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APOBEC3G is an antiviral host factor capable of inhibiting the replication of both exogenous and endogenous
retroviruses as well as hepatitis B, a DNA virus that replicates through an RNA intermediate. To gain insight into the
mechanism whereby APOBEC3G restricts retroviral replication, we investigated the subcellular localization of the
protein. Herein, we report that APOBEC3G localizes to mRNA processing (P) bodies, cytoplasmic compartments
involved in the degradation and storage of nontranslating mRNAs. Biochemical analysis revealed that APOBEC3G
localizes to a ribonucleoprotein complex with other P-body proteins which have established roles in cap-dependent
translation (eIF4E and eIF4E-T), translation suppression (RCK/p54), RNA interference–mediated post-transcriptional
gene silencing (AGO2), and decapping of mRNA (DCP2). Similar analysis with other APOBEC3 family members revealed
a potential link between the localization of APOBEC3G and APOBEC3F to a common ribonucleoprotein complex and P-
bodies with potent anti–HIV-1 activity. In addition, we present evidence suggesting that an important role for HIV-1
Vif, which subverts both APOBEC3G and APOBEC3F antiviral function by inducing their degradation, could be to
selectively remove these proteins from and/or restrict their localization to P-bodies. Taken together, the results of this
study reveal a novel link between innate immunity against retroviruses and P-bodies suggesting that APOBEC3G and
APOBEC3F could function in the context of P-bodies to restrict HIV-1 replication.
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Introduction

The successful propagation of HIV-1 through the human
host has been linked to its ability to subvert and overcome
innate cellular defense mechanisms that function by restrict-
ing replication of the virus at various points in the life cycle
[1]. APOBEC3G is a (deoxy)cytidine deaminase originally
discovered as the host restriction factor responsible for
limiting the replication of vif-deficient HIV-1 [2] and has
since been implicated in the restriction of a broad range of
exogenous retroviruses [1,3,4], endogenous retroviruses [5,6],
and the hepadnavirus hepatitis B [7].

During vif-deficient HIV-1 replication, APOBEC3G asso-
ciates with Gag during viral assembly and is packaged into
progeny virions [2,8–11]. Once packaged, APOBEC3G im-
poses a potent restriction on viral replication in the next
target cell through a mechanism that results in genome
degradation, incomplete cDNA synthesis, and a detrimentally
high mutation rate within the HIV-1 genome [3,10,12–15].
These consequences of APOBEC3G packaging have largely
been attributed to deamination of the viral cDNA [3,8–
12,15,16]; however, a recent study demonstrated that APO-
BEC3G remains antiviral in the absence of enzymatic activity
[17], suggesting that the capacity of APOBEC3G to restrict
HIV-1 replication may extend beyond deamination. Although
effective against vif-deficient HIV-1, APOBEC3G is neutral-
ized by wild-type HIV-1 through Vif [18–20], which functions
in concert with an E3 ubiquitin ligase complex to mediate the
polyubiquitination and rapid degradation of APOBEC3G
through the proteasome [21–25]. These findings illustrate
how HIV-1 has evolved to deactivate an important innate

cellular defense mechanism and suggest that therapeutic
intervention to disrupt the APOBEC3G-Vif interaction,
directly inhibit Vif function, and/or up-regulate APOBEC3G
expression could allow the human host to naturally limit the
proliferation of HIV-1.
Despite these significant advances in our understanding of

APOBEC3G biology, there remained a considerable lack of
detail concerning the subcellular context in which APO-
BEC3G functions. APOBEC3G has been shown to localize
throughout the cytoplasm and to concentrate within punc-
tate cytoplasmic bodies [26]. However, the identity or
relevance of these cytoplasmic bodies toward the ability of
APOBEC3G to restrict HIV-1 replication was unknown. In
this report, we show that APOBEC3G cytoplasmic bodies are
mRNA processing (P) bodies. P-bodies are found in the
cytoplasm of both yeast and mammalian cells and constitute
specialized compartments where nontranslating mRNAs
accumulate and are subject to degradation or storage [27–
29]. In addition to subcellular localization studies, we also
present biochemical evidence that APOBEC3G localizes to a
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ribonucleoprotein (RNP) complex with other P-body proteins
which have established functions in cap-dependent trans-
lation [30], translation suppression [31,32], RNA interfer-
ence–mediated post-transcription gene silencing [33–39], and
mRNA decapping [27,28,40]. Finally, we present studies that
reveal a potential link between the potent anti–HIV-1
activities of APOBEC3G and APOBEC3F with their local-
ization to P-bodies and results suggesting that a primary
function of Vif could be to limit the localization of these
proteins to P-bodies. Taken together, these findings reveal a
novel relationship between innate cellular immunity against
retroviruses and P-bodies.

