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Abstract

Using successive approximation technique, an analysis of unsteady hydromagnetic boundary layer flow

with thermal relaxation of perfectly conducting, viscous incompressible fluid past a semi-infinite porous plate

in presence of heat absorbing sinks is carried out. The expression for velocity and temperature fields, local

skin friction coefficient, local heat transfer coefficient etc have been derived when the free stream velocity

exponentially depends on time. The effects of different parameters entering into the problem are shown

graphically and discussed numerically.
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1. Introduction

Unsteady boundary layer plays an important role in many engineering problems like start-up process and
periodic fluid motion. Unsteady boundary layer has different behavior due to extra time dependent terms, which
will influence the fluid motion pattern and boundary layer separation [1]. The typical examples of unsteady

boundary layers in the history of fluid mechanics are the Rayleigh problem and Stokes oscillating plate [2,

3]. The magnetohydrodynamics (MHD) boundary layer flow of an electrically conducting fluid through porous
medium has gained considerable importance in the field of astrophysics, geophysics, biophysics and engineering.

Important aspects of biophysics have derived from physiology, especially in studies involving the conduc-
tion of nerve impulses [4]. It is known that the extra cellular fluid has a high concentration of positively charged

sodium ions (Na+ ) outside the neuron cell and a high concentration of negatively charged chloride (Cl− ) as

well as lower concentration of positively charged potassium (K+ ) inside, giving rise to a potential called resting

potential, usually measured at about −75 millivolts. The stimulation of the cell by any physical effect (heat,

electric current, light etc) cause a nerve impulse consisting of sodium ions pumped into the cell, potassium
ions pumped out, from which the cell membrane reaches a depolarization stage at which an electric signal is
transmitted to other nerve cells. The action potential is conducted at speeds that range from 1 to 100 m/sec

[4]. This extracellular fluid can be considered a perfect conducting fluid.
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Historically Rossow [5] was the first to study the hydrodynamic behavior of the boundary layer on
a semi-infinite plate in the presence of a uniform transverse magnetic field. Later the boundary layer flow
for an electrically conducting fluid have been discussed by many authors [6–12]. The different solutions of

boundary layer flow problems are found in the works of Zakaria [13–17]. Varshney and Kumar [18] studied
magnetohydrodynamic boundary layer flow of non-Newtonian fluid past a flat plate. Recently Das and Jana
[19] considered MHD boundary layer flow and heat transfer of viscoelastic fluid past a stretching plate through
a porous medium.

The objective of the present paper is the study of unsteady hydromagnetic boundary layer flow with
thermal relaxation of perfectly conducting fluid past a semi-infinite porous plate in the presence of heat absorbing
sinks.

2. Mathematical formulation of the problem

The boundary layer equations for two dimensional unsteady flow of a viscous incompressible perfectly
conducting fluid past a semi-infinite porous plate in presence of a transverse magnetic field and heat absorbing
sinks is considered. The x-axis is taken along the body and y-axis normal to it. Also it is assumed that the
velocity at large distance from the body will depend only on time t and x .

Let �H0 be the strength of constant magnetic field acts in the direction of y-axis. This produces an

induced magnetic field �h and induced electric field �E , which satisfy the linearized equations of electromagnetic
field,valid for slowly moving media of a perfectly conductor [17],

∇×�h = �J + ε0
∂ �E

∂t
, (1)

∇× �E = −μ0
∂�h

∂t
, (2)

�E = −μ0(�V × �H0), (3)

∇ · �h = 0 (4)

where �J is the electric current density, μ0 and ε0 are the magnetic and electric permeabilities, �V = (u, v, 0)

is the velocity vector of the fluid, �H0 = (0, H, 0) is applied magnetic field and �h = (h1, h2, 0) is the induced

magnetic field. The vector �E and �J will have non-vanishing components only in the z-direction, i.e. �E =

(0, 0, E), �J = (0, 0, J).

