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This work presents a new approach for modeling sea surface salinity (SSS) from MODIS satellite data. 
In doing so, the least squares algorithm is used to retrieve SSS from multi MODIS bands data. Thus, the 
basic linear model has been solved by using least square estimators. In situ measurements are 
collected along the east coast of peninsular Malaysia by using hydrolab instrument. The study shows 
that homogenous offshore sea surface salinity as compared with onshore SSS variations. The onshore 
SSS are ranged between 28.5 and 29.5 psu whereas the offshore SSS variations have maximum value of 
33.8 psu. The results also show a good correlation between in situ SSS measurements and the SSS that 
is retrieved from MODIS satellite data with high r

2
 of 0.97 and RMS of bias value of ±0.37 psu. It can be 

said that least squares method can be used to provide a new algorithm for SSS retrieval from MODIS 
satellite data. 
 
Key words: Sea surface salinity, moderate-resolution imaging spectrometer satellite data, least square 
estimators, linear model. 

 
 
INTRODUCTION 
 
Sea surface salinity (SSS) retrieval from satellite data is a 
major challenge. Indeed, dissolved salts, suspended 
substances have a major impacts on the the 
electromagnetic radiation attenuation outside the visible 
spectra range (Wong et al., 2007; Marghany, 2009; 
Marghany et al., 2010a). In this context, the 
electromagnetic wavelength larger than 700 nm is 
increasingly absorbed whereas the wavelength less than 
300 nm is scattered by non-absorbing particles such as 
zooplankton, suspended sediments and dissolved salts 
(Ellison et al., 1998). In situ sea surface salinity (SSS) 
measurements, nevertheless, acquired by buoys and 
oceanographic or commercial ships, remain sparse and 
irregular, with large parts of the global ocean never 
sampled. In these circumstances, scientists have paid a 
great attention to utilize satellite data for SSS retrieval 
(Klein and Swift, 1997; Ellison et al., 1998; Maes and 
Behringer, 2000; Gabarro, 2004; Burrage et al., 2008). In 
this context, Wong et al. (2007) introduced linear algorithm 
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to retrieve SSS from Aqua/MODIS level 1B reflectance 
data with 250 and 500 m spatial resolution. 

In spite of these there are no works to correlate sea 
surface salinity (SSS) with MODIS reflectance; Wong et 
al. (2007) have assumed that there is a linear relationship 
between SSS and MODIS reflectance of band 1 to band 
7. They stated that the linear algorithm provides accurate 
SSS retrieving from Aqua/MODIS level 1B reflectance 
data with root mean square error of 1.63 psu. In addition, 
they found that the principle component analysis (PCA) 
has poor accuracy for SSS retrieving than linear empirical 
algorithm. Recently, Ahn et al. (2008) and Palacios et al. 
(2009) have derived SSS using colored dissolved organic 
matter concentration, (aCDOM) from optical satellite data. 
In fact, Hu et al. (2004) have suggested that SSS can 
correlate linearly or inversely with CDOM. In this 
circumstances, Ahn et al. (2008) have developed robust 
and proper regional algorithms from large in situ 
measurements of apparent and inherent optical 
properties (that is remote sensing reflectance, Rrs and 
absorption coefficient of colored dissolved organic matter, 
aCDOM) to derive salinity using SeaWiFS images. Further, 
Palacios  et   al.   (2009)  stated  that  light  absorption  by  
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Figure 1. Regression analysis between MODIS SSS and in situ measurements form. 
Source: Salah et al. (2010a). 

 
 
 

chromophoric dissolved organic matter (aCDOM) is 
inversely proportional to salinity and linear because of 
conservative mixing of CDOM‐rich terrestrial runoff with 
surrounding ocean water. In this context, Ahn et al. 
(2008) established the robust algorithm based on the 
absorption coefficients of CDOM, in situ measurements of 
salinity that was made at 400, 412, 443 and 490 nm. 

