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In the present paper, we will consider the class of meromorphic starlike functions with fixed residue d .   

Silverman et al. (2008) has obtained sharp upper bounds for Fekete-Szegö like functional 
2

1 0
a aµ−  for 

certain subclasses of meromorphic functions. In this paper, we will find sharp upper bounds for 
2

1 0
a aµ−  for the class meromorphic starlike functions with fixed residue d . The aim of the present 

paper, is to completely solve Fekete Szegö problem for a certain subclass of meromorphic starlike 
functions with fixed residue d. 
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INTRODUCTION 
 

Let ( )H U  be the set of functions which are regular in 

the unit disc { }: 1U z z= < , { }( ) : (0) (0) 1 0A f H U f f ′= ∈ = − =  

and  S   denote   the   class   of   functions   of   the   form 
 

2

( )
n

n

n

f z z a z
∞

=

= + ∑
                                     (1) 

 

that are analytic and univalent in unit disc { }: 1U z z= < . 

Let t  be a fixed point in U  and 

{ }( ) : ( ) ( ) 1 0tA f H U f t f t′= ∈ = − = . It is easy to 

see that a function 
t

f A∈  has the series expansion:  

 

( ) ( )
2

2
( ) . . . .f z z t a z t= − + − +   

Kanas and Ronning (1999) introduced the following 
classes: 
 

{ }( ) ( ) :S t f A t f is univalent in U= ∈  

( )
( ) ( )

( ) : Re 0 ,
( )

z t f z
ST t f S w z U

f z

 ′ −
= ∈ > ∈  

  

 

( )
( ) ( )

( ) : 1 R e 0 ,
( )

z t f z
C V t f S t z U

f z

 ′′ −
= ∈ + > ∈  ′  

. 

 

The class ( )ST t  is defined by the geometric property 

that the image of any circular arc centered at t  is starlike 

with respect to ( )f t  and the corresponding class ( )CV t  

is defined by the property that the image of any circular 
arc centered t  is convex.  
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Let  ∑  denote  the  class  of   the  functions  of  the  form 

 

1

1
( )

n

n

n

f z a z
z

∞

=

= + ∑
                                                      (2) 

 
that are regular and univalent in { } { }*

: 0 1 0U z z U= < < = −  

with a simple pole at the origin with Residue 1. 

For 0 1t≤ < , let 
t

∑  denote the class of functions f  

which are meromorphic and univalent in the unit disc U  

with the normalization lim ( )
z t

f z
→

= ∞ .  

Let 
t

A  denote the set of function analytic in 

{ } { }*
: 1tU z C t z t U t= ∈ < − < = −  with the topology given 

by uniform convergence on compact subsets of  { }U t− . 

Then 
t

A  is locally convex linear topological space and 

t
∑  is a compact subset of 

t
A  (Schober, 1975).  

In the punctured open unit disk 
*

t
U ,every function f  

in 
t

∑  has an expansion of the form 

     
( ) { }

0

( ) ; 0
k

k

k

d
f z a z t d C

z t

∞

=

= + − ∈ −
−

∑ .  

A function 
t

f ∈∑  is said to be meromorphic starlike 

functions with fixed Residue d  if  

  
'

*( ) ( )
Re 0 ;

( )

z t f z
z U

f z

−
− > ∈                                 (3) 

 
and  the class of all such meromorphic starlike functions 

in 
*

t
U  is denoted by 

*

t
∑ .  

Let ( )zφ  be an analytic funtions  with positive real part 

on U  with (0) 1φ = , '
(0) 1φ > , which maps the unit disk 

U  onto a region starlike with respect to 1 and is 

symmetric with respect to the real axis. Let *
( )φ∑  be the 

class of functions f ∈∑  for which 

 
'
( )

( )
( )

zf z
z

f z
φ− p

                                                              (4) 

 
where p  denotes subordination between analytic 
functions. This class was studied by Silverman et al. 
(2008). They have obtained Fekete Szegö like inequality 

for functions in the class 
*
( )φ∑ . 

