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Abstract

The objective of this article is to study the large time asymptotic behavior of the
nonnegative weak solution of the following nonlinear parabolic equation

u; = div (|Du™|P~>Du™) + div (B(u™))
with initial condition u(x, 0) = ug(x). By using Moser iteration technique, assuming

that the uniqueness of the Barenblatt-type solution £, of the equation u, = div(|[Du™|
P2DU™) is true, then the solution u may satisfy

1
th |u(x, t) —Ec(x, 1) > 0, ast— oo,

1
which is uniformly true on the sets {x eRN: x| < at™, a> 0}. Here BW™) =

(b1 (U™, bo(U™), .., byu™) satisfies some growth order conditions, the exponents m
and p satisfy m(p - 1) >1.
Mathematics Subject Classification 2000: 35K55; 35K65; 35B40.
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1. Introduction
The objective of this article is to study the large time asymptotic behavior of the non-
negative weak solution of the nonlinear parabolic equation with the following type

u; = div(|Du™ "2 Du™) + div(B(u™)), inS=RN x (0, o), (1.1)

u(x, 0) = up(x), onRY, (1.2)

where m(p - 1) >1, N > 1, up(x) € L(RY), D is the spatial gradient operator, and the

N m
convection term div(B(u™)) = § iy A(bi(w™)
i=

(’;‘UC{
Equation (1.1) appears in a number of different physical situations [1].
For example, in the study of water infiltration through porous media, Darcy’s linear

relation
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V = —K(6)V¢, (1.3)

satisfactorily describes flow conditions provided the velocities are small. Here V'
represents the seepage velocity of water, 0 is the volumetric moisture content, K(0) is
the hydraulic conductivity and ¢ is the total potential, which can be expressed as the
sum of a hydrostatic potential w(6) and a gravitational potential z

¢ =v(0)+z. (1.4)

However, (1.3) fails to describe the flow for large velocities. To get a more accurate
description of the flow in this case, several nonlinear versions of (1.3) have been pro-
posed. One of these versions is

Ve = —K(0)V¢, (1.5)

where o ranges from 1 for laminar flow to 2 for completely turbulent flow (cf. [2-4]
and references therein). If it is assumed that infiltration takes place in a horizontal col-
umn of the medium, according to the continuity equation

a0 oV

+ = 0,
ot 0x

then (1.4) and (1.5) give

G
= . (D(®) 16"
at ax(()|"| )

with ; =« and D(6) = K(6)y'(0). Choosing D(6) = Do (cf. [5,6]), one obtains (1.1)
with B(s) = 0, u being the volumetric moisture content.

Another example where Equation (1.1) appears is the one-dimensional turbulent flow
of gas in a porous medium (cf. [7]), where u stands for the density, and the pressure is
proportional to #”" (see also [8]). Typical values of p are again 1 for laminar (non-tur-
bulent) flow and ; for completely turbulent flow.

The existence of nonnegative solution of (1.1)-(1.2) without the convection term div
(B(#™)), defined in some weak sense, had been well established (see [9] etc.). Here we
quote the following definition.

Definition 1.1. A nonnegative function u(x, ) is called a weak solution of (1.1)-(1.2)
if u satisfies

(i)
ueC, T;LY(RN)NL*®(RN x (z, T)), (1.6)
u" e lf (0, T, WY(RY)), wel'(RN x (z, T)), Vr>0; (1.7)
(i)
// [ugp; — |Du"’|pf2 Du™ - Dy — B(u™) - Dg|dxdt =0, Vg € Cy(S); (1.8)

S
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(iii)
gr(}f lu(x, t) — uo(x)| dx = 0. (1.9)
RN

If there exist the positive constants k;, o such that

B(s)| < Fals|™,

B'(s)| <klsl* Vs € R' = (—o0, +00), (1.10)

Chen-Wang [10] had proved the existence and the uniqueness of the weak solutions
of (1.1) and (1.2) in the sense of Definition 1.1.

As we have said before, we are mainly interested in the behavior of solution of (1.1)
and (1.2) as t — oo. According to the different properties of the initial function uo(x),
the corresponding nonnegative solutions may have different large time asymptotic
behaviors, one can refer to the references [11-17]. In our article, we are going to study
the large time asymptotic behavior for the solution of (1.1) and (1.2) by comparing it
to the Barenblatt-type solution, let us give some details.