Similarly, Palacios et al. (2009) developed synthetic 
salinity algorithm simple linear (salinity versus aCDOM) and 
multiple linear (salinity and temperature versus aCDOM) 
algorithms were applied to MODIS 250 m resolution data 
layers of sea surface temperature and absorption by 
colored dissolved and detrital matter (aCODM) estimated at 
350 and 412 nm from the Garver‐Siegel‐Maritorena 
model version 1 algorithm. Ahn et al. (2008) found that 
the CDOM absorption at 400 nm was better inversely 

correlated (r
2 

= 0.86) with salinity than at 412, 443 and 

490 nm (r
2 

= 0.85 to 0.66), and this correlation 

corresponded best with an exponential (r
2 

= 0.98) rather 
than a linear function of salinity measured in a variety of 
water types from this and other regions. In this context, 
Palacios et al. (2009) stated that light absorption by 
chromophoric dissolved organic matter (aCDOM) is 
inversely proportional to salinity and linear because of 
conservative mixing of CDOM‐rich terrestrial runoff with 
surrounding ocean water using MODIS satellite data. 

The study of Palacios et al. (2009) showed high 
correlation using MODIS during both downwelling 
(simple, β 1 = 0.95 and r

2
 = 0.89; multiple, β 1 = 0.92 and 

r
2
 = 0.89) and upwelling periods (simple, β 1 = 1.26 and r

2
 

= 0.85; multiple, β 1 = 1.10 and r
2
 = 0.87) using the 412 

nm data layer. Both studies of Ahn et al. (2008) and 
Palacios et al. (2009) have agreed that SSS can be 
derived using optical satellite data based on absorption 
coefficient of colored dissolved organic matter, aCDOM. 
Marghany (2009a, 2010) and Marghany et al. (2010a) 

have implement the least square methods to retrieve 
SSS salinity from MODIS satellite data. Nevertheless, 
they implemented the similar least square methods 
coefficient parameters with different season data. Indeed, 
these parameters must be changed from season to 
season due to seasonal variation of SSS. On contrary, 
Salah et al. (2010a) claimed a new approach for SSS 
retrieving from MODIS data using linear regression model 
and polynomial formula. This technique, however, is 
considered a conventional method as compared to 
studies of Hu et al. (2004), Wong et al. (2004), Ahn et al. 
(2008), Palacios et al. (2009), Marghany (2009, 2010) 
and Marghany et al. (2010). Consequently, Salah et al. 
(2010a) implemented a fallacious linear regression 
equation to estimate SSS with RMSE of 1.5 psu. Further, 
Figure 1 which is captured from Salah et al. (2010a) 
study does not show r

2
 of 0.91 and RMSE of 1.5 psu. In 

addition, Salah et al. (2010a) have also claimed that 
polynomial algorithm provides a similar SSS as well as 
linear regression model. Conversely, that study does not 
show any output results derived using polynomial 
algorithm. 

Continuously, Salah et al. (2010b) used an erroneous 
formula to retrieve sea surface salinity in the South China 
Sea coastal waters, along the coastal water of 
Semporna. Salah et al. (2010b), however, used the same 
results of the study of Salah et al. (2010a) and claimed 
that multi linear and minnet algorithms provide promising 
precise SSS pattern. Further, Semporna does not lie in 
coastal waters of the South China Sea. They used the in 
situ data that collected along east coast of Sabah; 
Semporna, to retrieve seasonal SSS changes in east 
coast of Peninsular Malaysia. However, Semporna is 
considered as small bay where any SSS in situ 
measurements cannot be used to retrieve SSS along 
east coast of Malaysia due to different physical geography 
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Figure 2. Location of the South China Sea and its bathymetry spatial variations.  

 
 
 
geography locations and sea surface characteristics. In 
general, both Salah et al. (2010a, b) studies show 
contradictory SSS pattern with diametrically opposed 
formulas. These types of studies provide a confusing and 
wrong information for SSS retrieving from MODIS 
satellite data, although in situ measurements are very 
costly. 

