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A COMBINED FOURTH-ORDER COMPACT SCHEME WITH AN
ACCELERATED MULTIGRID METHOD FOR THE ENERGY EQUATION IN
SPHERICAL POLAR COORDINATES *

T. V. S. SEKHAR, R. SIVAKUMARY, S. VIMALAf, AND Y. V. S. S. SANYASIRAJU

Abstract. A higher-order compact scheme is combined with an acceleratkgjritimethod to solve the energy
equation in a spherical polar coordinate system. The steadgd convective heat transfer from a sphere which is
under the influence of an external magnetic field is simulatelde donvection terms in the energy equation are
handled in a comprehensive way avoiding complications in #leutations. The angular variation of the Nusselt
number and mean Nusselt number are calculated and compareegétit experimental results. Upon applying the
magnetic field, a slight degradation of the heat transferuadcfor moderate values of the interaction paramater
and for high values ofV an increase in the heat transfer is observed leading to aneanlbehavior. The speedy
convergence of the solution using the multigrid method anelacated multigrid method is illustrated.

Key words. higher-order compact scheme, accelerated multigrid metheckdaconvection heat transfer, ex-
ternal magnetic field
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1. Introduction. The development of numerical methods for solving the NaSiekes
equations is progressing from time to time in terms of aagyratability, and efficiency in
using less CPU time and/or memory. It is well-known that astesecond-order accurate
solutions are required to capture flow phenomena such aslaoylayer, vortices etc., while
solving Navier-Stokes equations at high values of the Riglgmoumbers Re). The central
difference scheme (CDS) causes nonphysical oscillatioddacks diagonal dominance in
the resulting linear system. The first-order upwind differe approximation for convective
terms and central differences for diffusion terms makesfithiee difference scheme more
stable due to artificial viscosity. Also, the diagonal doarmioe is assured for the linear sys-
tem and so it can be solved easily using Point Gauss-SeidgherGauss-Seidel, etc. As
the convective terms are approximated by first-order upwliffdrences, the scheme is not
second order accurate and may fail to capture the flow phemamiehigh values oRe due
to the dominance of convection. To achieve second-ordarracg, defect correction tech-
niques are used.p, 29). The second-order upwind methods are no better than thefier
upwind difference ones at high values of the flow parameigh asRe. All these methods
require fine mesh grids to achieve grid independence or taaeiptable accuracy. Multigrid
methods (which uses a sequence of coarser grids) are mantapapachieving fast conver-
gence, which results in significant reduction of CPU time alsd makes it possible to handle
a huge number of mesh points to achieve acceptable accuXatgble contributions using
the multigrid approach include articles by Ghia et &l], Fuchs and Zhaog], Vanka 28],
and Brandt #]. Thompson 6] described a method which combines the multigrid method
with automatic adaptive gridding to provide the basis ok solution strategy in Cartesian
coordinate systems.

All the above methods may fail to capture the flow phenomettegeitiomain is too large
such as in global ocean modeling and wide area weather &inegaapplications. One ap-
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proach to achieve accurate solutions with reduced conipo#dtcosts in very large scale
models and simulations is to use higher-order discretimatiethods. These methods use
relatively coarse mesh grids to yield approximate sol#iohcomparable accuracy, relative
to the lower-order discretization methods. The conveutidrigher-order finite difference
methods contains ghost points and requires special treatmar the boundarieg]f An ex-
ception has been found in the high-order finite differenéestes of compact type, which are
computationally efficient and stable and give highly acteiraumerical solutionsy] 10, 20].

To fully investigate the potential of using the fourth-ord@®mpact schemes for solving the
Navier-Stokes equations, multigrid techniques are egderithese multigrid methods have
been successfully used with first- and second-order finfferdnce methods. A preliminary
investigation on combining the fourth-order compact sobemith multigrid techniques was
made by Atlas and Burragé][for diffusion dominated flow problems.