Results

APOBEC3G Localizes to mRNA P-Bodies
Recently, we reported that recombinant APOBEC3G local-

izes throughout the cytoplasm and to discrete cytoplasmic
foci of unknown origin, which we referred to as cytoplasmic
bodies [26]. This localization pattern was consistently
observed when recombinant APOBEC3G was transiently
expressed in either 293T cells (e.g., APO3G-YFP in Figure
1A, arrow) or HeLa cells (e.g., APO3G-YFP in Figure 1B,
arrow), which renders these naturally permissive cell lines
(i.e., cells that lack endogenous APOBEC3G) nonpermissive to
vif-deficient HIV-1 replication (unpublished data). Similar
analysis of HeLa cells that stably express APOBEC3G with a
C-terminal c-Myc epitope tag (APO3G-Myc), which also
renders these cells nonpermissive to vif-deficient HIV-1
replication [41], revealed that stably expressed recombinant
APOBEC3G also localized to cytoplasmic bodies (Figure 1C,
arrow). Taken together, these findings suggested a possible
link between cytoplasmic bodies and the antiretroviral
function of APOBEC3G leading us to investigate the
subcellular localization of endogenous APOBEC3G in cells
that serve as a natural target for HIV-1 infection. Using a
rabbit polyclonal antibody directed against the C-terminus of

APOBEC3G (see Materials and Methods), we immunolocal-
ized endogenous APOBEC3G in primary CD4þT cells isolated
from peripheral blood mononuclear cells following in vitro
activation (see Materials and Methods) and in H9 T
lymphocytes. In both cases, endogenous APOBEC3G localized
throughout the cytoplasm and to cytoplasmic bodies (Figure
1D and 1E, respectively, arrows). Both cell types typically
harbored two to ten cytoplasmic bodies per cell, although
imaging more than one to three per focal plane was difficult
due to the rounded morphology of these cells and their
random distribution throughout the cytoplasm. Importantly,
these results demonstrated that the localization of APO-
BEC3G to cytoplasmic bodies was a bona fide property of this
protein in T cells.
During the course of a series of experiments to character-

ize the dynamics of APOBEC3G movement in living cells, we
observed that cytoplasmic bodies disappeared following a 60-
min incubation with cyclohexamide (unpublished data). This
finding indicated that cytoplasmic bodies were not static
structures but rather were both dynamic and intimately
linked to mRNA translation. This dependence on active
translation was a strikingly similar feature of proteins that
localize to mRNA processing (P) bodies [29,30,42] which
function in the degradation and storage on nontranslating
mRNAs [27–29,43]. To determine if APOBEC3G cytoplasmic
bodies and P-bodies were same structures, APOBEC3G and
LSM1, a resident P-body protein [44], were immunolocalized
in primary peripheral blood CD4þ T cells and H9 T
lymphocytes. In both cases, APOBEC3G cytoplasmic bodies
overlapped with LSM1-labeled P-bodies (Figure 2A, a and b,
respectively, arrows), revealing that APOBEC3G localizes to
P-bodies in cells that serve as a natural target for HIV-1
infection. In HeLa-APO3G cells, APO3G-Myc colocalized
with endogenous LSM1 at P-bodies (unpublished data) and
YFP-tagged versions of the P-body proteins LSM1, AGO2
[35,39], eIF4E [30], eIF4E-T [30], RCK/p54 [27], and DCP2 [28]
(Figure 2B, a–f, respectively, arrows), and similar colocaliza-
tion of these proteins with APO3G-CFP was observed in 293T
cells (unpublished data). Taken together, these results clearly
demonstrated that APOBEC3G cytoplasmic bodies observed
in all of these different cell types were P-bodies.

Biochemical Analysis of the Interaction between
APOBEC3G and P-Body Proteins
Next, we investigated whether APOBEC3G simply colocal-

ized with these P-body proteins or if they coexisted within a
complex in the cell. Using the YFP-tagged versions of the P-
body proteins, we found that YFP-AGO2, YFP-eIF4E, YFP-
eIF4E-T, YFP-RCK/p54, and YFP-DCP2 all coimmunopreci-
pitated with APO3G-HA (Figure 3B–3F, respectively). Inter-
estingly, we could not detect coimmunoprecipitation of YFP-
LSM1 (Figure 3A) or endogenous LSM1 (unpublished data)
with APO3G-HA, suggesting that despite their colocalization
to P-bodies these proteins do not interact in the cell. To
determine if these interactions were direct or mediated
through cellular RNA, the same extracts from above were also
treated with RNase A prior to APO3G-HA immunoprecipi-
tation. In all cases, coimmunoprecipitation of the YFP-tagged
P-body proteins with APO3G-HA was significantly reduced by
RNase A (Figure 3B–3F), suggesting that the interactions
observed between APOBEC3G and AGO2, eIF4E, eIF4E-T,
RCK/p54, and DCP2 were mediated through cellular RNA.
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Synopsis