The main problem to retrieve SSS from remote sensing 
data such as the soil moisture and ocean salinity (SMOS) 
and Aquarius satellite missions is bright temperature. 
Because of the difficulties to acquire brightness 
temperature from L-band satellite radiometric 
measurements. Indeed, L-band has limited resolution 
(typically 30 to 100 km) and nearby land can impure L-
band measurements over the coastal zone. This work 
has hypothesized that there is a direct method to retrieve 
SSS from satellite data without relying on brightness 
temperature. In this context, a linear model can be used 
as semiautomatic algorithm to estimate SSS from optical 
satellite data such as MODIS. In addition, utilizing of a 
least square method can improve the accuracy of SSS 
retrieval from optical satellite data. In doing so, this study 
extends the previous theory of linear relationship 
between satellite pixel reflectance value variations in 
different bands with SSS by deriving a different coefficient 
values of linear algorithm using moderate-resolution 
imaging spectrometer (MODIS) that is, the Aqua/MODIS 
data level IB reflectance satellite data. 
 
 
METHODOLOGY 
 
Data set 

 
MODIS data acquired in this study were derived from MODIS/Aqua 
sensor involved high radiometric sensitivity data in 36 spectral 

bands (Marghany and Mazlan, 2010b). According to Wong et al. 
(2007) these data were ranged between 0.4 to 14.4 µm. In addition, 
MODIS data have 36 bands: the first two bands are imaged at a 
nominal resolution of 250 m; the next five bands have nominal 
resolution of 500 m; and the remaining 29 bands particularly have 1 
km resolution. Further, MODIS data have 4 levels which are: level 
0, 1A, 1B, 2, 3 and 4. Level 0 raw instrument data at original 
resolution, time ordered, with duplicate packets removed. Level 1A 
is a reconstructed unprocessed instrument/payload data at full 
resolution, any and all communications artefacts (for example 
synchronization frames, communications headers) removed. Level 
1B is a Level 1A data that have been processed to sensor units and 
radiometrically corrected and geolocated. Twenty four sets of 
Aqua/MODIS level 1B images are acquired during the in situ salinity 
measurements. In addition, Level 2 is a derived geophysical 
variable at the same resolution and location as the Level 1 source 
data. Level 3 is a variable mapped on uniform space-time grid 
scales, usually with some completeness and consistency. 

Level 4 is a model output or results from analyses of lower level 
data (that is, variables derived from multiple measurements) (Hu et 
al., 2004). 

 
 
Study area and in situ measurements 

 
Study area is located along the east coast of Penssiular Malaysia 
as part of the South China Sea (SCS) (Figure 2). According to 
Marghany (2009b) the location of the South China Sea (SCS) 
where it is considered as an equatorial, semi-enclosed sea with a 
complex topography that includes large shallow regions (Marghany 
and Mazlan, 2010b; Marghany et al., 2010b). The SCS is located 
between the Asian continent, Borneo, the Philippines and Taiwan 
(Figure 2). The northeastern part adjoins a deep sea basin, while 
the southern part is a shelf sea with depths less than 200 m. The 
study is conducted in two phases: (i) On September 2002 along the 
coastal waters of Kuala Terengganu and (ii) on October 2003 in 
Phang coastal waters, Malaysia (Figure 3). In doing so, more than 
100 sampling locations are chosen (Figure 3). The field cruises are 
conducted separately, area by area on the east coast of Peninsular 
Malaysia. In fact, it is a major challenge to cover a large scale area 
over than 700 km

2
 in short period using conventional techniques.  
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Figure 3. Sampling locations. 

 
 
 

 
 
Figure 4. Hydrolab used in this study. 

 
 
 
The hydrolab equipment is used to acquire vertical water salinity 
profiles (Figure 4). Every field cruise has been conducted on 6 days 
in the east coast of Malaysia. 

For this study the in situ surface salinity (1 m below sea surface) 
data are used. In fact, it is expected to have a higher correlation 
with MODIS reflectance data than middle and bottom salinity 
column measurements. These data are used to validate the sea 
surface salinity distributions that is derived from MODIS data. In situ 
measurements are collected near real time of MODIS satellite data 
overpass. 