Multigrid solution and accelerated multigrid solution imeds with fourth-order compact
schemes for solving convection-dominated problems aatively new. Some attempts have
been made in rectangular geometty,[12, 17, 21, 32, 33]. However, higher order compact
schemes (HOCSs) are seldom applied to flow problems in tueeit coordinate systems
such as cylindrical and spherical polar coordinates exogjit3, 14, 16, 19], where compact
fourth-order schemes in cylindrical polar coordinatesengeveloped. In particular, to the
best of our knowledge, no work has been reported on highraaapact methods in spher-
ical polar coordinate systems employing multigrid methodibe problem of heat transfer
from a sphere which is under the influence of an external ntagfield is also new except
for a few experimental result8§,[27, 31]. Fluid flow control using magnetic field (including
dipole field) has a sound physical basis which may lead to mising technology for better
heat transfer control.

Hydromagnetic flows of electrically conducting fluids arslhtat transfer have become
more important in recent years because of many importaticatipns including fusion tech-
nology. Early experimental exploration of a magnetic colndif the heat transfer is reported
by Boynton [] in their study of magnetic heat transfer over a sphere. Udd.427] ex-
perimentally studied MHD effects on the heat transfer afiigLithium flow in an annular
channel. In their experimental study, Yokomine etal] jnvestigated heat transfer properties
of aqueous potassium hydroxid solutid?{ =~ 5) and concluded that there is a degradation
of the heat transfer with the magnetic field. In this paperQQ3 is employed with a com-
bination of accelerated multigrid technique to solve thergy equation in spherical polar
coordinates. The forced convection heat transfer from argpWhich is under the influence
of an external magnetic field is investigated.

2. Basic equations.The forced convective heat transfer problem is formulasesteady,
laminar flow in axis-symmetric spherical polar coordinatése center of the sphere is cho-
sen at the origin and the flow is symmetric abéut = (upstream) and = 0° (downstream).
The fluid is considered to be incompressible, viscous, asxtrtally conducting. A uniform
stream from infinity,U., is imposed from left to right at far distances from the sphéitee
magnetic Reynolds number is assumed to be small so thatdbheed magnetic field can be
neglected and a constant magnetic field

(2.1) H = (—cos#, sinf, 0)

is imposed opposite to the flow. The governing equationsfaeNiavier-Stokes equations
and Maxwell’'s equations which are expressed in non-dinogasiform as follows:
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V-q=0

2
(a-V)a=-Vp+ EV%—#N[JXH]

(2.2) J-VxH-—E+qxH
V.-H=0
VxE=0,

whereq is the fluid velocity,H is the magnetic fieldy is the pressurek is the electric field,
J is the current density and/ is the interaction parameter defined Bs= ocHZ a/pUs..
Hereo andp are the electric conductivity and the density of the fluid ard the radius of
the sphereRe = 2aU /v is the Reynolds number based on the diamgiey of the sphere.
In order to have fine resolution near the surface of the spheréave used the transformation
r = e¢ along the radial direction, which provides the solutionhie hon-uniform physical
plane while keeping the uniform grid in the computationan@ as shown in Figurg.l
The fluid motion is described by radial and transverse coreptsnof the velocity(q,, go)

in a plane through the axis of symmetry, which are obtainedlikiding the correspond-
ing dimensional components by the main-stream veldGity The velocity components are
expressed in terms of a dimensionless stream funeti@nd) such that the equation of con-
tinuity V - q = 0 is satisfied. The velocity componentsandgy are as follows:

e=2 9y e 2% O

(2:3) = g 00 qe:_sin987€'

They are obtained by solving the momentum equation expaésghe vorticity-stream func-
tion formulation. The velocity field is obtained by solvinguations 2.1-2.3) using a finite
difference based multigrid method followed by a defect edtion technique developed by
Sekhar et al.44]. The grid independent velocity components obtained frar+.3) over a
high resolution gridh12 x 512 are used to solve the energy equation. If the physical proper
ties of the fluid are assumed to be constant and the interm&rgion of heat by friction is
neglected, the energy equation is given by

0?0 90 00 00  RePre S (0y0O 00O

ez " B¢ 90 " 967~ 2 smd
where©(¢, ) is the non-dimensionalized temperature, defined by subigathe main-flow
temperatur® ., from the temperature and dividing I8y, — ©,. Pr is the Prandtl number
defined as the ratio between kinematic viscositgnd thermal diffusivity<. The boundary
conditions for the temperature a@ = 1 on the surface of the sphe®, — 0 as¢ — o,
and%—? = 0 along the axis of symmetry. The numerical scheme used te shé&vequations
(2.1-2.3) is described inZ4], and the details of the fourth-order compact scheme toesolv
equation .4) are given in the following section.