The governing equations under the boundary layer approximation and due to the inclusion of relaxation
time are given by

∂u

∂x
+

∂v

∂y
= 0, (5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
+

α2

H0
(
∂h1

∂y
− ∂h2

∂x
− μ0ε0H0

∂u

∂t
) − νu

k
, (6)

∂h1

∂t
= H0

∂u

∂y
, (7)
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∂h2

∂t
= −H0

∂u

∂x
, (8)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

λ

ρCp

∂2T

∂y2
− τ0

∂

∂t
(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
) + S(T − T∞) (9)

where ρ is the density of the fluid, ν is the kinematics viscosity, Cp is the specific heat at constant pressure p ,

α is the Alfven velocity given by α2 = μ0H2
0

ρ , k is the permeability of porous medium, T is the temperature of

the fluid in the boundary layer and T∞ is the temperature of the fluid far away from the plate, S is the sink
strength and λ is the thermal conductivity and τ0 is the relaxation time.

The boundary conditions are given by

u = 0, v = 0, T − T∞ = T0U(x, t) at y = 0

u → U∞, T → T∞ as y → ∞,

⎫⎬
⎭ (10)

where T0 is the mean temperature of the surface of the body and U∞ is the velocity of the fluid at large distance
from the plate.

The pressure term in (6) can be expressed in terms of the free stream velocity U∞ which is a function of

x and t only. Thus equation (6) will become a generalized Bernoulli’s equation as [15]

−1
ρ

∂p

∂x
=

∂U∞
∂t

+ U∞
∂U∞
∂x

+
α2

H0

∂h2∞
∂x

+ α2μ0ε0
∂U∞
∂t

+
νU∞

k
, (11)

where h2∞ is the component of induced magnetic field at large distance from the body.

In virtue of (11), equation (6) becomes

∂u
∂t + u∂u

∂x + v ∂u
∂y = ∂U∞

∂t + U∞
∂U∞
∂x + ν ∂2u

∂y2 + α2

H0

{
∂h1
∂y − ∂h2

∂x + ∂h2∞
∂x − μ0ε0H0(∂u

∂t

−∂U∞
∂t )

}
− ν

k (u − U∞).
(12)

Eliminating h1 and h2 from (12), using (7), (8) and applying the boundary layer approximation the
following equation is obtained:

∂2u
∂t2 + u ∂2u

∂t∂x + ∂u
∂t

∂u
∂x + v ∂2u

∂t∂y + ∂v
∂t

∂u
∂y = ∂2U∞

∂t2 + U∞
∂2U∞
∂t∂x + ∂U∞

∂t
∂U∞
∂x + ν ∂3u

∂t∂y2

+ α2
{

∂2u
∂y2 − μ0ε0

∂2

∂t2
(u − U∞)

}
− ν

k
∂
∂t

(u − U∞).
(13)

Introducing the non-dimensional quantities

x̄ = U0x
ν ; ȳ = U0y

ν ; t̄ = U2
0 t
ν ; ū = u

U0
; v̄ = v

U0
; δ = d1

λ ; h̄1 = h1
H0

; h̄2 = h2
H0

;

T̄ = T−T∞
T0

; T̄0 = U2
0T0
ν ; ᾱ = α

U0
; Ū∞ = U∞

U0
; K = U2

0k
ν2 ; S̄ = Sν

U2
0
; Pr = ρCpν

λ ,

⎫⎪⎬
⎪⎭ (14)

and taking U∞ = U0U(x, t), equations (5), (9) and (13) can be written (after dropping the bar notation) as

∂u

∂x
+

∂v

∂y
= 0, (15)
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a∂2u
∂t2 + u ∂2u

∂t∂x + ∂u
∂t

∂u
∂x + v ∂2u

∂t∂y + ∂v
∂t

∂u
∂y = a∂2U

∂t2 + U ∂2U
∂t∂x + ∂U

∂t
∂U
∂x + ∂3u

∂t∂y2

+α2 ∂2u
∂y2 − 1

K
∂
∂t(u − U),

(16)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1
Pr

∂2T

∂y2
− τ0

∂

∂t
(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
) + ST, (17)

where Pr is the Prandtl number, K is the permeability of the porous medium, S is the strength of the sink,

a = 1 + α2

c2 and c is the speed of light given by c2 = 1
ε0μ0

.

