the supremum is taken over all coordinatewise non-decreasing functions f; on RS
and f, on R,

An array of random variables {X,;,1 < i < n,n > 1} is called rowwise ANA random vari-
ables if for every n > 1, {X,,;,1 <i < n} is a sequence of ANA random variables.

The concept of NA was introduced by Joag-Dev and Proschan [1], the concept of p-
mixing was introduced by Bradley [2], and the concept of ANA was introduced by Zhang
and Wang [3]. It is easily seen that p~(s) < p(s), and a sequence of ANA random variables
is NA if and only if p~(1) = 0. Hence, sequences of ANA random variables are a family
of very wide scope, which contain NA random variable sequences and p-mixing random
variable sequences.

Since the notion of ANA random variables was introduced, many applications have been
found. We can refer the reader to [3—13], and so forth.

The concept of complete convergence was first given by Hsu and Robbins [14]. A se-
quence of random variables {X,,, # > 1} is said to converge completely to a constant X if for
alle >0,

[e¢]

ZP(|X,, —Al>¢) <o0.

n=1

In view of the Borel-Cantelli lemma, the above result implies that X,, — A almost surely.
Therefore, the notion of complete convergence is a very important tool in establishing
almost sure convergence of summation of random variables.

Let {X,,,n > 1} be a sequence of random variables and a,, > 0, b, > 0,¢ > 0. If forall e > 0,

oo
> " auE(b,' X, - )? <o,

n=1

then the above result was called the complete moment convergence by Chow [15].

Let {X,;,1 <i < mn,n> 1} bean array of rowwise NA random variables, and let {a,, n > 1}
be a sequence of positive real numbers with a,, 1 co. Let {¢,(¢),n > 1} be a sequence of
positive, even functions such that

Vn(l2]) and Vn(2])

0 n
Il |17

Voasf (1.4)

for some nonnegative integer p. Introduce the following conditions:

EXV[[ = O; 1 = i <nmn= 17 (15)
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Evri( |Xm|
;; Yilan) o 16)
Z (Z E(Ixml> ) <00, (1.7)
n=1 i=1

where 0 <r <2ands>0.
Gan and Chen [16] showed the following complete convergence theorems for NA cases.

Theorem A Let {X,;,1 <i < n,n > 1} be an array of rowwise NA random variables, and
let {,(t), n > 1} satisfy (1.4) for some integer 1 < p < 2. Then (1.5) and (1.6) imply

ZXm

1
— max
a, 1<sj<n

— 0 completely. (1.8)

Theorem B Let {X,;,1 < i <wn,n> 1} be an array of rowwise NA random variables, and
let {,(t), n > 1} satisfy (1.4) for some integer p > 2. Then (1.5), (1.6), and (1.7) imply (1.8).

Zhu [17] obtained the corresponding result for p*-mixing cases.

Theorem C Let{X,;,1 <i <n,n> 1} beanarray of rowwise p*- mixing random variables,
and let Y (t) be a positive, even function satisfying (1.4) for some integer p > 2. Then (1.5),
(1.6), and

Z(ZE< )2>V/2<00 forv=p, (1.9)

n=1 i=1
imply (1.8).

Inspired by the above obtained theorems, in this work, we will not only extend Theo-
rems A, B, and C to ANA random variables, but also one obtains some much stronger
conclusions under some more general conditions. The goal of this paper is to study com-
plete convergence, complete moment convergence, and mean convergence for arrays of
rowwise ANA random variables.

Throughout this paper, let I(A) be the indicator function of the set A. The symbol C
always stands for a generic positive constant, which may vary from one place to another,
and a, = O(b,)) stands for a,, < Cb,,.

2 Main results
Now, the main results are presented in this section. The proofs will be given in the next
section.

Theorem 2.1 Let N be a positive integer, M > 2 and 0 < s < (1/6M)M/2. Let {X,;,1<i<
n,n > 1} be an array of rowwise ANA random variables with p~(N) < s in each row, and
let {a,,n > 1} be a sequence of positive real numbers with a, 1 co. Let {{,(t),n > 1} be a
sequence of positive, even functions such that

Ya(l2]) P70

an
ra T

L aslt|t (2.1)

forsomel <q<p.
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(1) If1<p <2, then conditions (1.5) and (1.6) imply

j

ZXm'

i=1

> 1
E P| — max
P ay 15j<n

> 8) <00 foralle>O0. (2.2)

(2) If p > 2, then conditions (1.5), (1.6), and (1.9) imply (2.2).