Sea surface salinity retrieving using least square algorithm 
 
Here, we present the theoretical model of split window method that 
relates MODIS sea surface salinity with in situ salinity measured by 
thermal infrared sensors, these include multi-channel methods 

(Figure 5). We assume the MODIS image radiance I  within multi-

channels i  have a linear relationship with measured sea surface 

salinity  (  ).   According   to   Marghany   (2009a,   2010)   and  
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Figure 5. Flow chart for sea surface salinity (SSS) retrieving concept from MODIS data. 

 
 
 
Marghany et al. (2010a), a useful extension of linear function of k 
channels as in: 
 

    
I = 1, 2,….,n            (1) 

 
Where the retrieval sea surface salinity (SSSMODIS)i in scalar 
notation, from MODIS data, the least squares estimators of the 

regression coefficients are and k is a 
number of selected MODIS radiance bands which equals 7 bands. 
Therefore, the fitted regression model to retrieve the sea surface 
salinity from MODIS data (SSSMODIS) is: 
  
SSSMODIS = I β                          (2) 
  
Where β is the ordinary least squares estimator of b to distinguish it 
from other estimators based on the least squares idea. According to 
Marghany et al. (2010a) β is given by: 
 

β = (I′ I)
-1

 I′ SSS                                                                              (3) 
 
In general, SSS is an (n x 1) vector of the sea surface salinity (SSS) 
observations from MODIS radiance data I which is and (n x p) 
matrix of the levels of independent variables. In addition, I′ SSS is a 
(p x 1) column vector (Marghany, 2010). In this form it is easy to 
see that I′ I is a (p x p) symmetric matrix (Marghany et al., 2010a). 
The matrix form of normal equations is identical to scalar form. 
Writing out Equation 3 in detail, we obtain: 

      (4) 
 
To find the vector of least squares estimators b, that minimizes: 
 

S(b) =  ε′ ε = (SSS-Ib)′(SSS-Ib)                                     (5) 
 
Where b is a (p x 1) vector of the regression coefficients and ε is an 
(n x 1) vector of random errors. Note that S(b) may be expressed: 
 

S(b)= SSS′ SSS -2b′ I′ SSS+ b′ I′ I b                                              (6) 
 
Since b′I′SSS is a (1 x 1) matrix or sclar and its transpose (b′I′SSS)′  
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= SSS′Ib is the same scalar. The least squares estimators must 
satisfy: 
 

= -2 I′ SSS + 2 I′ I β = 0                         (7) 
 
The function S is to be minimized with respect to

. The least squares estimators, say

, must satisfy: 
 

,         (8) 
 
and, 
 

,     
j=1,2,……,k                                                                                    (9) 
 
It is necessary that the least squares estimators

satisfy the equations given by the k first 

partial derivatives , I = 1, 2, 3,…..n and j = 1, 2, 3,…..k. 
 
According to Marghany (2009a), the least squares function (S) is: 
 

                           (10) 
 

The unknown parameters in Equation 10, that are  and ib
 may 

be estimated by a general least square iterative algorithm 
(Marghany et al., 2010a). Marghany (2009a) stated that the general 
model is of the form of Equation 10 and that there are n 
observations (n ≥ k) on the response variable are available, say

. Along with each observed 

response , we will have an observation on each regressor 

variable and let denote the ith observation of MODIS radians 

selected bands or level of MODIS radiance variable . We 

assume that the error term  in the model has mean zero and 

constant variance , that is,  and , 

and the  are uncorrelated random variables. The model, 

written in terms of the  observations, is: 
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, I = 1, 2, 3,…………,n

                

(11) 
 
It is simpler to solve the normal equations if they are expressed in 
matrix notation. We now give a matrix development of the normal 
equations that parallels the development of Equation 11. The 
Equation 11 may be written in matrix notation as: 
 
SSS = Ib + ε                                     (12) 
 
Where, 
 

SSS , I =  
 

b , ε , 
 

Following Sonia et al. (2007), ε  errors that represents the 
difference between retrieved and in situ SSS are computed within 
10 km grid point interval and then averaged over all grid points 

having the same range of distance to coast, where the bias ε  on 

the retrieved is given by: 
 

                 (13) 
 

Where  is the retrieved sea surface salinity from 

MODIS satellite data, situSSS
 is the reference sea surface salinity 

on grid point i and N is the number of grid points. Then, the
 

empirical formula of  (psu) which is based on 
Equations 1, 12 and 13 for month of September 2002 is: 
 

 (psu) = 27.65 + 0.2 1
I

 - 21.11 2
I

 + 14.23 3I
+ 

62.12 4
I
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 + - 11.41 7I
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(14) 
 

For month of October 2003, empirical formula of   
(psu) is given by: 
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Figure 6. In situ measurements during (a) September 2002 and (b) October 2003. 