Also the boundary conditions become

u = 0, v = 0, T − T∞ = U(x, t) at y = 0,

u → U(x, t), T → 0 as y → ∞.

⎫⎬
⎭ (18)

3. Method of solution

The successive approximation method [17] is used to solve the unsteady boundary layer equations (15)–

(17). A coordinate system which is at rest with respect to the plate and the magnetohydrodynamics flow of a
perfectly conducting fluid moves with respect to the plane surface is considered so that the velocity components
u , v and temperature T possess a series solution of the form

u(x, y, t) =
∞∑

i=0

ui(x, y, t), v(x, y, t) =
∞∑

i=0

vi(x, y, t), T (x, y, t) =
∞∑

i=0

Ti(x, y, t), (19)

where ui = 0(εi), i is an integer and ε is a small number.

Then the continuity equation (15) gives

∂ui

∂x
+

∂vi

∂y
= 0, i = 0, 1, 2, . . . (20)

Substituting the series solution (19) into (16) and (17), and equating to zero of the same order terms, the
following equations are obtained:

a∂2u0
∂t2 − ∂3u0

∂t∂y2 − α2 ∂2u0
∂y2 = a∂2U

∂t2 − 1
K

∂
∂t(u0 − U), (21)

a∂2u1
∂t2 − ∂3u1

∂t∂y2 − α2 ∂2u1
∂y2 = U ∂2U

∂t∂x + ∂U
∂t

∂U
∂x − u0

∂2u0
∂t∂x − v0

∂2u0
∂t∂y − ∂u0

∂t
∂u0
∂x

−∂v0
∂t

∂u0
∂y

− 1
K

∂u1
∂t

,
(22)

∂T0

∂t
+ τ0

∂2T0

∂t2
− 1

Pr

∂2T0

∂y2
= ST0 , (23)

∂T1

∂t
+ τ0

∂2T1

∂t2
− 1

Pr

∂2T1

∂y2
= −u0

∂

∂x
(T0 + τ0

∂T0

∂t
) − v0

∂

∂y
(T0 + τ0

∂T0

∂t
) + ST1 (24)
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The corresponding boundary conditions are

ui = 0, vi = 0, T0 = U(x, t), Ti = 0, i = 0, 1, 2..., for y = 0

u0 → U(x, t), ui → 0, Ti → 0, i = 0, 1, 2, ..., as y → ∞.

⎫⎬
⎭ (25)

Due to the complexity of higher order approximation in the present analysis, only first two terms of the
series solutions (19) are taken. This type solutions [17] is satisfactory in the phases of the non-periodic motion

after it has been started from rest ( till the moment when the first separation of boundary layer occurs) and in
the case of periodic motion when the amplitude of oscillation is small.

4. Solution of the problem

To solve the problem it is assumed that the free stream flow at large distance from the surface is of the
form

U(x, t) = eωtV (x). (26)

It is assumed that where ω > 0, the exact solution of the equation (20) and (22) is of the form

u0(x, y, t) = eωtV (x)f ′
1(y), (27)

T0(x, y, t) = eωtV (x)φ1(y). (28)

Then equation (20) yields

v0(x, y, t) = −eωt dV

dx
f1(y). (29)

Using equations (27) and (28), one obtain from equations (21) and (23), the differential equations for f1(y),

φ1(y) as

f ′′′
1 − k2

1f
′
1 = −k2

1 , (30)

φ′′
1 − k2

2φ1 = 0, (31)

where k2
1 = Kαω2+ω

K(ω+α2) , k2
2 = Pr(S + ω + τ0ω

2).