It is not difficult to verify that

p—1
-1 ! N, mp—1)—1

—1)-1 - ~1\ p-1 b=

Be=t i { o= P77 g <|x| tNH>
mp

is the Barenblatt-type solution of the Cauchy problem
u, = div (|Du"P?Du™), inS=RN x (0, 00), (1.11)
u(x, 0) =cs(x), on RN, (1.12)

where pu=m(p-1)—-1+ ﬁj, c= fRN up(x)dx, b is a constant such that

b= E.(x,t)dx, and J denotes the Dirac mass centered at the origin.
RN

By using some ideas of [9,14], we have the following
Theorem 1.2. Suppose m(p - 1) >1, B satisfies (1.10) with o < p - 1 and

m(l+a)>1+pu=m(p—1)+ ]\’I If E. is a unique solution of (1.11) and (1.12), then
the solution # of (1.1) and (1.2) satisfies

1
thu(x, t) — Ec(x, t)] > 0, ast— oo,

1
uniformly on the sets {xeRN: x| < atiN, a > O}, where C=fRN Updx as

before.

Remark 1.3. For m = 1, the uniqueness of solutions of (1.11) and (1.12) is known
(see [18]).

By assuming that the uniqueness of the Barenblatt-type solution of (1.11) is true,
Yang and Zhao [14] had established the similar large time behavior of solution of the
Cauchy problem of the following equation
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u = div (|Du"P?Du™) —ud,  inS=RN x (0, o0), (1.13)
While Zhan [17] had considered the Cauchy problem of the following equation

u; = div (\Du’"|p_2Du’”) — [Dum PP — ul, inS =R x (0, o), (1.14)

and also had got the similar result as Theorem 1.2. Comparing (1.1) with (1.13) or
(1.14), the most difficulty comes from that the convection term div(B(u")). The
absorption term -u? in (1.13), or —|Du™["* — u9 in (1.14), is always less than 0. This
fact made us be able to draw it away in many estimates in [14] or [17]. But the convec-
tion term div(B(u™)) plays important role in this article, and it can not be drawn away
randomly in the estimates we needed, we have to deal with it by some special
techniques.

At the end of this introduction section, we would like to point that the condition m
(p - 1) >1 in Theorem 1.2, which means that the Equation (1.1) or (1.11) is a doubly
degenerate parabolic equation, plays an important role in the proof of the theorem. In
other words, if it is not true, (1.1) is in singular case, then the large time behavior of
the solution in this case is still an open problem.

2. Some important lemmas
Let u be a nonnegative solution of (1.1) and (1.2). We define the family of functions

we = WNu(kx, KN*t), k> 0.
It is easy to see that they are the solutions of the problems

U = div (|Du"“p_2Dum) AN iy(B(N ™)), inS=RY x (0, 00),  (2.1)

u(x, 0) = uor(x), on RN, (2.2)

where p=m(p—1)+ ﬁ, — 1 as before and ugi(x) = KV uo(k).

Lemma 2.1 For any s € (ma, m(p - 1)), the nonnegative solution u; satisfies

T uS—m 5
// k 2|Du£”| dxdt < c(s, R, |uolp1), (2.3)
(1+u)
0 By
T
p

//um(p71)+N73dxdt <c(s, R, |uglp). (2.4)
0 By

Proof. From Definition 1.1, we are able to deduce that (see [19]): for V¢ e C! (S), 10)
= 0 when |x| is large enough, for any t € [0, 7], 0 < h < ¢,

t
/u;,q;(x, t)dxf/. / [uk@ _ |Du;"|ﬂ72Du,'z" . Dy — NU+)B (ke Nm sz] dxdt = /ukfp(x, h)dx. (2.5)

RN h RN RN
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Let

Yr € CP(Br), O0<yr<1, Yr=1onBg [Dyg| <cR'. (2.6)

By an approximate procedure, we can choose ¢ = ‘ﬁR in (2.5), then

1+u

up(x,t)
//1 dedxH// 2|D m|Pykdxde
RN 0

t up(x,t)
u; 2 po z°
k p=2 , p—1
—p// Lo |Dui|" "y Duy, - Dyypdxdr + / / e dzyrhdx (2.7)
h RN

