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A COMBINED FOURTH-ORDER COMPACT SCHEME WITH AN
ACCELERATED MULTIGRID METHOD FOR THE ENERGY EQUATION IN

SPHERICAL POLAR COORDINATES ∗

T. V. S. SEKHAR†, R. SIVAKUMAR‡, S. VIMALA †, AND Y. V. S. S. SANYASIRAJU§

Abstract. A higher-order compact scheme is combined with an accelerated multigrid method to solve the energy
equation in a spherical polar coordinate system. The steady forced convective heat transfer from a sphere which is
under the influence of an external magnetic field is simulated. The convection terms in the energy equation are
handled in a comprehensive way avoiding complications in the calculations. The angular variation of the Nusselt
number and mean Nusselt number are calculated and compared with recent experimental results. Upon applying the
magnetic field, a slight degradation of the heat transfer is found for moderate values of the interaction parameterN,

and for high values ofN an increase in the heat transfer is observed leading to a nonlinear behavior. The speedy
convergence of the solution using the multigrid method and accelerated multigrid method is illustrated.

Key words. higher-order compact scheme, accelerated multigrid method, forced convection heat transfer, ex-
ternal magnetic field
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1. Introduction. The development of numerical methods for solving the Navier-Stokes
equations is progressing from time to time in terms of accuracy, stability, and efficiency in
using less CPU time and/or memory. It is well-known that at least second-order accurate
solutions are required to capture flow phenomena such as boundary layer, vortices etc., while
solving Navier-Stokes equations at high values of the Reynolds numbers (Re). The central
difference scheme (CDS) causes nonphysical oscillations and lacks diagonal dominance in
the resulting linear system. The first-order upwind difference approximation for convective
terms and central differences for diffusion terms makes thefinite difference scheme more
stable due to artificial viscosity. Also, the diagonal dominance is assured for the linear sys-
tem and so it can be solved easily using Point Gauss-Seidel orLine Gauss-Seidel, etc. As
the convective terms are approximated by first-order upwinddifferences, the scheme is not
second order accurate and may fail to capture the flow phenomena at high values ofRe due
to the dominance of convection. To achieve second-order accuracy, defect correction tech-
niques are used [15, 29]. The second-order upwind methods are no better than the first-order
upwind difference ones at high values of the flow parameters such asRe. All these methods
require fine mesh grids to achieve grid independence or to getacceptable accuracy. Multigrid
methods (which uses a sequence of coarser grids) are more popular in achieving fast conver-
gence, which results in significant reduction of CPU time andalso makes it possible to handle
a huge number of mesh points to achieve acceptable accuracy.Notable contributions using
the multigrid approach include articles by Ghia et al. [9], Fuchs and Zhao [8], Vanka [28],
and Brandt [4]. Thompson [26] described a method which combines the multigrid method
with automatic adaptive gridding to provide the basis of a stable solution strategy in Cartesian
coordinate systems.

All the above methods may fail to capture the flow phenomena ifthe domain is too large
such as in global ocean modeling and wide area weather forecasting applications. One ap-
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proach to achieve accurate solutions with reduced computational costs in very large scale
models and simulations is to use higher-order discretization methods. These methods use
relatively coarse mesh grids to yield approximate solutions of comparable accuracy, relative
to the lower-order discretization methods. The conventional higher-order finite difference
methods contains ghost points and requires special treatment near the boundaries [2]. An ex-
ception has been found in the high-order finite difference schemes of compact type, which are
computationally efficient and stable and give highly accurate numerical solutions [5, 10, 20].
To fully investigate the potential of using the fourth-order compact schemes for solving the
Navier-Stokes equations, multigrid techniques are essential. These multigrid methods have
been successfully used with first- and second-order finite difference methods. A preliminary
investigation on combining the fourth-order compact schemes with multigrid techniques was
made by Atlas and Burrage [1] for diffusion dominated flow problems.