Theorem 2.2 Let N be a positive integer, M > 2 and 0 < s < (1/6M)M/2. Let {X,;,1<i<
n,n > 1} be an array of rowwise ANA random variables with p~(N) < s in each row, and
let {a,,n > 1} be a sequence of positive real numbers with a, 1 oo. Let {{,(¢),n > 1} be a
sequence of positive, even functions satisfying (2.1) for some 1 < g < p.

(1) If1<p <2, then conditions (1.5) and (1.6) imply

J

Z Xm'

i=1

q
- ean) <oo foralle>O0. (2.3)

+

Z a;qE<max
1<j<n
n=1
(2) If p > 2, then conditions (1.5), (1.6), and (1.9) imply (2.3).

Theorem 2.3 Let N be a positive integer, M > 2 and 0 < s < (1/6M)M/2. Let {X,;,1<i<
n,n > 1} be an array of rowwise ANA random variables with p~(N) < s in each row, and
let {a,,n > 1} be a sequence of positive real numbers with a, 1 co. Let {{,(t),n > 1} be a
sequence of positive, even functions satisfying (2.1) for some 1 < g < p.

(1) If1<p <2, then condition (1.5) and

n

;%—)O asn— oo (2.4)

a
) ) =0. (2.5)

(2) If p>2, then conditions (1.5), (2.4), and

n

ZEIXmIZI(IXmI <an)

2
ay

-0 asn— o0 (2.6)
i=1

imply (2.5).

Remark 2.1 Since NA random variables and p- mixing random variables are two special
cases of ANA random variables, Theorem 2.1 is an extension and improvement of The-
orems A and B for NA random variables, Theorem C for p-mixing random variables. In
addition, in this work, we consider the case 1 < g < p, which has a wider scope than the
case g =1 in Gan and Chen [16] and Zhu [17].
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Remark 2.2 Under the conditions of Theorem 2.2, one has

q
- m,,)
+

me

o0 > E a,’E| max E
1<j<n 1
i=

[e¢]
= E a;q/ max
1<j<
n=1 0 ==

—ea, > t”q> dt

Xm'

%
@)
[
Q
X
ESY
S~
2
BN
S
I
03
L&

>a,c + t”q> dt

-
>

Xm'

>a,cE + ane) dt

i=1

ZX”i > 28&1,4) for all ¢ > 0. (2.7)

Hence, from (2.7), one can clearly know that the complete moment convergence im-
plies the complete convergence. Compared with the corresponding results of Gan and
Chen [16] and Zhu [17], it is worth pointing out that Theorem 2.2 is much stronger and

conditions are more general and much weaker.

3 Proofs

To prove the main results, the following lemmas are needed.

Lemma 3.1 (Wang and Lu [7]) Let {X,,n > 1} be a sequence of ANA random variables,
and let {f,, n > 1} be a sequence of real functions all of which are monotone non-decreasing
(or all monotone non-increasing), then {f,,(X,,),n > 1} is still a sequence of ANA random
variables.

Lemma 3.2 (Wang and Lu [7]) For a positive integer N > 1, real numbers M > 2 and 0 <
s< (6}\4 M2 ,let {X,;,n > 1} be a sequence of ANA random variables with p~(N) <s,EX,, =0
and E|X,|™ < oo for every n > 1. Then there exists a positive constant C = C(M,N,s) such

that
n n M2
E| ma <C EIX;M + EX? . 3.1
(s ) (oo () ) e

In particular, for M =2,

max
1<j<mn

Proof of Theorem 2.1 Forany 1 <i<wn, n>1, define

M

j
ZX
i=1

ZX

) < CXn:EXf.
i=1

Yni = _anI(Xm' < _ﬂn) +Xni1(|Xm'| =< an) + ﬂnI(Xm' > ﬂn)r

Zni = Xm' - Ym’ = (Xni + an)](Xm’ < _an) + (Xni - an)I(Xm' > ﬂn)'

Page 5 of 16
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It is easy to check that, for all € > 0,