Successful replication of viruses and other intracellular pathogens in
their respective host cells requires that they overcome a series of
replication restrictions or ‘‘roadblocks’’ established by the cell. In the
case of HIV-1, the ability of the virus to replicate in human cells is
dependent on its ability to neutralize APOBEC3G, a DNA editing
enzyme that incorporates into virions and renders them non-
infectious. Although a potentially devastating inhibitor of HIV-1
replication, the virus evades APOBEC3G by inducing its degradation
during virus assembly. APOBEC3G is also capable of inhibiting the
replication of other retroviruses as well as the hepadnavirus
hepatitis B, a DNA virus that replicates through an RNA intermedi-
ate, suggesting that APOBEC3G may function in cellular defense
against a broad range of viral pathogens. Here, Rana and colleagues
present their findings that APOBEC3G localizes to specialized
compartments in the cytoplasm of mammalian cells known as
mRNA processing (P) bodies, which function in the degradation and
storage of cellular mRNA. Furthermore, they show that APOBEC3G
assembles into a ribonucleoprotein complex with P-body proteins
involved in translation, translation suppression, RNA interference,
and mRNA decapping. These novel and exciting findings have
broad-scale implications for APOBEC3G function and for the role of
P-bodies in both cellular defense against viruses and retroviral
assembly.



Potent Anti–HIV-1 Activity of APOBEC3 Proteins Correlates
to P-Body Localization

Similar to APOBEC3G, APOBEC3F is a potent inhibitor of
HIV-1 replication and is targeted by Vif [45–51], while
APOBEC3B exhibits only modest anti–HIV-1 activity relative
to APOBEC3G and is resistant to Vif due to their inability to
interact in the cell [51–55]. As a first step in characterizing the
relationship between potent anti–HIV-1 function and the
localization of APOBEC3G to P-bodies, we compared the
subcellular localization pattern of these APOBEC3 family
members.

Similar to APO3G-HA, APO3F-HA localized throughout
the cytoplasm and to RCK/p54-labeled P-bodies (Figure 4A, a
and b, respectively, arrows). Furthermore, APO3G-CFP and
APO3F-HA colocalized at RCK/p54-labeled P-bodies when
these proteins were coexpressed in 293T cells (Figure 4B,
arrows). These results showed that APOBEC3F localizes to P-
bodies and further that the localization of either APOBEC3G
or APOBEC3F to P-bodies was not dependent on the other
protein. Earlier findings in this study demonstrated that
APOBEC3G resides in RNP complexes with other P-body
proteins leading us to revisit previous observations that
APOBEC3G homo-oligomerizes [26,56,57] and hetero-oligo-
merizes with APOBEC3F [46] to determine if these inter-
action were direct or mediated through cellular RNA. To
address these possibilities, total cell extracts from 293T cells
coexpressing either APO3G-CFP and APO3G-HA or APO3G-
CFP and APO3F-HA were treated with RNase A followed by
immunoprecipitation of HA-tagged protein using a-HA
agarose. RNase A treatment virtually eliminated the coim-
munoprecipitation of APO3G-CFP with APO3G-HA and
APO3F-HA observed in the control (Figure 4C, top and
center, respectively). These results showed that the APO-
BEC3G-APOBEC3G and APOBEC3G-APOBEC3F interac-

tions previously observed through coimmunoprecipitation
studies do not result from direct multimerization but rather
these proteins interact through an RNA intermediate.
While APOBEC3G and APOBEC3F coassembled into a

common RNP complex and both localized to P-bodies,
APO3B-HA was largely restricted to the nucleus of 293T
cells (Figure 4A, c) and rarely localized to RCK/p54-labeled P-
bodies (less than 10% of cells; 500 cells scored; Figure 4A, c,
arrows). Furthermore, a significant interaction between
APO3G-CFP and APO3B-HA, relative to that observed for
APO3G-CFP and APO3F-HA, was not detected (compare
center and bottom panels in Figure 4C). However, consid-
erable overexposure of this immunoblot did eventually reveal
a weak and RNA-dependent interaction between APO3G-
CFP and APO3B-HA (unpublished data). Taken together with
the limited localization of APO3B-HA to P-bodies, these
findings suggest that APOBEC3B is not entirely restricted
from the RNP complex or P-bodies but rather is not targeted
with the same efficiency as either APOBEC3G or APOBEC3F.
These intriguing results suggest that the modest anti–HIV-1
activity and resistance to Vif exhibited by APOBEC3B could
be linked to its inability to associate with the RNP complex
and P-bodies (see Discussion).