Multigrid solution and accelerated multigrid solution methods with fourth-order compact
schemes for solving convection-dominated problems are relatively new. Some attempts have
been made in rectangular geometry [11, 12, 17, 21, 32, 33]. However, higher order compact
schemes (HOCSs) are seldom applied to flow problems in curvilinear coordinate systems
such as cylindrical and spherical polar coordinates exceptin [13, 14, 16, 19], where compact
fourth-order schemes in cylindrical polar coordinates were developed. In particular, to the
best of our knowledge, no work has been reported on high-order compact methods in spher-
ical polar coordinate systems employing multigrid methods. The problem of heat transfer
from a sphere which is under the influence of an external magnetic field is also new except
for a few experimental results [3, 27, 31]. Fluid flow control using magnetic field (including
dipole field) has a sound physical basis which may lead to a promising technology for better
heat transfer control.

Hydromagnetic flows of electrically conducting fluids and its heat transfer have become
more important in recent years because of many important applications including fusion tech-
nology. Early experimental exploration of a magnetic control of the heat transfer is reported
by Boynton [3] in their study of magnetic heat transfer over a sphere. Uda et al. [27] ex-
perimentally studied MHD effects on the heat transfer of liquid Lithium flow in an annular
channel. In their experimental study, Yokomine et al. [31] investigated heat transfer properties
of aqueous potassium hydroxid solution (Pr ≈ 5) and concluded that there is a degradation
of the heat transfer with the magnetic field. In this paper, a HOCS is employed with a com-
bination of accelerated multigrid technique to solve the energy equation in spherical polar
coordinates. The forced convection heat transfer from a sphere which is under the influence
of an external magnetic field is investigated.

2. Basic equations.The forced convective heat transfer problem is formulated as steady,
laminar flow in axis-symmetric spherical polar coordinates. The center of the sphere is cho-
sen at the origin and the flow is symmetric aboutθ = π (upstream) andθ = 0o (downstream).
The fluid is considered to be incompressible, viscous, and electrically conducting. A uniform
stream from infinity,U∞, is imposed from left to right at far distances from the sphere. The
magnetic Reynolds number is assumed to be small so that the induced magnetic field can be
neglected and a constant magnetic field

(2.1) H = (− cos θ, sin θ, 0)

is imposed opposite to the flow. The governing equations are the Navier-Stokes equations
and Maxwell’s equations which are expressed in non-dimensional form as follows:
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∇ · q = 0

(q · ∇)q = −∇p +
2

Re
∇2q + N [J × H]

J = ∇× H = E + q × H

∇ · H = 0

∇× E = 0,

(2.2)

whereq is the fluid velocity,H is the magnetic field,p is the pressure,E is the electric field,
J is the current density andN is the interaction parameter defined asN = σH2

∞
a/ρU∞.

Hereσ andρ are the electric conductivity and the density of the fluid anda is the radius of
the sphere.Re = 2aU∞/ν is the Reynolds number based on the diameter(2a) of the sphere.
In order to have fine resolution near the surface of the sphere, we have used the transformation
r = eξ along the radial direction, which provides the solution in the non-uniform physical
plane while keeping the uniform grid in the computational plane as shown in Figure2.1.
The fluid motion is described by radial and transverse components of the velocity(qr, qθ)
in a plane through the axis of symmetry, which are obtained bydividing the correspond-
ing dimensional components by the main-stream velocityU∞. The velocity components are
expressed in terms of a dimensionless stream functionψ(ξ, θ) such that the equation of con-
tinuity ∇ · q = 0 is satisfied. The velocity componentsqr andqθ are as follows:

(2.3) qr =
e−2ξ

sin θ

∂ψ

∂θ
, qθ = −

e−2ξ

sin θ

∂ψ

∂ξ
.

They are obtained by solving the momentum equation expressed in the vorticity-stream func-
tion formulation. The velocity field is obtained by solving equations (2.1–2.3) using a finite
difference based multigrid method followed by a defect correction technique developed by
Sekhar et al. [24]. The grid independent velocity components obtained from (2.1–2.3) over a
high resolution grid512 × 512 are used to solve the energy equation. If the physical proper-
ties of the fluid are assumed to be constant and the internal generation of heat by friction is
neglected, the energy equation is given by

(2.4)
∂2Θ

∂ξ2
+

∂Θ

∂ξ
+ cot θ

∂Θ

∂θ
+

∂2Θ

∂θ2
=

RePr

2

e−ξ

sin θ

(

∂ψ

∂θ

∂Θ

∂ξ
−

∂ψ

∂ξ

∂Θ

∂θ

)