>e | <Pl — max
a, 15j<n

J

Z Xni

i=1

Z Yni

1
P| — max >e |+ P(max | Xui| > a,,)
a, 1<j<n 1<i<n

J

1
=Pl — Y, i—EY,; -— EY,
(dnlmgeg;;( i —EY)| > e . {21’;2 m)
+ P(lmax | Xi| > an>. (3.2)
<i<n
First of all, we will show that

1
— max ZEYm —0 asn— 0. (3.3)
d 1<]<n

Forl<i<n,n>1,EX,;=0,thenEY,;=-EZ,;. If X,y >a,, 0<Z,;=X,; —a, <X, If
Xyi < =Gy Xpi < Zpi = Xy + a, <0.50, | Zi| < |1 Xl I(|X,i| > ay). Then from conditions (2.1)
and (1.6), one has

i =—max

zﬂzm
61 1<1<n

1 n

— Y E|Zl

an 3

< Czn: E1XulI(1 X > an)

an

IA

i=1

<C Z E:Zl an’; as 1 — 00. (3.4)

Hence, for n large enough,

J
Z (Ym' _EYm') >

1
>e | <Pl — max
ap 15j<n| <=
i

+ P(max | Xl > an>.

1<i<n

J

Z Xni

i=1

1
P| — max
a, 1<j<n

To prove (2.2), it suffices to show that

j
e
ZP(ﬂ— 1m<}a<); ;(Ym —EY,)| > E) < 00, (3.5)
o0
A ,
L= 2;P<1rga§>; | Xi] > a,,) < 00. (3.6)
e

By Lemma 3.1, it obviously follows that {Y,; — EY,;,1 <i < n,n > 1} is still an array of
rowwise ANA random variables with zero mean. For [1, note that |Y,;| < a,,.
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(1) If 1 < g < p < 2, by the Markov inequality, Lemma 3.2 (for M = 2), (2.1), and (1.6), one

has

2

J
Z (Ym' - EYni)
i=1

=1
n=1 1
<CZ ZEWm EY,[?

= nll

SO HIE

= nll

E|Y,l?
CXI:Z
n i=1
EYi(| )
CZIXE Vilan)

CZ Z £ Z/Zl(('i”") 0. (3.7)

n=1 i=1

(2) If 1 < g < p and p > 2, by the Markov inequality, Lemma 3.2 (for M > p > 2), (2.1),
(1.6), and (1.9), one also has

00 1 n n M/2
< cza—M(ZEWM—Em% (ZHYm—EYMZ) )
n=1 "

i=1 i=1

M

Z(Ym EY,)

— 1
h=cl —Mf(m

E|Ym| < (B
EEne (e

n=1 i=1 i=1
EV(Yo) | oo (o EYul? e
ZZ e (S
. M/2
3 CZZM Xol) Z(Z E|an|2) . 3.8)
n=1 i=1 n

Note that | Z,;| < |X,;|I(|X,i| > ay). By a standard argument, one has

oo n
L=CY Y P(1Xul > ay)

n=1 i=1
= CiiE[(U@,A >ay,)
n=1 i=1
CZ Z E| X1 7I( |Xm| > ay,)
n=1 i=1
E‘ﬁz(|Xm|)
CZZ e <> (3.9)

n=1 i=1
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The proof of Theorem 2.1 is completed.

Proof of Theorem 2.2 For all ¢ >0 and any ¢ > 0, since

j [
q _ - | 1/q
Za E<1m<la<>; XI:X ca ) Z / (lm<la<); Xl —ca, >t >dt
i= =1
o0
= Z / (max Xl > ea, + tl/q> dt
) 1<1<n

> &ed, + tl/q) dt

0 [}
-

et |, 2 ZXm

n=1 an si=

%)
< E max E Xyl > eay

1<j<n
i=1

n=1

oo o0 j
+ Za;q/ P max ZX,,,' > Y1) dt
n=1 a e
2N+ (3.10)

By Theorem 2.1, one has J; < co. To prove (2.3), one needs only to show that J, < co. For

anyl <i<wmn,n>1,define

Yo =~ (X < =) + Xl (1Xos] < £ + 91 (X, > £19),

Zi = X = Y = (Xt + (X < =£"7) + (Xt — £/ (X,0s > £17).