3. Fourth-order scheme with the MG method. Both the fluid motion and the temper-
ature field are axially symmetric and hence all computatiwage been performed only in
one of the symmetric region. The discretization of the gowey equation Z.4) in the sym—
metric region is done using the compact stencil. By comigjriie convection term%% Y

and ’Zw %(3 on the right-hand side of equatio.{) with the term% andcot 022 55> espec-
tlvely, we obtain

9?0 0?0 8@ 8@
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FiG. 2.1. The grid points of the non-uniform grid in which the final g@u is obtained.

where

RePr ¢ RePr
esq, — 1, v =
2 2
The velocity componentg. andgy in equation 8.2) are obtained using a usual fourth-order

approximations from the stream functign Applying standard central difference operators
to equation 8.1) gives

(3.2) u = et qg — cot 6.

(33) —5?@1'7]' — (55@1‘,]‘ + ui7j55@i7j + U,‘J(Sg@i,j —Tij = 0.
The truncation error of equatioB.Q) is given by

K 90 k2 %0 K290 k29O o
(34) Tij = |:2 <12Ua€3+121)893> - (12881+1289‘1>:|77j+0(h 7k )’

whereh andk are the grid spacings # k) in the radial and angular directions, respectively.
From equation3.1), we get

030 . 030 +u829 +@@+v82@ +@@
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A substitution in equation3(4) and hence in3.3) yields

— €005 j — [1.;050i; + 9i0¢Oi ; + 0i ;06O
h? + k?

12 (5253@17] - ui7j5£502®i’j — vi,jégég@i_j) + wiyjégé(;@i,j = O,

where the coefficients; ;, f; ;, ¢i.j, 0;,; andw; ; are given by

2

h
€ij = 1+ E (Uij - 25§u,‘7j)

k2

fig =1+ 35 (
h? 9 k2 9

9ig = tij+ 15 (0uij — wij0cuij) + 12 (0fuij — vij0oui ;)

2
Yij — 200vi,;)

h? k2
0ij =Vij+ 15 (00 j — ui j0evi ;) + T2 (05vij — vij60vi;)

h? k2 h? + k?
Wij = e 0Vig + = Ooti; — ( T 5 | Uigviy,

and the two-dimensional cross derivativeperators on a uniform anisotropic megh+# k)
are given by

5¢600i; = ﬁ (Oit1,41 = Oig1j—1 — i1 j+1+Oi—1,5-1)
55599i,j = ﬁ (Oig1,j41 —Oit1,j-1 + i1 41 — Oi—1j-1 —20; j11 +20; ;1)
066505, = ﬁ (Oit1,5+1 = Oic1j41 +Oip1j-1 — 011 +20;1; — 20,41 ;)
5525291‘,]‘ = #(@Hl,jﬂ +0it1-1+0i—1j+1+60i-1-1

— 26i,j+1 — 26i,j71 — 29i+1,j — 261’*1,]’ + 491,])

For evaluating boundary conditions along the axis of symn#ie derivative‘?,—? is approx-
imated by a fourth-order forward difference alofig= 0 (i.e., j = 1) and a fourth-order
backward difference alongj= = (or j = m + 1) as follows:

0, 1) = 2i5 4861, 2) — 360(i, 3) + 160(;, 4) — 30(i, 5)]
O(i, m+1) = 2—15 [480(i, m) — 360(i, m — 1) + 160(i, m — 2) — 30(i, m — 3)].

The algebraic system of equations obtained using the fardar compact scheme described
as above is solved using a multigrid scheme with coarse grigtction. Point Gauss-Seidel
relaxation is used as pre-smoothers and post-smoothegaséPhote that as the grid inde-
pendent solutions of the flow (like andw) are obtained from the finest grid 612 x 512,
the same finest grid is used when solving the heat transfatiegualthough such a high
resolution grid is not necessary. The coarser grids usedséire 256, 128 x 128, 64 x 64
and the coarsest grigk x 32. The injection operator and 9-point prolongation opesatoe
used to move from finer to coarser and coarser to finer gridpexively, P]. For a two-grid
problem, to solveCu = f, one iteration implies the following steps:
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=

. Let the initial solution be:, on the finest grid.