The corresponding boundary conditions become

f1 = 0, f ′
1 = 0, φ1 = 1, for y = 0

f ′
1 → 1, φ1 → 0, as y → ∞.

⎫⎬
⎭ (32)

Solutions of (30)and (31) and use of the boundary conditions (32) give the following results:

f1(y) = y +
1
k1

(e−k1y − 1), (33)

φ1(y) = e−k2y − 1. (34)
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Again assuming the solution of (22) is of the form

u1(x, y, t) = e2ωtV
dV

dx
f ′
2(y), (35)

an exact solution of (24) is obtained if it is considered that T1(x, y, t) is of the form [15]

T1(x, y, t) = e2ωtV
dV

dx
φ2(y). (36)

Then using (35) and (36), one obtains from equations (22) and (24), the differential equations for f2(y) and

φ2(y) can be written as

f ′′′
2 − k2

3f
′
2 = ω1(f ′2

1 − f1f
′′
1 − 1), (37)

φ′′
2 − k2

4φ2 =
k2
2

ω
(φ1f

′
2 − φ′

1f1), (38)

where k2
3 = ( 1

K + 2aω)ω1 , ω1 = 2ω
2ω+α2 and k2

4 = Pr(4τ0ω
2 + 2ω − S).

The corresponding boundary conditions become

f2 = 0, f ′
2 = 0, φ2 = 0, for y = 0

f ′
2 → 0, φ2 → 0, as y → ∞.

⎫⎬
⎭ (39)

With boundary conditions (39), solutions to (37) and (38) are

f2(y) = A1 + A2e
−k3y + A4(A3 + y)e−k1y, (40)

φ2(y) = A5e
−k4y + A6e

−(k1+k2)y + A7(A8 − y)e−k2y, (41)

where
A1 = ω1

k2
1−k2

3
, A5 + A6 + A7A8 = 0,

A2 = A1
k3

(1 − k1A3), A6 = k2
2(k2−k1)

ωk1{(k+k2)2−k2
4} ,

A3 = 2(2k2
1−k2

3)
k2
1−k2

3
, A7 = k2

2
ω(k2

2−k2
4)

,

A4 = A1
k3

{A3(k1 − k3) − 1} , A8 = A7

{
k1−k2
k1k2

+ 2k2
2

k2
2−k2

4

}
.

(42)

The non-dimensional form of the equations (7) and (8) are

∂h1

∂t
=

∂u

∂y
, (43)

∂h2

∂t
= −∂u

∂x
. (44)

Then from equations (27), (35), (43) and (44), the components of the induced magnetic field are given
by

h1(x, y, t) =
V eωt

2ω
(2f ′′

1 + εeωt dV

dx
f ′′
2 ), (45)
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h2(x, y, t) = −eωt

2ω

{
2
dV

dx
f ′
1 + εeωtf ′

2

d

dx
(V

dV

dx
)
}

(46)

After obtaining velocity and temperature field, some important flow characteristics of the problem can
be obtained, viz. wall shear stress τ and local heat flux q , as given below.

Wall shear stress

The wall shear stress in non-dimensional form is given by the function

τ = ρU2
0

(
∂u

∂y

)
y=0

. (47)

From equations (27), (35), one obtains

τ = ρU2
0 V (x)eωt

{
k1 + εeωt dV

dx

[
(k2

1A3A4 − 2k1A4) + k2
3A2

]}
. (48)

Thus the local skin friction coefficient Cf is given by

Cf =
τ

1
2
ρU2

0

= 2V (x)eωt

{
k1 + εeωt dV

dx

[
(k2

1A3A4 − 2k1A4) + k2
3A2

]}
. (49)

Local heat flux

The local heat flux in non-dimensional form is given by

q = −κU0

γ
(T0 − T∞)

(
∂T

∂y

)
y=0

. (50)