 
 
 

58.74 4
I

 + 134.21 5
I

 + 119.93 6
I

+ - 9.78 7
I

± 0.26              (15) 
 
Following Marghany et al. (2010), root mean square of bias (RMS) 
is used to determine the level of algorithm accuracy by comparing 
with in situ sea surface salinity. Further, linear regression model 
used to investigate the level of linearity of sea surface salinity 
estimation from MODIS data. The root mean square of bias equals: 
 

             (16) 

 
The time integrations is performed to determine the possible 
improvement of RMS. In doing so, simulations and retrievals were 
performed within a two-month period and for each grid point, the 
retrieved SSS was averaged over six days during the MODIS 
satellite different times over passes. 
 
 
RESULTS AND DISCUSSION 
 
Sea surface salinity retrieved from hydrolap measure-
ments during the inter-monsoon period of September 
2002 and October 2003 are illustrated in Figure 6. In 
September 2002, the water salinity ranges between 28.5 
to 33.6 psu whereas in October 2003, the water salinity 
ranges between 29.5 to 33.0 psu. Both filed observations 
show the onshore waters salinity are lower than offshore. 
The onshore water salinity is ranged between 28.5 to 30 
psu during September 2002. In October 2003, however, 
the onshore water salinity is ranged between 29.5 to 31.0 
psu. It is clear that the offshore water salinity is higher 

than onshore within constant value of 33.5 psu in 
September 2002 and October 2003, respectively. Further, 
both September 2002 and October 2003 dominated by 
tongue of low water salinity penetration of 28.5 and 29.5 
psu, respectively along the coastal water. The sea 
surface salinity derived modeled from MODIS data using 
multi-linear regression model is shown in Figure 7. 
Clearly, the existence model provides fuzzy sea surface 
salinity. In early stage, sea surface salinity estimated 
directly using multi-linear regression model are not 
accurate with RMS of ± 20.34 psu with r

2
 of 0.1 (Figure 

7b). Figure 8 shows the sea surface salinity retrieved 
from MODIS data in September 2002 and October 2003, 
respectively. It is observed that the offshore water salinity 
is higher than onshore. 

The homogenous offshore water salinity pattern 
occurred in both September 2002 and October 2003 with 
maximum salinity value of 33.00 psu in September 2002 
and 33.8 psu in October 2003. Both in situ 
measurements and modeled SSS from MODIS data are 
agreed that the occurrences of tongue of low water 
salinity penetration along the coastal waters. This may be 
attributed to the proximity of nearshore waters are closed 
to the rivers such as Kuala Terngganu river. The 
maximum amount of rainfall in the September 2002 and 
October 2003 are 150 and 300 mm, respectively. This 
high amount of rainfall is not only diluting the salinity of 
the surface water but also cause a high amount of fresh 
water discharges from the rivers that are located along 
the east coast of Malaysian waters into the South China 
Sea. This agrees with the studies of Wrytki (1969), 
Maged (1994), Maged et al. (1996) and Zelina et al.  (2000). 

(a)                                               (b)                     
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Figure 7. Modeled sea surface salinity using (a) multi-linear regression model and (b) regression analysis with in-

situ measurements. 
 
 
 

 
 
Figure 8. Sea surface salinity estimated from MODIS data (a) September 2002 and (b) 
October 2003. 

(a)                                     (b)   

      

 (a) 

 
 (b) 
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Figure 9. Regression model between in situ SSS and SSS modeled from MODIS data during September 2002 and 
(b) October 2003. 