Vif Localizes to P-Bodies in the Presence of APOBEC3G
Recently, we reported that coexpression of Vif with

APOBEC3G reduced the total cellular levels of APOBEC3G
and thus limited its localization to P-bodies (referred to
previously as cytoplasmic bodies [26]). In contrast, nonfunc-
tional Vif mutants, such as Vif C114S, that continued to
interact with APOBEC3G readily colocalized with APO-
BEC3G at P-bodies [26]. These results showed that Vif was
also targeted to P-bodies; however, it was not clear from those
studies if the localization of Vif to P-bodies occurred

Figure 1. APOBEC3G Localizes to Cytoplasmic Bodies

Subcellular localization images of living 293T cells transiently expressing APO3G-YFP (A), HeLa cells transiently expressing APO3G-YFP (B), HeLa-APO3G
cells stably expressing APO3G-Myc (C), endogenous APOBEC3G in primary peripheral blood CD4þ T cells (D), and endogenous APOBEC3G in H9 T
lymphocytes (E). APO3G-YFP was detected by direct YFP fluorescence while APO3G-Myc and endogenous APOBEC3G were detected by indirect
immunostaining, using antibodies against the c-Myc epitope and APOBEC3G, respectively. The cells were stained with Hoechst 33258 to visualize nuclei
and the imaged were merged digitally. Cell type is noted to the left of each image and arrows point to cytoplasmic bodies.
DOI: 10.1371/journal.ppat.0020041.g001
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independently or required the presence of APOBEC3G. To
investigate these possibilities, we employed Myc-AGO2 as an
internal control for P-bodies since this protein was shown to
interact with APOBEC3G. The addition of Myc-AGO2 in

these experiments also allowed us to examine the specificity
of Vif-mediated degradation for APOBEC3G and monitor the
consequence(s) of Vif expression on P-bodies. Importantly, in
the presence or absence of APO3G-CFP, the steady-state

Figure 2. APOBEC3G Cytoplasmic Bodies Are P-Bodies

(A) Subcellular localization of APOBEC3G and LSM1 in T cells. Endogenous APOBEC3G and LSM1 were localized in peripheral blood CD4þ T cells (a) and
H9 T lymphocytes (b) through indirect immunostaining using antibodies against APOBEC3G and LSM1, respectively. The cells were counterstained with
Hoechst 33258 to visualize nuclei and the images were digitally merged to highlight regions of colocalization, which appear white in the merged
images. A corresponding differential interference contrast (DIC) image is presented to the left and arrows point to cytoplasmic bodies.
(B) APOBEC3G colocalizes with P-body proteins at P-bodies. Subcellular localization of APO3G-Myc and YFP-LSM1 (a), YFP-AGO2 (b), YFP-eIF4E (c), YFP-
eIF4E-T (d), YFP-RCK/p54 (e), or YFP-DCP2 (f) in HeLa-APO3G cells. APO3G-Myc was detected through indirect immunostaining with an antibody against
the c-Myc epitope and YFP was detected by direct fluorescence. The cells were counterstained with Hoechst 33258 to visualize nuclei and the images
were digitally merged to highlight regions of colocalization, which appear white in the merged images. Arrows point to P-bodies.
DOI: 10.1371/journal.ppat.0020041.g002
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levels of Myc-AGO2 were not affected by the presence of Vif
(Figure 5A), demonstrating that Myc-AGO2 was not a target
for Vif-mediated degradation. Subcellular localization studies
further revealed that in the absence of APO3G-CFP, Vif C114S

did not colocalize with Myc-AGO2 at P-bodies (Figure 5B, a,
arrows). However, coexpression of APO3G-CFP, Vif C114S, and
Myc-AGO2 resulted in colocalization of all three proteins at
P-bodies (Figure 5B, b, arrows), showing that the localization
of Vif C114S to P-bodies was dependent on the interaction with
APOBEC3G. When APO3G-CFP, Myc-AGO2, and Vif were all
expressed in 293T cells, APO3G-CFP levels were reduced to
below detectable levels in more than 90% of the cells that also
expressed Myc-AGO2 and Vif. In cells where APO3G-CFP
could not be detected, Vif did not colocalize with Myc-AGO2
at P-bodies (Figure 5B, c, arrows). However, inhibiting Vif
function through a 4-h incubation with the proteasome
inhibitor ALLN not only increased the levels of APO3G-CFP
expression but also resulted in the colocalization of APO3G-
CFP and Vif at foci that were positive for Myc-AGO2,
suggesting that these structures were P-bodies (Figure 5B, d,
arrows). Consistent with our previous study [26], proteasome
inhibition also resulted in the nuclear localization of Vif
(Figure 5B, d). Taken together, these findings demonstrated
that the interaction of Vif with APOBEC3G could target Vif
to P-bodies but that the proteasome-mediated degradation of
APOBEC3G induced by Vif was sufficient to restrict the
localization of both proteins to P-bodies. Furthermore, the
rapid re-localization of APOBEC3G and Vif to P-bodies
following proteasome inhibition suggested that a primary
function of Vif could be to restrict the localization of
APOBEC3G to P-bodies.