It is easy to check that, for all € > 0,

J n
p<1121g’ XI:X” l/q) = P<1m<’i)i‘ Z i > tl/q) +P< 1 (P> tl/q))
= i=
1/q l/q
({E]agil ZY, >t >+ZP | X > ¢ (3.11)
Hence,

o0
_ —-q 1/q
fz—Zan / ({nﬂ&g; ZX >t )
n=1 aj
00 n 00
< Za;qZ/q P(1Xul > £19) dt
n=1 i=1 Y%
o 00
+Y at P| max > M) dt
21: " [;q <1§j§n
n= n

A
= Jo1 + Joa.

j

> Yu
i=1

(3.12)
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For /51, by conditions (2.1) and (1.6), one has

o] n o0
Jn = Zﬂ;qZ/ P(anil > tl/q) dt
n=1 i=1 ay
o0

Z a Zf |Xm|1 [ Xoi| > ﬂn) > tl/q)

oo n
<D @t ) EXulT(1 Xl > a,)
n=1 i=1

~ Evi(Xoi)
Ipt(an)

(3.13)

N

n=

For /55, we will first show that

max — max —0 asn— 0. (3.14)

t>a q t 1/q 1<j<n

ZEYm

Similar to the proof of (3.4), by conditions (1.5), (1.6), and (2.1), one has

j

1
max —— max ZEYm
1

ma max —
t>aq tl/q 1<j<n o

t>aq tl/q 1<1<n

ZEZm

< Cmax — ZE|Zm|

< Cmax prr ZE|Xm|I | Xui] > £17)
i=1

- Ci E Xl (1Xi] > @)

a
i=1 n

ENXal (X, > )
ey 7

i=1 an

CZ Ejj a,,m) as n — 00. (3.15)

Hence, while # is sufficiently large, for ¢ > af,

tl/q
max —,
1<j<mn

ZEYH, <

which implies

tl/q
max >— . (3.16)
1<j<m 2

For J5; < 0o, we will consider the following two cases. Let d,, = [a,] + 1.

Z Y, Z (Yoi = EYy)

> 71 ) < P[ max
1<]<}’l 1
i=
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(1) If1 < g<p<2,by (3.16), the ¢, inequality and Lemma 3.2, one has
J
> (Y- EYy)

00 00 tl/q
< 4 P — ) dt
Jn < ;an /uZ g}a; 2 >
< CZd_q/ _Z/qZE(Ym EYm) dt
<CZZ¢ / EY2t7 4t

n=1 i=1

= CZZW / EX21(1Xl < d) 1 dt

n=1 i=1

—-q 2 1/q\ +—2/q
+czza /q EX2I(dy < 1 Xu] < £/9) 720 dt

n=1 i=1

+CZZ¢“1/ |X |>t1/q)dt

n=1 i=1

£ Joo1 + Ja + Ja23. (3.17)

For /321, by 1 < g < p <2 and (1.6), one has

Jaon = CZZW / EX21(1Xi] < )t

n=1 i=1

< CZZEXZI(IMI <dn)

n=1 i=1
EX I |Xm| = n) - EX,%LI( n |Xni| Edn)
Sy y Pl 2a) oy yn Blte 5
n=1 i=1 n=1 i=1 n
CZZE|Xm|pI [Xuil < an)
n=1 i=1
ay + 1\ E|Xu (1 Xoni| < )
e n(t)
EI/fl(an) E| X lP1( Ianl <d,)
oy y Bt . Yy
n=1 i=1 n=1 i=1
Eri(Xowi) Eri(Xoi)
CX;ZI Vilan) CX;ZI Vildn)
Evri(Xo)
<2C < 0. (3.18)
;; Vila,)

For /55, since

ZZﬂ /  EXol(dy < 1 X| <0 dr =0,

n=1 i=1
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which implies

]222—CZZa‘q / EX21(dy < | Xl < £/9)t72dt.