 
 
 
Figure 9 shows the comparison between in situ sea 
surface salinity measurements and SSS modeled from 
MODIS data. Regression model shows that SSS 
modeled using least square algorithm is in good 
agreement with in situ data measurements. The degree 
of correlation is a function of r

2
, probability (p) and root 

mean square of bias (RMS). 
The relationship between simulated SSS from MODIS 

data and in situ data shows positive correlation as r
2
 

value is 0.97, 0.95 with p of 0.00005, 0.00008 and RMS 
value of ± 0.33 psu and ± 0.33 psu during September 
2002 and (b) October 2003, respectively. However, this 
result does not agree with Wong et al. (2007). In fact, 
Wong et al. (2007) have acquired RMS ±1.63 that is 
higher than RMS of this study. This could be attributed to 
that Wong et al. (2007) have been implemented linear 
regression model without concerning the residual error 
occurred due to uncorrelated relationship between 
MODIS radiance data and in situ measurements. There is 
a great contrary between recent study and Salah et al. 
(2010a, b). Indeed, Salah et al. (2010 a, b) studies did 
not derive a real sea surface salinity from MODIS data. 
Further, they implemented improper equation parameters 
and wide of the mark of geographical location for in situ 
measurements as reported on Salah et al. (2010b). 
Crooked field measurements will produce confusing 
pattern of sea surface salinity. Without a doubt, least 
square algorithm requires accurate input parameters to 
be run through MODIS data. Further, precise results of 
sea surface salinity in recent study can be explained as: 
using multiple MODIS bands that is, 1 to 7 bands is a 
useful extension of linear regression model is the case 
where SSS is linear function of 7 independent bands. 
Such a practical is particularly useful when modeling SSS 
from MODIS data. 

Further, using least squares method derive a curve that 

minimizes the discrepancy between estimated SSS from 
MODIS data and in situ data. This means that using a 
new approach based on least squares method would be 
to minimize the sum of the residual errors for the 
estimating SSS from MODIS data. Further, this study 
shows the possibilities of direct retrieving of the SSS from 
visual bands of MODIS satellite data without utilizing 
such parameter of colored dissolved organic matter, 
aCDOM (Ahn et al., 2008; Palacios et al. (2009). This work 
confirms the studies of Marghany (2009, 2010) and 
Marghany et al. (2010). Additionally, MODIS satellite 
shows precise promising for modelling sea surface 
salinity instead of using soil moisture and ocean salinity 
(SMOS) and Aquarius satellite missions. As well, SMOS 
provides an SSS based on surface brightness 
temperatures with a precision over the open ocean of 0.2 
practical salinity units (psu) in 200 × 200 km boxes on a 
ten-day average (Ellison et al., 1998; Maes and 
Behringer, 2000; Sonia et al., 2007). Generally, 
monitoring surface brightness temperatures, however, 
from L-band satellite radiometric measurements is 
particularly challenging because of their limited resolution 
(typically 30 to 100 km) and L-band measurements over 
the coastal ocean are contaminated by the nearby land. 
In fact, recent global simulations of L-band land 
brightness temperatures showed a range of about 140 to 
300 K, compared to approximately 100 K for the ocean 
(Sonia et al., 2007). 
 
 
CONCLUSIONS 
 
This study has demonstrated a new approach for deriving 
new algorithm to retrieve sea surface salinity from optical 
remote sensing satellite data such as MODIS. In doing 
so, least squares method is used  to  derive  a  new  SSS  

(a)                                       (b) 

In-situ measurements (psu) In-situ measurements (psu) 



 
 
 
 
algorithm for MODIS satellite data. This algorithm 
involves the residual error and least squares estimator to 
acquire accurate results. The results show that tongue of 
low water salinity penetration of 28.5 and 29.5 psu during 
September and October, occurred respectively, along the 
coastal waters. The study shows a homogenous offshore 
sea surface salinity with maximum value of 33.8 psu. 
Further, result shows the high correlation coefficient at r

2
 

of 0.97 and RMS of bias value of ±0.33 psu. In 
conclusion, a new formula of SSS has improved mapping 
of SSS from MODIS data. This new approach can be 
used as a tool to estimate SSS. 
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