Discussion

According to our current understanding of APOBEC3G
function, this host restriction factor limits the spread of HIV-
1 infection, and other retroviruses [1,3,4], by packaging into
the virus during assembly in the producer cell. Following
infection of the next target cell, APOBEC3G mediates
extensive dC-to-dU deamination of the viral cDNA, incom-
plete cDNA synthesis, and genome degradation [3,10,12–15].
Although effective against vif-deficient HIV-1, the potent
antiviral activity of APOBEC3G is successfully neutralized by
wild-type HIV-1 through Vif [18–20], which functions in
concert with an E3 ubiquitin ligase complex to mediate the
polyubiquitination and rapid degradation of APOBEC3G
through the proteasome [18–20,22,24,58,59].
Despite these significant advances in our understanding of

APOBEC3G biology, there remained a considerable lack of
detail concerning the subcellular context in which APO-
BEC3G functions. Cell lines that are permissive (i.e., cells that
do not express endogenous APOBEC3G) to vif-deficient HIV-
1 replication can be rendered nonpermissive through either
the transient or stable expression of recombinant APO-
BEC3G. Previously, we investigated the subcellular local-
ization of recombinant APOBEC3G in these cells lines and
reported that the protein localized throughout the cytoplasm
and also to punctate cytoplasmic foci [26], which we termed
cytoplasmic bodies in reference to the cytoplasmic bodies of
another retroviral restriction factor TRIM5a [60]. The fact
that these bodies were present under conditions that
rendered cells nonpermissive to vif-deficient HIV-1 infection
suggested to us that these structures could be relevant to the
antiviral properties of APOBEC3G.

Figure 3. APOBEC3G Interacts with P-Body Proteins through RNA-Dependent Interactions

Total cell extracts from 293T cells coexpressing APO3G-HA and YFP-LSM1, YFP-AGO2, YFP-eIF4E, YFP-eIF4E-T, YFP-RCK/p54, or YFP-DCP2 (A–F,
respectively) were treated with RNase A (þ) or vehicle alone (�) and APO3G-HA was immunoprecipitated (IP) with a-HA agarose (a-HA IP). Total cell
extracts (TCE) and a-HA IPs were analyzed by immunoblot, and APO3G-HA was detected with an antibody against the HA epitope, while YFP-tagged P-
body proteins were detected with an antibody against GFP.
DOI: 10.1371/journal.ppat.0020041.g003
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We began this study by confirming that endogenous
APOBEC3G also localizes to cytoplasmic bodies in primary
peripheral blood CD4þ T cells, establishing that this was a
bona fide property of APOBEC3G in cells that serve as a
natural target for HIV-1 infection in vivo and leading us to
investigate their identity. Our initial studies revealed that
APOBEC3G cytoplasmic bodies were distinct from TRIM5a

cytoplasmic bodies and further that these bodies did not
overlap with endocytic vesicles including early endosomes,
late endosomes, or lysosomes (M. J. Wichroski and T. M. Rana,
unpublished data). Using translation inhibitors to monitor
the kinetics of cytoplasmic body assembly and disassembly, we
observed that they disappeared from the cytoplasm within 60
min of cyclohexamide treatment. This dependence on active

Figure 4. Potent Anti–HIV-1 Activity of APOBEC3 Proteins Correlates to P-Body Localization