RN 0

t
+NOHH) //B(kN’"u;,")D< i . w,’;) dxdr | .
1+u,
h RN

Noticing
// |Du2"|p 2 71(x)Du2"-D1//Rdxdr
h RN
. m" p—1 o =m)(-1) »
Uy, m(p=1, p—1 U, !
sf/ & 1 |Dujy | 2 +c(g) 1 IDYR] dedr  (2.8)
v | (e (1eu) "
t
_s// |Duk ‘pw dxdt+c(s)//uzq(p_l)ﬂlDlepdxdr,
h RN
! N
u
kN(1+“)/fB(kNmu£")D<l k Swlg) dxdt
+ 1,
h RN
. (2.9)
_ Duv’ pu’ -1
=kN(1+")//BkN’”’" — R R Dy | dxdr.
) | = )y g2 VR s VR DYR | e
h RN
Since s >om, B(k—Nmu}T:‘)’ < klk_Nm(1+“)|u£”|l+“,
1)[Ip s—m+(1+a)mp’
‘ (1eu)” |7
is always true, we have
B(k~ Nm m B(k~ Nmu
/ / ( WﬁDukdxd = / / ( g 2k lﬁ}gDu,'z”dxdr
1 + uk 1 + uk
Pus m Pus m ,
f / Vit |Duk "dxdz + c(e)s / / Rk |B(k-N'" ™) dxdz, (2.10)
1+ u

p,s—m
<e¢ / f ‘“”R”k yDuk P dvdz +c(e, RYk=NmOwaly’ ) P y
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and

”Ia(x/h) zs
) +z5dzw£dx < / u(x, KNMh)dx.

RN 0 RN
Noticing that the condition m(p - 1) >1 and

m(l+a)>1+pu=m(p—1)+ p,
N
then by (2.7)-(2.11), we obtain

g (x,t)

T
z u;z_m m|P_s P
sup dzdx + , | Dup |y pdxde
0<t<T 1+2° (1 + ui)
RN 0 h RN

T
< c/u(x, kN"h)dxH//u;"“’*”*ﬂDz/fRdedr +e
RN h RN
Since g € L™ (RN x (b, T)) n L'(S),

T
lim f / u;”(”*””|DwR|dedz =0.

R—o0
h RN

Let # — 0 in (2.12). Then

g (x,t)

z w " p
sup / / dzdx + // , | Dup [P dxdr < cfuodx.
0<t<T A 1+2 (1 + ui)
o

Bar RN

From this inequality, it is clear of that

T
us—m
sup /uk(x, t)dx+// k ) |Du,’€”|pdxd1: < ¢(R).
0<t<T (1 + uiz)
Bar 0 Bar
So (2.3) is true.
Let
m(p—1)—s
Uy =max{uk(x, 1), 1}, w=1u p

By Sobolev’s imbedding inequality (see [19]), for & € C}(Bar), & > 0, we have
1 s (1-0)[m(p—1)—s]
r p p
/ gPuwdx | <c / |D(§w)|pdx / wmhfil),s dx ,
2R 2R 2R
where

[me-1-s _1[1 1 _mp-n=s]"_ plmp—1)+ L~
9—[ 9 r][N p p ] o mp—1)—s
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It follows that

(r=p)[m(p—1)—s]
p

// EMw dxdt < C/ |D(¢w)|"dxdt sup /wm(p’i”_sdx ,  (2.16)
te(0,7)
ST ST 2R
where we denote S = RN x (0, T). Since
uS*Tn
[DwlP <¢ k )2 |Du;{”}pa.e. on {u, > 1}and |Dw| = 0on {u, < 1},
1+,

we have

/// ID(w)|Pdxdt < c/ (£”|Dwl + w?| D P)dxdt

<c¢ // |D§|”um(p 2 5dxdt+// (14 IDuk [P dxdt

Hence, by (2.16), (2.(17) and (2.15), we get

(2.17)

p
1)+ — —1)—
// EpuT(p N “dxdt < c(s, R, luolpn) | 1 +/ IDSIpuTI"(p D= it

ST ST
p
Let & = ¥}, yr. be the function satisfying (2.6) and p, - N ['"(p’:’)*N’S]. Then

m(p—1)—s
m + m " m(p—l —S+p
// '/be (p-1) N dxdt<c(s R, luolp) (1+// '/be (r-1) N S d) ) N,

by Moser iteration technique, the above inequality implies (2.4) is true.

Let Q, = B, (x0) x (to - p*, to) with t5 >(2p)” and wusq = max{uy, 1}. Also by Moser
iteration technique, we have

Lemma 2.2 The nonnegative solution u; satisfies

1/51

supuk<C(,0, 51) / / G v 12 (2.18)
Qap

where c¢(p, s;) depends on p and s;, and s; can be any number satisfying
0<sp<1+}.