2. Apply Point Gauss Seidel iterations @p on the finest grid a few times as pre-
smoother to get an approximate solution

3. Calculate the residueon the finest gridy = f — L yu;.

4. To get the residue on a coarser grid restrict the residue from the finer to
the coarser grid and then multiply with a residual scalingapeeters, that is,
r. = B Rr. HereR represents the restriction operator.

5. Setup the error equatidiie. = r. on the coarser grid and solve for the er¢arsing
the Point Gauss Seidel method. This gives the error on thrseogrid.

6. To get the erroe on the finer grid, prolongate the errarto the finer grid and then
multiply with a residual weighting parameter Add this errore to the solutionu,
obtained in Step 2 to get an improved solutign That is,us = u; + a Pe., where
P is the 9-point prolongation operator.

7. Perform a few Point Gauss-Seidel iterations on the swiuty on the finer grid to
obtain a much better solutiary.

8. Considems asu, and go to Step 2.

The Steps 1-8 above constitute one iteration of the twoggotlem. The iterations are
continued until the norm of the dynamic residuals is less tita . In the algorithm given
above, ifa = § = 1, then it is a standard two-grid method with coarse grid aiiva. The
parameters: and$ are used to accelerate the convergence rate. In this stedysed values
with0 < o < 2and0 < 3 < 2.

4. Results and discussionThe higher-order compact scheme combined with an accel-
erated multigrid method introduced in Sectidis applied to the problem of a heated sphere
which is immersed in an incompressible, viscous, and ébadty conducting fluid. An ex-
ternal magnetic field is applied in the opposite directiothef uniform stream. In this study,
mainly two flow parameterse = 5 and Re = 40, are considered, in which the earlier has
no boundary layer separation while the latter has a separaiihe results are discussed for
the range ofV for 0 < N < 8 and the Prandtl numbei®r = 0.065, 0.73, 1, 2, 5, 8. The
local Nusselt numbeNu(6) and the mean Nusselt numh¥y, are calculated as follows:

0
s 00 =0
and
T (00 )
(42) N7n = —A (85)5_0 sin 6 df.

In equations4.1) and @.2) the derivative‘% is approximated by usual fourth-order forward
finite differences and the integral is evaluated using tingpSon’s rule.

In the absence of a magnetic fi¢ly = 0) the basic hydrodynamic problem is equivalent
to the steady viscous flow around a sphere. Thereforeyfet 0, the developed scheme is
validated with the available theoretical results (Taht® for Re = 5 and 40. Itis clear from
the table that the present results agree well with the nuwalerésults of Dennisg] with a
variation of(0.35 percent and recent results of Feng and Michaelidgsijth a variation of
0.20—4.78 percent. The results also agree with experimental restif®anz and Marshall
[22, 23] with a variation 0f0.47—11.21 percent and WhitakeB[] with a variation of3.06—
6.75 percent.

The simulations have been carried out o¥21x 32, 64 x 64, 128 x 128, 256 x 256, and
512 x 512 grids, and the mean Nusselt number far = 5 and 40 for selected values 6%
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TABLE 4.1
Comparison of the mean Nusselt number with results in liteesin the absence of the magnetic field.
N,, for Re =5 N,, for Re = 40
Pr=073| Pr=5| Pr=0.73| Pr=5
Present simulation 2.8518 4.3101 5.0449 8.6987
Ranz & Marshall (1952) 3.2080 4.2942 5.4168 8.4889
Whitaker (1972) 2.9433 4.0366 4.8493 8.1518
Dennis (1973) 2.86 — — —
Feng & Michaelides (2000) 2.7250 4.3460 5.0545 8.7700

andN are presented in Tablgs2, 4.3, 4.4, and4.5. It is clear from these tables that (i) the
solutions obtained from the present numerical scheme xid independence, and (ii) it is
possible to obtain grid independence in the smalex 64 grid for low Prandtl number®r.
For higher values of’r, a grid finer thar64 x 64 but less thari28 x 128 is necessary for
grid independence. Clearly, solutions obtained from hegolution grids such &6 x 256
and512 x 512 are not required as mentioned in the previous section.