(A) Subcellular localization of endogenous RCK/p54 and APO3G-HA (a), APO3F-HA (b), or APO3B-HA (c) in 293T cells. Endogenous RCK/p54 was
detected through indirect immunostaining with an antibody against RCK/p54 and APOBEC3 proteins with an antibody against the HA epitope. Arrows
point to P-bodies.
(B) Subcellular localization of endogenous RCK/p54, APO3G-CFP, and APO3F-HA in 293T cells. RCK/p54 was detected through indirect immunostaining
with an antibody against RCK/p54, APO3F-HA with an antibody against the HA epitope, and APO3G-CFP was detected by direct CFP fluorescence. The
cells were also stained with Hoechst 33258 to visualize nuclei and the images were digitally merged to highlight regions of colocalization, which appear
white in the merged image. Arrows point to P-bodies.
(C) RNA-dependent interaction of APOBEC3G and APOBEC3F. Total cell extracts from 293T cells coexpressing APO3G-CFP and APO3G-HA (top panel),
APO3G-CFP and APO3F-HA (center panel), or APO3G-CFP and APO3B-HA (bottom panel) were treated with RNase A (þ) or vehicle alone (�) and HA-
tagged proteins were immunoprecipitated (IP) with a-HA agarose (a-HA IP). Total cell extracts (TCE) and a-HA IPs were analyzed by immunoblot and
APO3G-CFP was detected using an antibody against GFP while APO3G-HA, APO3F-HA and APO3B-HA were detected using an antibody against the HA
epitope.
DOI: 10.1371/journal.ppat.0020041.g004
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translation was a remarkably similar property of proteins that
localize to mRNA processing (P) bodies, specialized compart-
ments within the cytoplasm of both yeast and mammalian
cells where nontranslating mRNAs accumulate and are
subject to degradation or storage [27–29,61]. The localization
of APOBEC3G to P-bodies raised the possibility that
APOBEC3G could interact with other P-body proteins.
Biochemical analysis showed APOBEC3G interactions with
P-body proteins that function in cap-dependent translation
(eIF4E and eIF4E-T [30]), translation suppression (RCK/p54
[31,32]), RNA interference–mediated post-transcriptional
gene silencing (AGO2 [35,36,38,39,62]), and decapping of
mRNA (DCP2 [27,28,40]). The observation that the inter-
actions between APOBEC3G and these particular P-body
proteins were all RNA dependent suggested that APOBEC3G
localized to a large multiprotein RNP complex in the cell.
Although the significance of the interactions mentioned
above toward cellular and/or antiviral APOBEC3G functions
remains to be determined, it is of considerable interest that
APOBEC3G is associated with cellular machinery that
mediates cytoplasmic mRNA processing events. While this
manuscript was under review, Beliakova-Bethell et al. [63]
reported an intriguing study linking the assembly of the yeast
Ty3 retrotransposon virus-like particles with P-bodies. There-
fore, it is quite possible that there is a link between the
assembly of human retroviruses/retrotransposons and P-
bodies.

Our studies on APOBEC3F and APOBEC3B revealed a
possible link between the localization of APOBEC3G and
APOBEC3F to P-bodies with potent anti–HIV-1 activity.
APOBEC3F, which shares approximately 50% sequence
identity with APOBEC3G, exhibits potent anti–HIV-1 activ-
ity, and is targeted by Vif for proteasome-mediated degrada-
tion [45–51], and both proteins are coexpressed in lymphoid
cells [55]. Our results showed that APOBEC3F localizes to P-
bodies and hetero-oligomerizes with APOBEC3G through an
RNA-dependent interaction. On the contrary, APOBEC3B,
which shares approximately 59% sequence identity with
APOBEC3G, exhibits only modest anti–HIV-1 activity relative
to APOBEC3G and is resistant to Vif due to their inability to
interact in the cell [51–55]. Interestingly, APOBEC3B rarely
localized to P-bodies and was found largely in the nucleus of
293T cells. Furthermore, significant coimmunoprecipitation
of APOBEC3B with APOBEC3G was not detected, demon-
strating that APOBEC3B does not localize to the same RNP
complex shared by APOBEC3G and APOBEC3F. While
further studies are necessary to fully assess the role of P-
bodies in APOBEC3G antiviral function, these findings
provide an interesting link between the potent anti–HIV-1
activities of APOBEC3G and APOBEC3F with their abilities
to assemble into an RNP complex and localize to P-bodies. It
is also of interest to note that APOBEC3B is not expressed in
lymphoid cells [55] and thus would not encounter HIV-1 in
vivo, suggesting a likely explanation as to why this protein has

Figure 5. Localization of Vif to P-Bodies Requires APOBEC3G

(A) Myc-AGO2 is not sensitive to Vif-mediated degradation in the absence or presence of APO3G-CFP. Total cell extracts from 293T cells expressing CFP
or APO3G-CFP with Myc-AGO2 and either NL-A1Dvif or NL-A1 were analyzed by immunoblot with antibodies against CFP (a-GFP), c-Myc (a-Myc) and Vif
(a-Vif). Numbers to the left indicate molecular mass in kDa.
(B) Subcellular localization images of 293T cells coexpressing a combination of Myc-AGO2 and Vif C114S (a), APO3G-CFP, Myc-AGO2, and Vif C114S (b), or
APO3G-CFP, Myc-AGO2, and Vif following a 4-h incubation with the proteasome inhibition ALLN (d) or the equivalent DMSO vehicle control–treated
cells (c). APO3G-CFP was detected by direct CFP fluorescence while Myc-AGO2 and Vif protein were detected by indirect immunostaining with
antibodies against c-Myc and Vif, respectively. Arrows mark regions of colocalization or lack of colocalization between proteins.
DOI: 10.1371/journal.ppat.0020041.g005
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not evolved similarly to APOBEC3G and APOBEC3F with
respect to anti–HIV-1 activity.