,

whereΘ(ξ, θ) is the non-dimensionalized temperature, defined by subtracting the main-flow
temperatureΘ∞ from the temperature and dividing byΘs − Θ∞. Pr is the Prandtl number
defined as the ratio between kinematic viscosityν and thermal diffusivityκ. The boundary
conditions for the temperature areΘ = 1 on the surface of the sphere,Θ → 0 asξ → ∞,
and ∂Θ

∂θ
= 0 along the axis of symmetry. The numerical scheme used to solve the equations

(2.1–2.3) is described in [24], and the details of the fourth-order compact scheme to solve
equation (2.4) are given in the following section.

3. Fourth-order scheme with the MG method. Both the fluid motion and the temper-
ature field are axially symmetric and hence all computationshave been performed only in
one of the symmetric region. The discretization of the governing equation (2.4) in the sym-
metric region is done using the compact stencil. By combining the convection terms∂ψ

∂θ
∂Θ

∂ξ

and ∂ψ
∂ξ

∂Θ

∂θ
on the right-hand side of equation (2.4) with the terms∂Θ

∂ξ
andcot θ ∂Θ

∂θ
, respec-

tively, we obtain

(3.1) −
∂2Θ

∂ξ2
−

∂2Θ

∂θ2
+ u

∂Θ

∂ξ
+ v

∂Θ

∂θ
= 0,
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FIG. 2.1.The grid points of the non-uniform grid in which the final solution is obtained.

where

(3.2) u =
RePr

2
eξqr − 1, v =

RePr

2
eξqθ − cot θ.

The velocity componentsqr andqθ in equation (3.2) are obtained using a usual fourth-order
approximations from the stream functionψ. Applying standard central difference operators
to equation (3.1) gives

(3.3) −δ2
ξΘi,j − δ2

θΘi,j + ui,jδξΘi,j + vi,jδθΘi,j − τi,j = 0.

The truncation error of equation (3.3) is given by

(3.4) τi,j =

[

2

(

h2

12
u

∂3Θ

∂ξ3
+

k2

12
v
∂3Θ

∂θ3

)

−

(

h2

12

∂4Θ

∂ξ4
+

k2

12

∂4Θ

∂θ4

)]

i,j

+ O(h4, k4),

whereh andk are the grid spacings(h 6= k) in the radial and angular directions, respectively.
From equation (3.1), we get

∂3Θ

∂ξ3
= −

∂3Θ

∂ξ∂θ2
+ u

∂2Θ

∂ξ2
+

∂u

∂ξ

∂Θ

∂ξ
+ v

∂2Θ

∂ξ∂θ
+

∂v

∂ξ

∂Θ

∂θ
,

∂4Θ

∂ξ4
= −

∂4Θ

∂ξ2∂θ2
+ v

∂3Θ

∂ξ2∂θ
− u

∂3Θ

∂ξ∂θ2
+

(

2
∂v

∂ξ
+ uv

)

∂2Θ

∂ξ∂θ

+

(

2
∂u

∂ξ
+ u2

)

∂2Θ

∂ξ2
+

(

∂2u

∂ξ2
+ u

∂u

∂ξ

)

∂Θ

∂ξ

+

(

∂2v

∂ξ2
+ u

∂v

∂ξ

)

∂Θ

∂θ
,

∂3Θ

∂θ3
= −

∂3Θ

∂ξ2∂θ
+ u

∂2Θ

∂ξ∂θ
+

∂u

∂θ

∂Θ

∂ξ
+ v

∂2Θ

∂θ2
+

∂v

∂θ

∂Θ

∂θ
,

∂4Θ

∂θ4
= −

∂4Θ

∂ξ2∂θ2
+ u

∂3Θ

∂ξ∂θ2
− v

∂3Θ

∂ξ2∂θ
+

(

2
∂u

∂θ
+ uv

)

∂2Θ

∂ξ∂θ

+

(

2
∂v

∂θ
+ v2

)

