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Abstract

In the present investigation, certain subclasses of close-to-convex functions are
investigated. In particular, we obtain an estimate for the Fekete-Szegö functional for
functions belonging to the class, distortion, growth estimates and covering
theorems.
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1 Introduction
Let � := {z ∈ � :| z |< 1} be the open unit disk in the complex plane �. Let A be the

class of analytic functions defined on � and normalized by the conditions f(0) = 0 and

f’ (0) = 1. Let S be the subclass of A consisting of univalent functions [1]. Sakaguchi

[2] introduced a class of functions called starlike functions with respect to symmetric

points; they are the functions f ∈ A satisfying the condition

Re
zf ′(z)

f (z) − f (−z)
> 0.

These functions are close-to-convex functions. This can be easily seen by showing

that the function (f(z) - f(-z))/2 is a starlike function in � . Motivated by the class of

starlike functions with respect to symmetric points, Gao and Zhou [3] discussed a

class Ks of close-to-convex univalent functions. A function f ∈ Ks if it satisfies the

following inequality

Re
(

z2f ′(z)
g(z)g(−z)

)
< 0 (z ∈ �)

for some function g Î S*(1/2). The idea here is to replace the average of f(z) and - f

(-z) by the corresponding product -g(z) g(-z), and the factor z is included to normalize

the expression, so that -z2 f’(z)/(g(z) g(-z)) takes the value 1 at z = 0. To make the func-

tions univalent, it is further assumed that g is starlike of order 1/2 so that the function

-g(z) g(-z)/z is starlike, which in turn implies the close-to-convexity of f. For some

recent works on the problem, see [4-7]. Instead of requiring the quantity -z2 f’(z)/(g(z)

g(-z)) to lie in the right-half plane, we can consider more general regions. This could

be done via subordination between analytic functions.
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Let f and g be analytic in � . Then f is subordinate to g, written f ≺ g or

f (z) ≺ g(z) (z ∈ �) , if there is an analytic function w(z), with w(0) = 0 and |w(z)| < 1,

such that f(z) = g(w(z)). In particular, if g is univalent in � , then f is subordinate to g,

if f(0) = g(0) and f (�) ⊆ g(�) . In terms of subordination, a general class Ks(ϕ) is

introduced in the following definition.

Definition 1 [4] For a function � with positive real part, the class Ks(ϕ) consists of

functions f ∈ A satisfying

− z2f ′(z)
g(z)g(−z)

≺ ϕ(z) (z ∈ �) (1)

for some function g Î S*(1/2).

This class was introduced by Wang et al. [4]. A special subclass Ks(γ ) := Ks(ϕ)

where �(z): = (1 + (1 - 2g) z)/(1 - z), 0 ≤ g < 1, was recently investigated by Kowalczyk

and Leś-Bomba [8]. They proved the sharp distortion and growth estimates for func-

tions in Ks(γ ) as well as some sufficient conditions in terms of the coefficient for

function to be in this class Ks(γ ) .

In the present investigation, we obtain a sharp estimate for the Fekete-Szegö func-

tional for functions belonging to the class Ks(ϕ) . In addition, we also investigate the

corresponding problem for the inverse functions for functions belonging to the class

Ks(ϕ) . Also distortion, growth estimates as well as covering theorem are derived.

Some connection with earlier works is also indicated.

2 Fekete-Szegö inequality
In this section, we assume that the function �(z) is an univalent analytic function with

positive real part that maps the unit disk � onto a starlike region which is symmetric

with respect to real axis and is normalized by �’(0) = 1 and �(0) > 0. In such case, the

function � has an expansion of the form �(z) = 1 + B1z + B2z
2 +..., B1 > 0.

Theorem 1 (Fekete-Szegö Inequality) For a function f(z) = z + a2z
2 + a3z

3 +...

belonging to the class Ks(ϕ) , the following sharp estimate holds:

| a3 − μa22 | ≤ 1/3 + max(B1 /3, | B2 /3 − μB2
1 /4 |) (μ ∈ �).

Proof Since the function f ∈ Ks(ϕ) , there is a normalized analytic function g Î S*(1/

2) such that

− z2f ′(z)
g(z)g(−z)

≺ ϕ(z).

By using the definition of subordination between analytic function, we find a func-

tion w(z) analytic in � , normalized by w(0) = 0 satisfying |w(z)| < 1 and

− z2f ′(z)
g(z)g(−z)

= ϕ(w(z)). (2)

By writing w(z) = w1z + w2z
2 +..., we see that

ϕ(w(z)) = 1 + B1w1z + (B1w2 + B2w
2
1)z

2 + · · ·. (3)
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Also by writing g(z) = z + g2z
2 + g3z

3 +..., a calculation shows that

−g(z)g(−z)
z

= z + (2g3 − g22)z
3 + · · ·

and therefore

− z

g(z)g(−z)
=
1
z

− (2g3 − g22)z
2 + · · · .