Considering a primary function of HIV-1 Vif is to restrict
the incorporation of APOBEC3G into virions, we also
determined whether Vif localized to P-bodies. Although the
coexpression of Vif and APOBEC3G leads to a significant
reduction in APOBEC3G levels, it is possible to detect cells
where APOBEC3G and Vif are visible in the same cell [26]. In
these cases, the remaining APOBEC3G rarely localized to P-
bodies; however, in cases where P-body localization could be
detected we noticed that Vif localized to these P-bodies as
well. This observation suggested that Vif could localize to P-
bodies in the presence of APOBEC3G but that the reduction
in APOBEC3G levels mediated by Vif also restricted its own
localization to P-bodies. This hypothesis was confirmed when
it was shown that proteasome inhibition or coexpression of
APOBEC3G with the Vif C114S mutant, a nonfunctional Vif
mutant that continues to interact with APOBEC3G [26], led
to complete colocalization of Vif and APOBEC3G at P-
bodies. Interestingly, Vif did not localize to P-bodies in the
absence of APOBEC3G, showing that the APOBEC3G-Vif
interaction was responsible for targeting Vif to P-bodies. The
finding that Vif-mediated degradation restricted the local-
ization of both proteins to P-bodies suggests that an
important role for Vif could be to selectively remove
APOBEC3G from and/or prevent the association of APO-
BEC3G with P-bodies.

One of the more intriguing aspects of APOBEC3G biology
is that it targets a broad range of both exogenous [1,3,4] and
endogenous [5–7] retroviruses and can also limit the
production of infectious hepatitis B virus [7,64–67], a DNA
virus the replicates through an RNA intermediate. These
findings suggest that APOBEC3G and other members of the
APOBEC3 family of proteins may constitute a broad antiviral
defense mechanism. This hypothesis is supported by recent
findings demonstrating that the expression of APOBEC3G
and other APOBEC3 family members is induced by interfer-
on-a in primary monocyte-derived macrophages [68] and
primary hepatocytes [69], suggesting that these proteins could
be up-regulated in vivo as part of the innate immune
response to viral infection. The findings that APOBEC3G
and APOBEC3F are associated with mRNA processing
machinery provide an important clue as to how these
proteins may have evolved to exploit a common theme to
protect the cell from a broad range of foreign genetic
elements. Future studies would reveal the role of P bodies in
the assembly of human retroviruses and retrotransposons.

Materials and Methods

Expression vectors and antibodies. APOBEC3G expression vectors
pAPO3G-CFP, pAPO3G-YFP, and pAPO3G-HA were described
previously [26]. Expression vectors pAPO3F-HA and pAPO3B-HA,
which express APOBEC3F and APOBEC3B, respectively, with a C-
terminal HA tag, were generous gifts of Dr. Bryan Cullen [54]. The
pMyc-AGO2 expression vector, which expresses AGO2 with an N-
terminal c-Myc epitope tag, was a generous gift of Dr. Gregory
Hannon [70]. Vectors for the expression of YFP-tagged versions of
LSM1 were engineered by PCR amplification of their corresponding
coding sequences from 293T cDNA followed by cloning into the BglII
and SalI sites of pEYFP-C1 (BD Biosciences). The HIV-1 subgenomic
proviral vectors pNL-A1, pNL-A1C1, which harbors the Vif C114S

mutant, and pNL-A1Dvif were generous gifts of Dr. Klaus Strebel [41].
Antibodies used in this study include mouse monoclonal antibodies
a-GFP (BD Biosciences, San Diego, California, United States), a-p24

Gag (Advance Biotechnologies, Columbia, Maryland, United States),
a-GST (Santa Cruz Biotechnology, Santa Cruz, California, United
States), a-HA (Santa Cruz Biotechnology), and a-Vif (ImmunoDiag-
nostics, Woburn, Massachusetts, United States), rabbit polyclonal
antibodies a-HA (Santa Cruz Biotechnology) and a-DDX6 (RCK/p54;
Bethyl Laboratories, Montgomery, Texas, United States), and chicken
polyclonal antibody a-LSM1 (GenWay Biotech, San Diego, California,
United States). All chemicals were purchased from Sigma (St. Louis,
Missouri, United States) unless otherwise indicated.