TABLE 4.2
Effect of grid size on the results féte = 5 and Pr = 0.73.
N N,
32x32 | 64 x64 | 128 x 128 | 256 x 256 | 512 x 512
0.5| 2.849 2.850 2.850 2.850 2.850
1 2.858 2.859 2.859 2.859 2.859
3 2.885 2.886 2.886 2.886 2.886
5 2.900 2.901 2.901 2.901 2.901
8 2.915 2.917 2.917 2.917 2.917
TABLE 4.3
Effect of grid size on the resulf3e = 40 and Pr = 0.73.
N N,
32x32 | 64 x64 | 128 x 128 | 256 x 256 | 512 x 512
05| 4.928 4,982 4.986 4.986 4.986
1 4.913 4.962 4.965 4.965 4.965
3 4.920 4.964 4.967 4.967 4.967
5 4.948 4,994 4.997 4.998 4.998
8 5.004 5.053 5.057 5.057 5.057

The fourth-order compact scheme is combined with an aatelémultigrid technique
to achieve fast convergence so that CPU time can be minimidétbugh multigrid methods
are well established with first- and second-order disattn methods, their combination
with higher-order compact schemes are not found much intérature. To study the effect
of the multigrid method and accelerated multigrid methodtm convergence of the Point
Gauss-Seidel iterative method while solving the resuléilygbraic system of equations, the
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TABLE 4.4
Effect of grid size on the resulfge = 5and N = 2.

Pr Ny,
32x32 | 64 x64 | 128 x 128 | 256 x 256 | 512 x 512

0.065| 2.142 2.142 2.142 2.142 2.142
0.73 2.873 2.874 2.874 2.874 2.874

1 3.051 3.053 3.053 3.053 3.053

2 3.530 3.536 3.536 3.536 3.536

5 4.369 4.398 4.400 4.400 4.400

8 4.899 4.962 4.965 4.965 4.965

TABLE 4.5

Effect of grid size on the resulfge = 40 and N = 2.

Pr Ny,
32x32 | 64 x64 | 128 x 128 | 256 x 256 | 512 x 512

0.065| 2.780 2.781 2.781 2.781 2.781
0.73 4.910 4.955 4.957 4.958 4.958

1 5.330 5.403 5.408 5.408 5.408

2 6.400 6.572 6.589 6.590 6.590

5 8.510 8.549 8.640 8.644 8.644

8 10.464 | 9.763 9.961 9.970 9.970

TABLE 4.6

Comparison of CPU times (in hours) with second-order actisgheme.

Grid CPU time in hours
Second-order HOCS
64 x 64 0.00083 0.00027

128 x 128 0.01055 0.00277
256 x 256 0.1575 0.07527

512 x 512 2.9108 2.2291
322 — 1282 — 0.0011*
322 — 5122 1.29* 0.1158

+x CPU time on achieving grid independence

solution is obtained from different multigrids startingtivfive grids32 x 32, 64 x 64, 128 x

128, 256 x 256, and512 x 512, and by omitting each coarser grid until it reaches the single
grid 512 x 512. This experiment is done witlke = 40, Pr = 0.73 and four values of
interaction parameters, 0.5, 2 and7. The simulations are also made fBe = 40, N = 2

and for selected values &fr, 0.73, 2 and5. The computations are carried out on an AMD
quad core Phenom-Il X4 965 (3.4 GHz) desktop computer. Thaeu of iterations and CPU
time (in hours) taken for different multigrids and singlédgare illustrated in Figure$.1and

4.2. From these figures it is clear that the multigrid method wihrse grid correction is very
effective in enhancing the convergence rate of the solstiirenhances the convergence rate
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at least94 percent in comparison with a single grid. The acceleratettignid technique
further enhances the convergence rate by reducing 21 perttre time taken by multigrid

(5 grids). In this study, the acceleration parameters waielfound suitable for enhancement
of the convergence rate for one valuel®f, in the absence of the magnetic field, is suitable
for all values of the non-zero interaction parameters. Eselts are also obtained for some
parameters using a second-order accurate scheme comhthetievmultigrid method24].
The CPU time (in hours) taken for both the methods in eachagidell as the multigrid are
tabulated in Tablel.6. It can be noted from the table that HOCS is more computationa
efficient when compared to second-order accurate schenseimgrid as well as when it is

combined with the multigrid method.