Using this and the Taylor’s expansion for zf’(z), we get

− z2f ′(z)
g(z)g(−z)

= 1 + 2a2z + (3a3 − 2g3 + g22)z
2 + · · · . (4)

Using (2), (3) and (4), we see that

2a2 = B1w1,

3a3 = 2g3 − g22 + B1w2 + B2w2
1.

This shows that

a3 − μa22 = (2/3) (g3 − g22 /2) + (B1 /3) (w2 + (B2 /B1 − 3μB1 /4)w2
1).

By using the following estimate ([9, inequality 7, p. 10])

| w2 − tw2
1 |≤ max{1; | t |} (t ∈ �)

for an analytic function w with w(0) = 0 and |w(z)| < 1 which is sharp for the func-

tions w(z) = z2 or w(z) = z, the desired result follows upon using the estimate that

| g3 − g22 /2 | ≤ 1/2 for analytic function g(z) = z + g2z
2 + g3z

3 +... which is starlike of

order 1/2.

Define the function f0 by

f0(z) =

z∫
0

ϕ(w)
1 − w2

dw.

The function clearly belongs to the class Ks(ϕ) with g(z) = z /(1 - z). Since

ϕ(w)
1 − w2

= 1 + B1w + (B2 + 1)w2 + · · · ,

we have

f0(z) = z + (B1 /2)z2 + (1/3 + B2 /3)z3 + · · · .

Similarly, define fl by

f1(z) =

z∫
0

ϕ(w2)
1 − w2

dw.
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Then

f1(z) = z + (B1 /3 + 1/3)z3 + · · · .

The functions f0 and f1 show that the results are sharp.

Remark 1 By setting μ = 0 in Theorem 1, we get the sharp estimate for the third

coefficient of functions in Ks(ϕ) :

| a3 | ≤ 1/3 + (B1 /3)max(1, | B2 | /B1),

while the limiting case μ ® ∞ gives the sharp estimate |a2| ≤ B1/2. In the special

case where �(z) = (1 + z)/(1 - z), the results reduce to the corresponding one in [3,

Theorem 2, p. 125].

Though Xu et al. [7] have given an estimate of |an| for all n, their result is not sharp

in general. For n = 2, 3, our results provide sharp bounds.

It is known that every univalent function f has an inverse f -1, defined by

f−1(f (z)) = z, z ∈ �

and

f (f−1(w)) = w,
(

| w | < r0(f ); r0(f ) ≥ 1
4

)
.

Corollary 1 Let f ∈ Ks(ϕ) . Then the coefficients d2 and d3 of the inverse function f-1

(w) = w + d2w
2 + d3w

3 +... satisfy the inequality

| d3 − μd22 | ≤ 1/3 + max(B1 /3, | B2 /3 − (2 − μ)B2
1 /4 |) (μ ∈ �).

Proof A calculation shows that the inverse function f-1 has the following Taylor’s ser-

ies expansion:

f−1(w) = w − a2w
2 + (2a22 − a3)w3 + · · · .

From this expansion, it follows that d2 = a2 and d3 = 2a22 − a3 and hence

| d3 − μd22 | = | a3 − (2 − μ)a22 | .

Our result follows at once from this identity and Theorem 1.

3 Distortion and growth theorems
The second coefficient of univalent function plays an important role in the theory of

univalent function; for example, this leads to the distortion and growth estimates for

univalent functions as well as the rotation theorem. In the next theorem, we derive the

distortion and growth estimates for the functions in the class Ks(ϕ) . In particular, if

we let r ® 1- in the growth estimate, it gives the bound |a2| ≤ B1/2 for the second

coefficient of functions in Ks(ϕ) .

Theorem 2 Let � be an analytic univalent functions with positive real part and

φ(−r) = min
|z |=r<1

| φ(z) |, φ(r) = max
|z |=r <1

| φ(z) | .
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If f ∈ Ks(ϕ) , then the following sharp inequalities hold:

ϕ(−r)
1 + r2

≤ | f ′(z) | ≤ ϕ(r)
1 − r2

(| z | = r < 1),

r∫
0

ϕ(−t)
1 + t2

dt ≤ | f (z) | ≤
r∫

0

ϕ(t)
1 − t2

dt (| z | = r < 1).

Proof Since the function f ∈ Ks(ϕ) , there is a normalized analytic function g Î S*(1/

2) such that

− z2f ′(z)
g(z)g(−z)

≺ ϕ(z). (5)

Define the function G : � → � by the equation

G(z) := −g(z)g(−z)
z

.