Manipulation of mammalian cells. Primary CD4þ T cells were
isolated (Dynal Biotech ASA, Oslo, Norway) from PHA/IL-2 activated
human peripheral blood mononuclear cells cultured in RPMI 1640
medium (Invitrogen, Carlsbad, California, United States) supple-
mented with 10% fetal bovine serum, 100 units/ml penicillin, and 100
lg/ml streptomycin. The H9 lymphoid T cell line (ATCC [American
Type Culture Collection], Manassas, Virginia, United States) was
cultured in RPMI 1640 medium modified as above. The human 293T
embryonic kidney and HeLa cervical carcinoma cell lines were
maintained in a humidified incubator (5% CO2) at 37 8C in
Dulbecco’s modified Eagle’s medium (Invitrogen) also modified as
above. The HeLa-APOBEC3G cell line (referred to here as HeLa-
APO3G), which stably expresses APOBEC3G with C-terminal c-Myc
epitope tag (APO3G-Myc), was obtained through the National
Institutes of Health AIDS Research and Reference Reagent Program,
Division of AIDS, National Institute of Allergy and Infectious
Diseases, from Drs. Klaus Strebel and Eri Miyagi [41]. 293T and
HeLa cells were transfected with Qiagen-purified plasmid DNA
(Qiagen, Valencia, California, United States) using LipofectAMINE
2000 (Invitrogen) as previously described [26].

Immunoprecipitation and immunoblot analysis. For immunopre-
cipitation, total cell extracts were prepared using Mammalian Protein
Extraction Reagent (M-PER; Pierce, Rockford, Illinois, United States)
supplemented with 0.5% (v/v) Triton-X 100 (Pierce), 150 mM NaCl, 5
mM EDTA, and a 1:100 (v/v) dilution of a protease inhibitor cocktail
for mammalian tissue. Extracts were clarified by centrifugation and
protein concentration was determined by Dc protein assay (Bio-Rad,
Hercules, California, United States). HA and CFP tagged proteins
were precipitated by overnight incubation with either a-HA or a-GFP
rabbit polyclonal antibodies directly conjugated to agarose beads
(Santa Cruz Biotechnology). Samples were washed four times (15 min
for each wash) in lysis buffer and eluted by boiling for 2 min at 100 8C
in SDS-PAGE sample buffer (50 mM Tris-HCl [pH 6.8], 100 mM
dithiothreitol, 2% [w/v] SDS, 0.1% [w/v] bromophenol blue, 10% [v/v]
glycerol). SDS-PAGE separation and immunoblot analysis of protein
were performed as previously described [26].

Immunolocalization. For immunolocalization, 293T and HeLa cells
were seeded onto glass bottom micro-well dishes coated with poly-D-
lysine (MatTek Corporation, Ashland, Massachusetts, United States).
Primary peripheral blood CD4þ T cells and H9 T lymphocytes were
attached to cover slips using Cell-Tak cell and tissue adhesive (BD
Biosciences) according to the manufacturer’s instructions. Cells were
fixed for 20 min with 3.7% (v/v) paraformaldehyde (Electron
Microscopy Sciences, Hatfield, Pennsylvania, United States) in PBS
for 20 min followed by permeabilization with 0.25% (v/v) TX-100
(Pierce) for 5 min. Samples were next washed three times (5 min for
each wash) in PBS containing 0.1% (v/v) TX-100 (PBST). Samples
were blocked for 30 min in PBST containing 2% (w/v) bovine serum
albumin (PBST/BSA). All primary and secondary antibodies were
diluted in PBST/BSA and secondary antibodies were directly
conjugated to Alexa Fluor dyes (Molecular Probes, Eugene, Oregon,
United States). In certain cases, samples were counterstained with
Hoechst 33258 to visualize the nuclei. Samples were visualized with a
Leica confocal imaging spectrophotometer system (TCS-SP2) (Exton,
Pennsylvania, United States) attached to a Leica DMIRE inverted
fluorescence microscope and equipped with an argon laser (458-,
476-, 488-, 514-nm lines), two HeNe lasers (543-, 633-nm lines), an
acousto-optic tunable filter (AOTF) to attenuate individual visible
laser lines, and a tunable acousto-optical beam splitter (AOBS). All
images were acquired from a 363, 1.32 NA oil immersion objective
with variable digital magnification ranging from34 to38, and image
analysis was performed using Leica Confocal Software (LCS) and
Adobe Photoshop 7.0 (Adobe Systems, Mountain View, California,
United States).
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The GenBank accession numbers (http://www.ncbi.nlm.nih.gov/
Genbank) for the genes and gene products mentioned in this paper
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are YFP-tagged versions of LSM1 (NM_014462), AGO2
(NM_012154), eIF4E (NM_001968), eIF4E-T (NM_019843), RCK/
p54 (NM_004397), and DCP2 (NM_152624).
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