n=1 i=1

Let £ =7, by (2.1), (1.6), and 1 < g < 2, one has

Jo22 = CZZﬂ_qqf EXAI (d <Xl <x)xq 3dx

n=1 i=1
n o m+1
= CZZa;q > / EX21(dy < | Xl < x)x77° dx
n=1 i=1 m=dy "™
<CZZ¢“12E d <|X,,,|<141+1)m‘1’3
n=1 i=1 m=dy
o0 n o0 m
<CY N a1y mTPY EXAI(j < | Xl <j+1)
n=1 i=1 m=dy j=dn
oo
<CZZMZE (< Xl <j+1) ) mt
n=1 i=1 j=dn m=j

[e¢] n o0
<CY D@y FEXA( < Xl <) +1)

n=1 i=1 j=dy

<CY Y a EIXul U (Xl > d)

n=1 i=1

CZ Z E| Xl I(1 X > @n)

n=1 i=1 a”

sz Vll
<C Z Z e <> (3.19)

n=1 i=1

For /523, by an argument similar to that in the proof of /5; < 00, one can prove Jp;3 < 00.
Therefore, one can obtain 5, <coforl1 <g<p < 2.
(2) If 1 < g < p and p > 2, by (3.16), the Markov inequality, Lemma 3.2, and the ¢, in-

o0 tl/
Joo < a;q/ max >— dt
22 ; a L<j<n
o) 00 V4
<C)» af / t7'1E [ max dt
pl2
<C2a / -P/q(ZE|Ym|P+<ZE ) )dt
pl2
<cZa-qu EIYmI”t_’”/th+CZa‘q/ -P’q(ZE ) dt

£ K + K. (3.20)

equality, one has

Z(Ym EY,)

j
> (Yui - EYy)

i=1
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For Ki, one has
0 n 00
K=CY ay" / | EXulP e U (X, < dy) dt
n=1 i=1 Y%
oo n 00
+CY ay / EIXulPt P (d, < | X,] < £79) dt
n=1 P
0 n 00
+CY Z/ P(1Xul > £19) dt
n=1 i1 Jan
£ K + Kip + Kis. (3.21)

By an argument similar to that in the proofs of J5;; and Jay, (replacing the exponent 2
by p), one easily has Kj; < 0o and Kj; < 00. Similarly, from the proof of J5; < 0o, one can
obtain Kj3 < 0.

For K3, since p > 2, one has
P2
Ky = CZa / -P/q<ZE ) dt
00 P2
< c;a;q/q ¢ M(ZE 1(1 X < a,,)) dt

an

pl2
+CZ:1/ ‘p/"<ZE an<|Xm»|§t”q)> dt

%) 00 n pI2
+CY a / (Z P(1Xil > t”q)) dt
n=1 ay; i=1
£ Koy + Kog + Kys. (3.22)

For Ky, by p > g, p > 2, and (1.9), one has

pl2
I<21 = CZﬂ_q/ —PM(ZE |Xm| < a,,)) dt
5 CZ (Z EX?, 1(|X;,| < a,,)) . .

n=1 i=1

For Ky,, we will consider the following two cases:
(1) When1 <g <2andp >2.By(2.1) and (1.6), one has

pl2
Ky = CZa"I f 1 1"/‘1<ZEX2 Ay < | Xyl <t1/”1)) dt

i=1

00 0o n pl2
=CY af / . (ﬂ/q D EX2 (< 1 Xl §t1/q)> dt
n=1 n

i=1
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00 oo n pi2
g [ (e csizen)
n=1 n

i=1

ad " b2
= Czd;q (ZElXYlllql('an' > (ln)> /q t—p/Z At
a

n=1 i=1 n
00 " pl2
E|Xni|q1(|xm'| > 61,,,)
D
n=1 \ i=1 n
/2
2\ o Epi)
<c|> EviXi) < 00. (3.24)
=~ i(an)

(2) When 2 < g < p. By (2.1) and (1.6) again, one can have

00 00 n pi2
Kp=C) af / , <t‘2/” > EX2 (< Xl < t”q)> dt
i=1

an

n=1

ad " P2

Z q(ZE|Xm| 1(|Xm| >an)> fq t,p/th
a

i=1 n

00 5 pl2
E| X, I(|Xm| > ﬂn)
<oy (L Ey
n=1 i=1
(I E Xl 10Xl > a)
m }’IL > a}’l
<oy (o E )
n=1 1 n
00 /2
<C Z EviXo) < 00. (3.25)
el ol 1/fl(ﬂn)