Proof. For Vg e C!(S), ¢ = 0 when |x| is large enough, we have

T
/uk(x/ H)pdx — / / [ure: — ]Dukm|p72Du,'z" - Dy — KNI B(l=Nmy™) Do | dxdt
RN 0 RN (2.19)

= /uok(x)(p(x, 0)dx.

RN
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Let ¢ be the cut function on Q,, i.e.

0< ‘é;: <1, %-'Qp =1, %-'RN\sz =0.

We choose the testing function in (2.19) as ¢ = gpui”’l, where y > 1 is a constant.

Then

t
1 2y =1 1
2y /Epu;y(x, t)dx + ym //épuiy " Dyl P dxds
B

0 B,

t t
=Pf/§p_1 |D-§|u,§y_1|Du,’z”|p71dxds+ 217 //gﬂ—l I&Iu;ydxds
0 By, Y 0 By,
(2.20)

t
+plN () f / 01 B(k~N"uyul” ™! DE dxdt

0 By,
t
2y —1 Cm—
+N(+0) )/m //E”uiy "B (kN ) Dul" dds.
0 B,
Using Young inequality, by (1.10),
_ - —1 —1- — -1
e 1 Dgluy” D" =y e D P IDE | it
< (e Dy |+ cle)uy”IDEN),

Spui}’—m—lB(k—Nmu}rzn)Duzn’ < k—Nm(l+oz)

p, ma+2y—1 m
&Py, Duy, ’

< kam(lJra)

p,2v—1-m_ ma+mpy, m
&"u, u, " Duy, ‘

< k—Nm(l+oz)

S"ui"_l_m‘ (c(s)u;"(“a)p/ +e|Du ),

from (2.20), we have

t
1 2y —1 2y —1 -
) /épuiy(x, t)dx+[ ym —s<1+ ym )]/fgpu,fy M v P dxds
14

By, 0 By,

t t
<cf [uimoipepaas « [ [ et g dvas (2.21)

0 By, 0 By,
t

+C(€)k_Nm(l+a)+N(l+M)//|uk|zy_1_m+"’(1+°‘)f”dxd5.

0 By,
By the fact of that
2y —1+m(p—1) 2y —1em(p—1) 2y —1—m 4
ples R S A S T
m

< chsl"uiy_“m(p_l) + c&”{DuZ‘}PuiV*l*m,
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from (2.21), we have

2y —1+m(p—1)\ |

sup / Spu,f”dxds+ / / D | &u, P dxds
0—2pP <t<ty
B2p QZ/J

t t
Sc//uiy_l+m(p_1)|D£|pdxds + c//gﬂ—l 16| 12 dxds (2.22)

0 By, 0 By,

2 2y —1—m+m(1+a)p’
+ () Nm(1ra) N (1) <V = f / | dxds.

0 By,
Let

ﬂ:max{l 2y—1+m(p—1)}

and

2y—1+m(p—1)
w= E’suk P

By the embedding theorem, from (2.22), we have

2y —1+m(p—1) Sh
2yp 2)/17 (1-8)h o
/fw"dxdt<c sup f 2y = L+m(p—1) 4 . f (@/ |prdx) dx, (223)
to— 2/)»”<[<[“B oo i
where
5 <2y—1+m(p—1) 1)(1 1 2y—1+m(p—1))1
= - . -+
2yp h) \N p 2yp

In particular, we choose

2yp

h=pll* Gy —1emp—1))

I

then from (2.23), we have

//Eﬂh 2y —1+m(p— 1)+ N ddt

Qp
2y —1+m(p—1)\ [
p
sup [521’ 1”"(?' 1) uZde // D | &fu dxdt
~2p<i<i k (2.24)
Qap
1+ﬂ
2y —1+m(p—1)\ | N
sup /521/ 1+M(ﬂ Dy ydx+// D sﬁuk P dxdt
Z/)P<t<zo

Q)
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Now, for t € [,, 1], we denote that

I=2 =7\ 112
p=2p(t+ o ), 1=12

and choose the cut functions &(x, £) of Q,;, such that on Qpu1y, & = 1.
Denote

K=1+", 2y =K.
N
and let
uq, = max{1, ug}.