N
W
L

g
=)
I

—_
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L

°
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FiG. 4.1. Effect of the multigrid and acceleration parameter on thevaygence factor folRe = 40 and
N = 2, where the range between 5 to 6 on the x-axis indicates 5 gvittsacceleration parameters = 1.5,

B =0.5for Pr=0.73anda = 1.4, 8 = 0.5 for Pr = 2.

3.0
)
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FiG. 4.2.Effect of the multigrid and acceleration parameter on cogeace factorRe = 40 and Pr = 0.73,
where the range between 5 to 6 on the x-axis indicates 5 giitthsaoceleration parameters = 1.5, 8 = 0.5.

4.1. Local and mean Nusselt numbersThe angular variation of the local Nusselt
numberNu on the surface of the sphere for different Prandtl numbedsfandifferent in-
teraction parameters are presented in Figdr8s4.4, and4.5. In the absence of a magnetic
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FiIG. 4.3.Angular variation of the Nusselt number & = 40 whenN =0, N = 2andN = 7.

field, it is found that the local Nusselt number decreasesgatbe surface of the sphere for
Reynolds number&e = 5 [6] and for Re = 40. In the upstream region (Figurés4, 4.5),
the viscous boundary layer thickens with the applicatiothefmagnetic field. All the curves
in Figure4.5 meet at one critical point after which an inverse effect isileited, that is, the
boundary layer gets thinner with the magnetic field. The esimmeet once again in the far
downstream. These features are attributed to changestiadia and transverse velocity gra-
dients of the fluid, which resulted due to the applicatiorhefmagnetic field to the flow2p.
The applied magnetic field brings changes in the local Nussehber. While studying the
dependence aWVu on Pr, when an external magnetic field is not present, the maximesi h
transfer takes place near the front stagnation pist = (Figure4.3), whereas, when the
magnetic field is increased, the peak heat transfer regishified toward®) = /2. Ir-
respective of the magnetic field, whér is increased, the local Nusselt number increased
along the surface of the sphere. However, the heat trareteof a fluid with higherPr is
affected more by the external magnetic field when comparedfteid with lower Pr. The
higher values ofVu for higher Re, as seen from Figures4 and4.5, is as expected, since
fluids with larger Reynolds number indicate dominant cotiee¢ wherein the viscous and
thermal boundary layers get thinner with growiRg. When these local values of the heat
flux is surface-averaged over the sphere, we get the meareMuassnberN,,,. From Fig-
ure4.6, we observe that there is a degradation in the mean Nusselieruvher) < N < 2
beyond which it increases leading to a non-linear behavibis observation is in line with
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FIG. 4.4. Angular variation of the Nusselt number f&% = 5 whenPr = 0.73 and Pr = 8.
< ~N=0
----N=05
2 2
24
T T T T T \ 0 : T T T T ,
180 150 120 90 60 30 0 180 150 120 90 60 30 0
6 (degrees) 6 (degrees)

FIG. 4.5. Angular variation of the Nusselt number f&% = 40 whenPr = 0.73 and Pr = 8.

the recent experimental findings of Uda et a&l7][and Yokomine et al.31]. In particular,

to compare our results with the recent experimental res@iokomine et al. at low values
of N up to0.1, simulations are made with KOH solution wifhr = 5 for Re = 5 and 40,
and the mean Nusselt number is presented in Figuterhe degradation of the heat transfer
found in this study, at low values d¥, is also in agreement with experimental resubd]|
The increasedV,,, with Pr, as observed here, is in agreement wit] jn their study without
magnetic field.

5. Conclusions. A higher-order compact scheme is combined with an accelératilti-
grid method in spherical polar coordinates to simulate tbady forced convective heat trans-
fer from a sphere under the influence of an external magnetat fihe speedy convergence
of the solution using the multigrid method and acceleratedtigrid method is illustrated.
The computational efficiency of the higher-order compabieste over second-order accu-
rate scheme is presented. The angular variation of the Nussmber and mean Nusselt
number are calculated and compared with recent experiinessialts. Upon applying the
magnetic field, a slight degradation of the heat transfesusfl for moderate values of the in-
teraction paramete¥, and for high values oiV, an increase in the heat transfer is observed,
leading to nonlinear behavior.
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