∂2Θ

∂θ2
+

(

∂2u

∂θ2
+ v

∂u

∂θ

)

∂Θ

∂ξ

+

(

∂2v

∂θ2
+ v

∂v

∂θ

)

∂Θ

∂θ
.
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A substitution in equation (3.4) and hence in (3.3) yields

− ei,jδ
2
ξΘi,j − fi,jδ

2
θΘi,j + gi,jδξΘi,j + oi,jδθΘi,j

−
h2 + k2

12

(

δ2
ξδ2

θΘi,j − ui,jδξδ
2
θΘi,j − vi,jδ

2
ξδθΘi,j

)

+ wi,jδξδθΘi,j = 0,

where the coefficientsei,j , fi,j , gi,j , oi,j andwi,j are given by

ei,j = 1 +
h2

12

(

u2
i,j − 2δξui,j

)

fi,j = 1 +
k2

12

(

v2
i,j − 2δθvi,j

)

gi,j = ui,j +
h2

12

(

δ2
ξui,j − ui,jδξui,j

)

+
k2

12

(

δ2
θui,j − vi,jδθui,j

)

oi,j = vi,j +
h2

12

(

δ2
ξvi,j − ui,jδξvi,j

)

+
k2

12

(

δ2
θvi,j − vi,jδθvi,j

)

wi,j =
h2

6
δξvi,j +

k2

6
δθui,j −

(

h2 + k2

12

)

ui,jvi,j ,

and the two-dimensional cross derivativeδ operators on a uniform anisotropic mesh(h 6= k)
are given by

δξδθΘi,j =
1

4hk
(Θi+1,j+1 − Θi+1,j−1 − Θi−1,j+1 + Θi−1,j−1)

δ2
ξδθΘi,j =

1

2h2k
(Θi+1,j+1 − Θi+1,j−1 + Θi−1,j+1 − Θi−1,j−1 − 2Θi,j+1 + 2Θi,j−1)

δξδ
2
θΘi,j =

1

2hk2
(Θi+1,j+1 − Θi−1,j+1 + Θi+1,j−1 − Θi−1,j−1 + 2Θi−1,j − 2Θi+1,j)

δ2
ξδ2

θΘi,j =
1

h2k2

(

Θi+1,j+1 + Θi+1,j−1 + Θi−1,j+1 + Θi−1,j−1

− 2Θi,j+1 − 2Θi,j−1 − 2Θi+1,j − 2Θi−1,j + 4Θi,j

)

.

For evaluating boundary conditions along the axis of symmetry, the derivative∂Θ

∂θ
is approx-

imated by a fourth-order forward difference alongθ = 0 (i.e., j = 1) and a fourth-order
backward difference alongθ = π (or j = m + 1) as follows:

Θ(i, 1) =
1

25
[48Θ(i, 2) − 36Θ(i, 3) + 16Θ(i, 4) − 3Θ(i, 5)]

Θ(i, m + 1) =
1

25
[48Θ(i, m) − 36Θ(i, m − 1) + 16Θ(i, m − 2) − 3Θ(i, m − 3)] .

The algebraic system of equations obtained using the fourth-order compact scheme described
as above is solved using a multigrid scheme with coarse grid correction. Point Gauss-Seidel
relaxation is used as pre-smoothers and post-smoothers. Please note that as the grid inde-
pendent solutions of the flow (likeψ andω) are obtained from the finest grid of512 × 512,
the same finest grid is used when solving the heat transfer equation although such a high
resolution grid is not necessary. The coarser grids used are256 × 256, 128 × 128, 64 × 64
and the coarsest grid32 × 32. The injection operator and 9-point prolongation operators are
used to move from finer to coarser and coarser to finer grids, respectively, [9]. For a two-grid
problem, to solveLu = f , one iteration implies the following steps:
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1. Let the initial solution beu◦ on the finest grid.
2. Apply Point Gauss Seidel iterations onu◦ on the finest grid a few times as pre-

smoother to get an approximate solutionu1.
3. Calculate the residuer on the finest grid,r = f − Lfu1.
4. To get the residue on a coarser gridrc, restrict the residuer from the finer to

the coarser grid and then multiply with a residual scaling parameterβ, that is,
rc = β Rr. HereR represents the restriction operator.