Let denote with ( )t℘ the class of all functions 

( )
1

( ) 1
n

n

n

p z c z t
∞

=

= + −∑ that are regular in U  and satisfy 

( ) 1p t =  and ( )Re ( ) 0p z >  for z U∈ . 
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Definition 1  
 

Let ( )zφ  be an analytic funtions  with positive real part 

on U  with (0) 1φ = , 
'
(0) 1φ > , which maps the unit disk 

U  onto a region starlike with respect to 1 and is 

symmetric with respect to the real axis. Let 
*
( )

t
φ∑  be the 

class of functions 
t

f ∈∑  for which 

 
'

( ) ( )
( )

( )

z t f z
z

f z
φ

−
− p                                                      (5) 

 
where p  denotes subordination between analytic 

functions and 
*
( )

t
φ∑  is the meromorphic analogue of the 

class 
*
( )

t
S φ  which is  introduced and studied by Kanas 

and Ronning (1999). 
Fekete and Szegö (1933) obtained sharp bounds for 

2

3 2
a aµ−  for f S∈  and µ  real. For different 

subclasses of S , Fekete-Szegö problem has been 

investigated by many authors including Darus and 
Akbalary (2004), Orhan and Raducanu (2009), Orhan et 
al. (2010), Ravichadran et al. (2005) and Srivastava et al. 
(2001). Recently, Silverman et al. (2008) has obtained 
sharp upper bounds for Fekete-Szegö like functional 

2

1 0
a aµ−  for certain subclasses of  ∑ . In this paper, we 

will find sharp upper bounds for 2

1 0
a aµ−  for the class 

*

t
∑ .  

To prove our result, we need the following lemmas. 
First lemma was obtained by Keogh and Merkes (1969). 
 
 
Lemma 1  
 

If 
2 3

1 2 3
( ) 1 ...p z c z c z c z= + + + +  is a function with 

positive real part in U , then for any complex number µ , 

 

{ }2

2 1
2max 1, 1 2 .c cµ µ− ≤ −                                              (6) 

 
Wald (1978) gives the sharp bounds for the coefficients 

n
c  of  the function ( )p t∈℘  as follows. 

 
 
Lemma 2  
 

If ( ) ( ),p z t∈℘ ( )
1

( ) 1
n

n

n

p z c z t
∞

=

= + −∑ then  

 

( )( )

2
; , 1.

1 1
n n

c where e t n
e e

≤ = ≥
+ −

                  (7) 
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Coefficient bounds 
 

By making use of Lemmas, we prove the following 

bounds for the classes 
*

t
∑ . 

 
 
Theorem 1  
 
Let 2

1 2
( ) 1 . . .z B z B zφ = + + +  if ( )f z  given by Equation 

(1) belongs to *

t
∑ , then for any complex number µ , 

 

(i)   

( ) ( )
12 32

1 0 1 12 2

1

1
max 1, 2 ; 0

2 1 1

B B
a a t d B B

B dd t t
µ µ

   
− ≤ + − − ≠  

 + −   

      (8) 

 
(ii) 

( ) ( )
2

1 0 12 2

1
; 0 .

1 1
a a B

d e e
µ− ≤ =

+ −                      

(9)

  

 
The bounds are sharp. 
 
 
Proof  
 

If 
*

( ) ( )
t

f z φ∈∑ , then there is a Schwarz function 

( ) ( ) ( )
2 3

2 3
( ) ...w z z t A z t A z t= − + − + − + , analytic in  

*

tU   with  ( ) 0w t =   and  ( ) 1w z <   in  *

tU  such  that  

 
'

( ) ( )
( ( ))

( )

z t f z
w z

f z
φ

−
− =                                             (10) 

 

Define  the function ( )p z  by 

 

2

1 2

1 ( )
( ) 1 ( ) ( ) ...