Then it is clear that G is odd starlike function in � and therefore

r
1 + r2

≤ | G(z) | ≤ r
1 − r2

(| z | = r < 1)

Using the definition of subordination between analytic function, and the Equation

(2), we see that there is an analytic function w(z) with |w(z)| ≤ |z| such that

zf ′(z)
G(z)

= ϕ(w(z))

or zf’(z) = G(z) �(w(z)). Since w(�) ⊂ � , we have, by maximum principle for harmo-

nic functions,

| f ′(z) | = | G(z) |
| z | | ϕ(w(z)) | ≤ 1

1 − r2
max
|z|=r

| ϕ(z) | = ϕ(r)
1 − r2

.

The other inequality for |f’(z)| is similar. Since the function f is univalent, the

inequality for |f(z)| follows from the corresponding inequalities for |f’(z)| by Privalov’s

Theorem [10, Theorem 7, p. 67].

To prove the sharpness of our results, we consider the functions

f0(z) =

z∫
0

ϕ(w)
1 − w2

dw, f1(z) =

z∫
0

ϕ(w)
1 + w2

dw. (6)

Define the function g0 and g1 by g0(z) = z /(1 - z) and g1(z) = z/
√
1 + z2 . These func-

tions are clearly starlike functions of order 1/2. Also a calculation shows that

− z2f ′
k(z)

gk(z)gk(−z)
= ϕ(z) (k = 0, 1).

Thus, the function f0 satisfies the subordination (1) with g0, while the function f1
satisfies it with g1; therefore, these functions belong to the class Ks(ϕ) . It is clear that
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the upper estimates for |f’(z)| and |f(z)| are sharp for the function f0 given in (6), while

the lower estimates are sharp for fl given in (6).

Remark 2 We note that Xu et al. [7] also obtained a similar estimates and our results

differ from their in the hypothesis. Also we have shown that the results are sharp. Our

hypothesis is same as the one assumed by Ma and Minda [11].

Remark 3 For the choice �(z) = (1 + z)/(1 - z), our result reduces to [3, Theorem 3,

p. 126], while for the choice �(z) = (1 + (1 - 2g)z)/(1 - z), it reduces to following esti-

mates (obtained in [8, Theorem 4, p. 1151]) for f ∈ Ks(γ ) :

1 − (1 − 2γ )r
(1 + r) (1 + r2)

≤ | f ′(z) | ≤ 1 + (1 − 2γ )r
(1 − r) (1 − r2)

and

(1 − γ ) ln
1 + r√
1 + r2

+ γ arctan r ≤ | f (z) | ≤ γ

2
ln

1 + r

1 − r
+ (1 − γ )

r

1 − r

where |z| = r < 1. Also our result improves the corresponding results in [4].

Remark 4 Let k := limr→1−
∫ r
0 ϕ(−t)/(1 + t2) dt . Then the disk

{w ∈ � : | w | ≤ k} ⊆ f (�) for every f ∈ Ks(ϕ) .

4 A subordination theorem
It is well known [12] that f is starlike if (1 - t) f(z) ≺ f(z) for t Î (0, Î), where Î is a

positive real number; also the function is starlike with respect to symmetric points if (1

- t) f(z) + tf(-z) ≺ f(z). In the following theorem, we extend these results to the class

Ks . The proof of our result is based on the following version of a lemma of Stankie-

wicz [12].

Lemma 1 Let F(z, t) be analytic in � for each t Î (0, Î), F(z, 0) = f(z), f ∈ S and F

(0, t) = 0 for each t Î (0, Î). Suppose that F(z, t) ≺ f(z) and that

lim
t→0+

F(z, t) − f (z)
ztρ

= F(z)

exists for some r > 0. If F is analytic and Re (F(z)) ≠ 0, then

Re
(
F(z)
f ′(z)

)
< 0.

Theorem 3 Let f ∈ S and g ∈ S∗ (1/2). Let Î > 0 and f(z) + tg(z)g(-z)/z ≺ f(z), t Î (0,

Î). Then f ∈ Ks .

Proof Define the function F by F(z, t) = f(z) + tg(z)g(-z)/z. Then F(z, t) is analytic for

every fixed t and F(z, 0) = f(z) and by our assumption, f ∈ S . Also

lim
t→0+

F(z, t) − f (z)
zt

=
g(z)g(−z)

z2
:= F(z).

The function F is analytic in � (of course, one has to redefine the function F at z =

0 where it has removable singularity.) Since all hypotheses of Lemma 1 are satisfied,

we have
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Re
(
g(z)g(−z)
z2f ′(z)

)
< 0.

Since a function p(z) has negative real part if and only if its reciprocal 1/p(z) has

negative real part, we have

Re
(

z2f ′(z)
g(z)g(−z)

)
< 0.

Thus, f ∈ Ks .
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