Thus equations (28) and (36) yield

q =
κ

γ
U0V (x)eωt(T0 − T∞)

{
k2 + εeωt dV

dx
[(k4A5 + (k1 + k2)A6 + A7(k2A8 + 1)]

}
. (51)

So the local heat transfer coefficient is given by

h(x, t) =
q(x, t)

T0 − T∞
=

κ

γ
U0V (x)eωt

{
k2 + εeωt dV

dx
[(k4A5 + (k1 + k2)A6 + A7(k2A8 + 1)]

}
. (52)

5. Numerical results and discussion

In order to get the physical insight of the problem, it is assumed that the stream velocity is of the form

U∞(x, y, t) = U0e
ωtxn,

where c and n are fixed constants.
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The velocity component u , temperature T , local skin friction coefficient Cf and local heat transfer
coefficient h have been discussed numerically through graphs for different values of permeability parameter K ,
Alfven velocity α , sink strength S , etc.

The velocity profiles are shown in Figures 1 and 2, in which, respectively, the effect of Alfven velocity
and permeability parameter on the velocity component for n = 1 are clearly shown. In these figures, the dotted
lines denotes the flow when t = 0.5 and the solid lines denote the flow for t = 1.0. It is observed that the
velocity decreases with increasing both the values of α , K but an increase in the value of t leads to an increase
in velocity.
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Figure 1. Effect of Alfven velocity α on velocity distri-

bution.

Figure 2. Effect of permeability parameter K on velocity

distribution.

The temperature profiles are illustrated in Figures 3 and 4 for various values of sink strength and
permeability parameter. Here, the dotted lines represents the solution of this flow when t = 1.0 and the
solid lines represents the flow when t = 0.5. It can be seen from these figures that temperature field increases
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Figure 3. Effect of permeability parameter K on tem-

perature distribution.

Figure 4. Effect of sink strength S on temperature dis-

tribution.
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with decreasing both the values of t and K . But an increases in the value of S leads to decrease in the
temperature field within the boundary layer region, while the temperature far away from the plate increases.

The skin friction coefficient is plotted against x in Figures 5 and 6. The effects of Alfven velocity and
permeability parameter on skin friction coefficient are shown in the figures and it is observed that skin friction
coefficient decreases with increase in α and K . Also skin friction coefficient increases with increasing t .
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Figure 5. Effect of Alfven velocity α on skin friction
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Figure 6. Effect of permeability parameter K on skin

friction coefficient.

The effect of sink strength on heat transfer coefficient are exhibited by the curves shown in Figure 7. An
increase in the value of sink strength leads to increase in the heat transfer coefficient. Also the heat transfer
coefficient is found to increase when t = 1.0 as compared to t = 0.5.

No. S

1.2

1.6

0.8

0.4

0
0.2 0.4 0.6 0.80

h

x

1        0.2
2        0.4
3        0.6

t=0.5

t=1.0 3
3

2
2

1
1

Figure 7. Effect of sink strength S on heat transfer coefficient.
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6. Conclusions

In the present investigation, the problem of unsteady magnetohydrodynamic thermal boundary layer
flow of perfectly conducting fluid past a semi-infinite porous plate in presence of heat absorbing sinks has been
formulated and solved using successive approximation technique. The results are analyzed numerically through
graphs for finding the effect of different parameters, such as permeability parameter, Alfven velocity parameter,
sink strength etc on velocity, temperature field and other characteristics. The specific conclusions derived from
this study are summarized as follows.

• Increasing the Alfven velocity and permeability parameter decelerates the motion of the fluid but the
effect is reverse for time t .

• The temperature distribution of the fluid decreases with increasing the permeability parameter and time.
Near the boundary region the temperature decreases as sink strength increases but the effect is reverse
far away from the plate.

• Increasing the Alfven velocity and permeability parameter lead to reduce the skin friction coefficient
whereas the effect is opposite for time.

• The rate of heat transfer at the plate increases with increasing the sink strength and time.
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