5. Setup the error equationLcec = rc on the coarser grid and solve for the errore using
the Point Gauss Seidel method. This gives the error on the coarser grid.

6. To get the errore on the finer grid, prolongate the errorec to the finer grid and then
multiply with a residual weighting parameterα. Add this errore to the solutionu1

obtained in Step 2 to get an improved solutionu2. That is,u2 = u1 + αPec, where
P is the 9-point prolongation operator.

7. Perform a few Point Gauss-Seidel iterations on the solution u2 on the finer grid to
obtain a much better solutionu3.

8. Consideru3 asu◦ and go to Step 2.
The Steps 1–8 above constitute one iteration of the two-gridproblem. The iterations are

continued until the norm of the dynamic residuals is less than 10−5. In the algorithm given
above, ifα = β = 1, then it is a standard two-grid method with coarse grid correction. The
parametersα andβ are used to accelerate the convergence rate. In this study, we used values
with 0 < α < 2 and0 < β < 2.

4. Results and discussion.The higher-order compact scheme combined with an accel-
erated multigrid method introduced in Section3 is applied to the problem of a heated sphere
which is immersed in an incompressible, viscous, and electrically conducting fluid. An ex-
ternal magnetic field is applied in the opposite direction ofthe uniform stream. In this study,
mainly two flow parameters,Re = 5 andRe = 40, are considered, in which the earlier has
no boundary layer separation while the latter has a separation. The results are discussed for
the range ofN for 0 ≤ N ≤ 8 and the Prandtl numbersPr = 0.065, 0.73, 1, 2, 5, 8. The
local Nusselt numberNu(θ) and the mean Nusselt numberNm are calculated as follows:

(4.1) Nu(θ) =
2aq(θ)

k(Θs − Θ∞)
= −2

(

∂Θ

∂ξ

)

ξ=0

and

(4.2) Nm = −

∫ π

0

(

∂Θ

∂ξ

)

ξ=0

sin θ dθ.

In equations (4.1) and (4.2) the derivative∂Θ

∂ξ
is approximated by usual fourth-order forward

finite differences and the integral is evaluated using the Simpson’s rule.
In the absence of a magnetic field(N = 0) the basic hydrodynamic problem is equivalent

to the steady viscous flow around a sphere. Therefore, forN = 0, the developed scheme is
validated with the available theoretical results (Table4.1) for Re = 5 and 40. It is clear from
the table that the present results agree well with the numerical results of Dennis [6] with a
variation of0.35 percent and recent results of Feng and Michaelides [7] with a variation of
0.20–4.78 percent. The results also agree with experimental results of Ranz and Marshall
[22, 23] with a variation of0.47–11.21 percent and Whitaker [30] with a variation of3.06–
6.75 percent.

The simulations have been carried out over32× 32, 64× 64, 128× 128, 256× 256, and
512 × 512 grids, and the mean Nusselt number forRe = 5 and 40 for selected values ofPr
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TABLE 4.1
Comparison of the mean Nusselt number with results in literature in the absence of the magnetic field.

Nm for Re = 5 Nm for Re = 40

Pr = 0.73 Pr = 5 Pr = 0.73 Pr = 5

Present simulation 2.8518 4.3101 5.0449 8.6987

Ranz & Marshall (1952) 3.2080 4.2942 5.4168 8.4889

Whitaker (1972) 2.9433 4.0366 4.8493 8.1518

Dennis (1973) 2.86 — — —

Feng & Michaelides (2000) 2.7250 4.3460 5.0545 8.7700

andN are presented in Tables4.2, 4.3, 4.4, and4.5. It is clear from these tables that (i) the
solutions obtained from the present numerical scheme exhibit grid independence, and (ii) it is
possible to obtain grid independence in the smaller64× 64 grid for low Prandtl numbersPr.
For higher values ofPr, a grid finer than64 × 64 but less than128 × 128 is necessary for
grid independence. Clearly, solutions obtained from high resolution grids such as256 × 256
and512 × 512 are not required as mentioned in the previous section.

TABLE 4.2
Effect of grid size on the results forRe = 5 andPr = 0.73.