1 ( )

w z
p z c z t c z t

w z

+
= = + − + − +

−
                   (11) 

 

Since ( )w z  is Schwarz function, we see that 

( ( )) 0R p z >  and ( ) 1.p t = Therefore 

 

2 3

2 31 1
1 2 3 1 2

2 2 2

1 1 1 2 1 2 1

( ) 1
( ( ))

( ) 1

1
( ) ( ) ( ) ...

2 2 4

1 1 1 1
1 ( ) ( ) ...

2 2 2 4

p z
w z

p z

c c
c z t c z t c c c z t

B c z t B c c B c z t

φ φ

φ

 −
=  

+ 

     
= − + − − + + − − +           

  
= + − + − + − +  

  

      (12)   

 
Now adding Equation (12) in (10), we have 

 
'

2 2 2

1 1 1 2 1 2 1

( ) ( ) 1 1 1 1
1 ( ) ( ) ...

( ) 2 2 2 4

z t f z
Bc z t B c c Bc z t

f z

−   
− = + − + − + − +  

  
        (13) 

 
 
 
 
From this Equation (1), we obtain 
 

0 1 1 0
2

a B c

d
+ =

                                                              
(14)         

 
 

2 2

0 1 11 1 1 2 1 1 2 1

2
2 2 4 4

a B ca a B c B c B c

d d d
− = + + − +                        

 

or equivalently 
 

1 1
0

2

B c d
a = −  

2

21 2 2 1 1

1 12

1 1 1

2 2 4

B c B B B
a c

d d d d

  
= − + − −  

  

             (15) 

 

Therefore, 
 

{ }2 21

1 0 2 1
4

B
a a c v c

d
µ− = − −                                (16) 

 

Where 
 

32

1

1

1 1
1 2

2

B
v d B

B d
µ

  
= − + −  

  

                               (17) 

 
The result of Equation (8) follows by an application of 
Lemma 1. 

If 
1

0B = , then from Equation (15) 
0

0a =  and  
2

2 1

1
8

B c
a

d
= − . Since ( )p z has positive real part, 

( ) ( )1

2

1 1
c

e e
≤

+ −
, so that

( ) ( )
2 2

1 0 2 2
2 1 1

B
a a

d e e
µ− ≤

+ −

. 

 

Since ( )zφ  also has positive real part,  
2

2B ≤ . Thus, 

( ) ( )
2

1 0 2 2

1
,

1 1
a a

d e e
µ− ≤

+ −
proving Equation (9). The 

bounds are sharp for the functions 
1
( )F z  and  

2
( )F z defined by,   

     

( )( )
'

21

1

( ) ( )

( )

z t F z
z t

F z
φ

−
− = −

     

where  

 

 

( )

2

1 2

1 ( 2 )
( )

( ) 1 ( 2 )

z t z t
F z

z t z t z t

+ − −
=

− − + −
                    (18) 

 

( )( )
'

2

2

( ) ( )

( )

z t F z
z t

F z
φ

−
− = −

     

where  

( )2

1
( )

( ) 1 )

z t
F z

z t z t

+ −
=

− − +
 



 

 
 
 
 

Clearly, the functions 
1
( )F z ,

2
( ) .

t
F z ∈∑  

 
 
Example 1   
 

By taking 
1

( )
1

z
z

z
φ

+
=

−
,  we obtain the sharp inequality,  

2 32

1 0 1 1

1

1 1
m ax 1, 2 ; 0 .

B
a a d B B

d B d
µ µ

   
− < + − ≠  

   

 

Putting 1d =  and 0t →  in Theorem 1, we get the 

following result obtained by Silverman et al. (2008). 
 
 
Corollary 1   
 

Let 
2

1 2
( ) 1 ...z B z B zφ = + + +  if ( )f z  given by Equation 

(1) belongs to 
* *

0
( ) ( )φ φ∑ = ∑ , then for any complex 

number µ , 

 

(i)   ( )12 2

1 0 1 1

1

max 1, 1 2 ; 0
2

B B
a a t B B

B
µ µ

  
− ≤ + − − ≠ 

  

   

  

(ii)  2

1 0 1
1 ; 0 .a a Bµ− ≤ =
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