For K33, by (2.1), it follows that v;(|¢]) 1 as |¢] 1. By (1.6), one has

n n n E ; an
sup ZP(|Xm'| > 1) < ZP(lel >ay) < Z % —0 asn—> oo.

tzay =1 i=1 i=1

Hence, while # is sufficiently large, for ¢ > a?, one can have

n
> P(1Xul > £11) <1
i=1

By (3.13), it follows that

p/2

K3 = cZa;q/q (ZP(|XM| >t“q)> dt
n=1 n i=1
0 n 00
< CZa;qZ/q P(1X, > ') dt
n=1 i=1 Y%n

EYillXul) _
<C 0. (3.26)
DIy
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The proof of Theorem 2.2 is completed. 0

Proof of Theorem 2.3 Following the notations in the proof of Theorem 2.2, we will first
prove (2.5) for the case of 1 < p < 2. By (3.11), for all ¢ > 0, one has

q
1
i = max > M9 ) dt
a,, 0 1sj<n
1 Eaz
= — / max > 19 ) dt
az 1<j<n
+— max > M) di
ﬂn eal lsjsn

> tl/q)

Le+Li+Lo. (3.27)

ZX

ZX

ZX

<&+ — max Yoi
ﬂn Ean <1</<n Z
ZP Xl > £19) d

n mﬂzl

Without loss of generality, one may assume O < ¢ < 1. For L;, by the Markov inequality,
(2.1), and (2.4), one has

n 1 o0
L = Z Z /;aq P(|Xm’|1(8tlz <Xyl < gn) N tl/q) dt
i=1 n

n 1 )
+> a f \ P(1 Xl 1(1Xil > @) > £19) it
i=1

edy

oo
< Z —E|Xm PI(eal < | Xl < ay) /S 7 dt

i-1 n dy,

n 1 )
+> a fo P(1 Xl 1(1Xi] > @) > £19) it
i=1

n

1
+ Y EXulI(1 Xi| > an)

i=1 "

12 N~ EXl 1 Xoi] < an)
,

< Ce
i=1

CZ E:Z((:j;) as n — 0. (3.28)

Similar to the proof of (3.15), by conditions (2.4), (2.1), and (1.5), one has

1
tl/q 1<1<n

1

= max 1
t>ea t Iq 1<1<n

ZEYm ZEZm

max —
t>sa

< Cmax ZE|Zm|

t>£an
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< Cmax P ZE|Xm|I Xl > £17)
i=1

< Ce -1/q Z E|Xm|q[(|Xm| > ﬂn)

al

i=1

+ Ce

-plq Z ElXni |p1(81/qan <Xl < "ZVI)

p
i=1 %n

< C(e’”q + g’P/q> Z % —0 asn— 0. (3.29)

Hence, while 7 is sufficiently large, (3.16) holds uniformly for ¢ > sal.

For Ly,letd, = [a,] +1, by (3.16), the Markov inequality, Lemma 3.2, and the ¢, inequality,
one has

L1<CZ / t4E(Y,; — EY,;)* dt
ﬂn F,,,

i=1 a

n
1 Oo -2/ 2
5CZZZ/ tY1EY? dt
i=1

sal

- CZ% f P EX (1 Xl < ) dt

i=1

+Czan fa tHMEX2I(dy < 1 Xu] < £79) dt

+cZn:i/OOP(|X | > t1) dt
— ay cap "

£ Lu + Lu + L13. (330)

By (3.28), one has L;3 — 0. For Ly;, by an argument similar to that in the proof of /2y < 0o
and (2.4), one can obtain

Ly = CZ / l‘_Z/qEX2 (IXmI < d dt < CZ El’fbli((':(';') — 0 asun— oo.
, = n
For L3,
a / tHEX2I (dy < | Xl < £79) dt =
which implies

Lu—CZan /d , t2MEX2I(dy < | X, < £19) dt.

Similarly, by an argument similar to the proof of /55, < 0o and (2.4), one also has L;; — 0

as 7 — OQ.
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The proof of (2.5) for the case of p > 2 is similar to that of 1 < g < p and p > 2 in Theo-
rem 2.2, so we omit the details. The proof of Theorem 2.3 is completed. O
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