N Nm

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

0.5 2.849 2.850 2.850 2.850 2.850

1 2.858 2.859 2.859 2.859 2.859

3 2.885 2.886 2.886 2.886 2.886

5 2.900 2.901 2.901 2.901 2.901

8 2.915 2.917 2.917 2.917 2.917

TABLE 4.3
Effect of grid size on the resultsRe = 40 andPr = 0.73.

N Nm

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

0.5 4.928 4.982 4.986 4.986 4.986

1 4.913 4.962 4.965 4.965 4.965

3 4.920 4.964 4.967 4.967 4.967

5 4.948 4.994 4.997 4.998 4.998

8 5.004 5.053 5.057 5.057 5.057

The fourth-order compact scheme is combined with an accelerated multigrid technique
to achieve fast convergence so that CPU time can be minimized. Although multigrid methods
are well established with first- and second-order discretization methods, their combination
with higher-order compact schemes are not found much in the literature. To study the effect
of the multigrid method and accelerated multigrid method onthe convergence of the Point
Gauss-Seidel iterative method while solving the resultingalgebraic system of equations, the
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TABLE 4.4
Effect of grid size on the resultsRe = 5 andN = 2.

Pr Nm

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

0.065 2.142 2.142 2.142 2.142 2.142

0.73 2.873 2.874 2.874 2.874 2.874

1 3.051 3.053 3.053 3.053 3.053

2 3.530 3.536 3.536 3.536 3.536

5 4.369 4.398 4.400 4.400 4.400

8 4.899 4.962 4.965 4.965 4.965

TABLE 4.5
Effect of grid size on the resultsRe = 40 andN = 2.

Pr Nm

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

0.065 2.780 2.781 2.781 2.781 2.781

0.73 4.910 4.955 4.957 4.958 4.958

1 5.330 5.403 5.408 5.408 5.408

2 6.400 6.572 6.589 6.590 6.590

5 8.510 8.549 8.640 8.644 8.644

8 10.464 9.763 9.961 9.970 9.970

TABLE 4.6
Comparison of CPU times (in hours) with second-order accurate scheme.

Grid CPU time in hours

Second-order HOCS

64 × 64 0.00083 0.00027

128 × 128 0.01055 0.00277

256 × 256 0.1575 0.07527

512 × 512 2.9108 2.2291

322 − 1282 — 0.0011∗

322 − 5122 1.29∗ 0.1158

∗ CPU time on achieving grid independence

solution is obtained from different multigrids starting with five grids32× 32, 64× 64, 128×
128, 256 × 256, and512 × 512, and by omitting each coarser grid until it reaches the single
grid 512 × 512. This experiment is done withRe = 40, Pr = 0.73 and four values of
interaction parameters,0, 0.5, 2 and7. The simulations are also made forRe = 40, N = 2
and for selected values ofPr, 0.73, 2 and5. The computations are carried out on an AMD
quad core Phenom-II X4 965 (3.4 GHz) desktop computer. The number of iterations and CPU
time (in hours) taken for different multigrids and single grid are illustrated in Figures4.1and
4.2. From these figures it is clear that the multigrid method withcoarse grid correction is very
effective in enhancing the convergence rate of the solutions. It enhances the convergence rate
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at least94 percent in comparison with a single grid. The accelerated multigrid technique
further enhances the convergence rate by reducing 21 percent of the time taken by multigrid
(5 grids). In this study, the acceleration parameters whichare found suitable for enhancement
of the convergence rate for one value ofPr, in the absence of the magnetic field, is suitable
for all values of the non-zero interaction parameters. The results are also obtained for some
parameters using a second-order accurate scheme combined with the multigrid method [24].
The CPU time (in hours) taken for both the methods in each gridas well as the multigrid are
tabulated in Table4.6. It can be noted from the table that HOCS is more computationally
efficient when compared to second-order accurate scheme in each grid as well as when it is
combined with the multigrid method.

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

 Pr = 0.73
 Acc.para.  =1.5,  =0.5

 Pr = 2
 Acc.para.  =1.4,  =0.5

Re = 40, N = 2

C
PU

 T
im

e 
(h

ou
rs

)

Number of Grids

FIG. 4.1. Effect of the multigrid and acceleration parameter on the convergence factor forRe = 40 and
N = 2, where the range between 5 to 6 on the x-axis indicates 5 gridswith acceleration parametersα = 1.5,
β = 0.5 for Pr = 0.73 andα = 1.4, β = 0.5 for Pr = 2.
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4.1. Local and mean Nusselt numbers.The angular variation of the local Nusselt
numberNu on the surface of the sphere for different Prandtl numbers and for different in-
teraction parameters are presented in Figures4.3, 4.4, and4.5. In the absence of a magnetic
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FIG. 4.3.Angular variation of the Nusselt number forRe = 40 whenN = 0, N = 2 andN = 7.

field, it is found that the local Nusselt number decreases along the surface of the sphere for
Reynolds numbersRe = 5 [6] and forRe = 40. In the upstream region (Figures4.4, 4.5),
the viscous boundary layer thickens with the application ofthe magnetic field. All the curves
in Figure4.5 meet at one critical point after which an inverse effect is exhibited, that is, the
boundary layer gets thinner with the magnetic field. The curves meet once again in the far
downstream. These features are attributed to changes in theradial and transverse velocity gra-
dients of the fluid, which resulted due to the application of the magnetic field to the flow [25].
The applied magnetic field brings changes in the local Nusselt number. While studying the
dependence ofNu onPr, when an external magnetic field is not present, the maximum heat
transfer takes place near the front stagnation pointθ = π (Figure4.3), whereas, when the
magnetic field is increased, the peak heat transfer region isshifted towardsθ = π/2. Ir-
respective of the magnetic field, whenPr is increased, the local Nusselt number increased
along the surface of the sphere. However, the heat transfer rate of a fluid with higherPr is
affected more by the external magnetic field when compared toa fluid with lowerPr. The
higher values ofNu for higherRe, as seen from Figures4.4 and4.5, is as expected, since
fluids with larger Reynolds number indicate dominant convection, wherein the viscous and
thermal boundary layers get thinner with growingRe. When these local values of the heat
flux is surface-averaged over the sphere, we get the mean Nusselt numberNm. From Fig-
ure4.6, we observe that there is a degradation in the mean Nusselt number when0 ≤ N ≤ 2
beyond which it increases leading to a non-linear behavior.This observation is in line with
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FIG. 4.4.Angular variation of the Nusselt number forRe = 5 whenPr = 0.73 andPr = 8.

180 150 120 90 60 30 0

2

3

4

5

6

7

8 Re = 40 , Pr = 0.73

N
u

  (degrees)

 N = 0
 N =0.5
 N = 2
 N = 8 

180 150 120 90 60 30 0
0

2

4

6

8

10

12

14

16

18
Re = 40 , Pr = 8

N
u

  (degrees)

 N = 0
 N = 0.5 
 N = 2
 N = 8

FIG. 4.5.Angular variation of the Nusselt number forRe = 40 whenPr = 0.73 andPr = 8.

the recent experimental findings of Uda et al. [27] and Yokomine et al. [31]. In particular,
to compare our results with the recent experimental resultsof Yokomine et al. at low values
of N up to0.1, simulations are made with KOH solution withPr = 5 for Re = 5 and 40,
and the mean Nusselt number is presented in Figure4.7. The degradation of the heat transfer
found in this study, at low values ofN , is also in agreement with experimental results [31].
The increasedNm with Pr, as observed here, is in agreement with [18] in their study without
magnetic field.

5. Conclusions.A higher-order compact scheme is combined with an accelerated multi-
grid method in spherical polar coordinates to simulate the steady forced convective heat trans-
fer from a sphere under the influence of an external magnetic field. The speedy convergence
of the solution using the multigrid method and accelerated multigrid method is illustrated.
The computational efficiency of the higher-order compact scheme over second-order accu-
rate scheme is presented. The angular variation of the Nusselt number and mean Nusselt
number are calculated and compared with recent experimental results. Upon applying the
magnetic field, a slight degradation of the heat transfer is found for moderate values of the in-
teraction parameterN, and for high values ofN , an increase in the heat transfer is observed,
leading to nonlinear behavior.
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