Then, by (2.23) and (2.24) and the assumption of that a < p - 1, which implies

2y —1+m(l+a)p —m <2y —1+m(p—1),

we have
—1)— 1+1 1) 1+1
/ / u;{"(p D-1+K dxdtf/ / uﬁ(p D=1 e
Qpis1) Qp(is1)
—1)—1 KI+1
5/ / u;"(p -1+ dxdt + mesQ(141)
Qps1)
K

- e // mlp=1)=1+K' 5 1/
A=)

Using Moser iteration technique, we have

1
1 N K
supuy, < { wa f um(p D= 1dedt}
S (B
Then, we have
1
K—r N K
supuy; < (supuyg) K . N+pf f DT vy
2tp Q, [(1- ]
By Schwarz inequality,
1

1 . T
sup uyy, < 2supu1k+c(r){ N+pf f um(p - 1rdxdt}
2p

2tp

[(1—f P

By the Lemma 3.1 in [19], for any 7 € [}, 1), we have

1

supu1k<c(r,p)|:f S/ um(p b= 1+rdxdt:| ,

2p
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and from this inequality, we get the conclusion of the lemma.
Lemma 2.3 The nonnegative solution #; satisfies

T

/ / |Duf*|"dxdt < oz, R). (2.25)
T Bp

T
//Iuktlpdxdt < ¢(z, R). (2.26)
T BR

Proof. By Lemmas 2.1 and 2.2, {#;} are uniformly bounded on every compact set K
C Sy . Let yy be a function satisfying (2.6) and & € C}(0,T) with0<¢&<1,¢é=11if¢
€ (t, T). We choose n = wﬁéu;" in (2.5) to obtain

/ mel (o, T)yhdx + / / |Dul! [Pyrhe ddt

1
m+ 1

/ [ e vfasic—p / [P Du - Dy s )
+N(R) // B(k™N"u")E (py" ! Dyprul! + yhDul")dxdt.
Noticing
// ! [Du " 1Dy i v

< s// |Du! |p1//Rdedt+c(s) //u |Dyrg|PEdxdt,

T
B(kN" ") ey Dyt dxdt| < ;k’N'”“*“) / / " dxdr,

0 B,

B(k"™NuMgyhDu)dxdt| < c(e) // |B(k™N™u m)|p§1/,Rdxdr +s// |Du [Pyrhé dxdt

< ¢e)kNm(i+e) // u;:’p(lm)éz/fgdxdt + s// |Duf? [Py dudt,
Sr Sr

from these inequalities, by (2.18) and (2.27), one knows that (2.25) is true. (2.26) is to
be proved in what follows.

Let

v(x, t) = upr(x, t) = rug(x, "=, re (0,1). (2.28)
Then

v (x, t) = div(|Dv" [P=2Dv™) + - DN+ div(B(R=NMr—mm)), (2.29)

v(x, 0) = rug(x, 0). (2.30)
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By (2.1) and (2.29), for any ¢ € C}(Sr), we have

/ / 0 gy~ O+ / / (1D "~ Du? — |Dw" =Dy | Dt
N Sp

(2.31)
AN / [B(k "™ ujt) — "= DB (kN ") |Dedxdt = 0.

Sy
Let g,(s) = 1 when s > 1; g,(s) = ns when 0 <s < !; g,(s) = 0 when 5 <0, and let ¢

in (2.31) be substituted by ¢g:(uj' —v™). Then

9 - - ,
// o8y —v") ) (e — v)ddt + /f [|Dw "> D — |Dv" "> D™ |[g,D(f! — V") + guDeldxdt
Sr Sr

(2.32)
+N40) / / [B(k~N™uy — 0= DB (R Nm =y |8 D — ™) + gnDeldxdt = 0.
St

Let @(x, t) =60(})nj(t). Where 6 € C}(RN), 0 < 0 < 1, O(x) = 1 when x € By, and
nj(t) € C3(0, T), 0 < m; < 1, which satisfies that 7; = 1 when j — o, and 7 is the
characteristic function of (s, $5), $; < $s.

Since ug, ve L= (RN x (¢, T)), Du}, Dv" e I (RN x (z, T)), we have

/ / [|Dup P Duf — |Dv"|~* Du™|g,6 (x)m; (1) dxdt > O,
Sr

/ / [[Du " Duyr — D" "D g, Do ( , ) my(e)dee

St
: }1€ // [|Du]rzn|ﬂ—1 " |Dvm|p_1]|Dy9(Y)| K nj(t)dxdt — 0,
St }’—k
as k — oo,

If we notice that, for any i € {1,2, .., N},

RN T [y Oy — 0 DN )|
r—

= NO) [y (RN ) — by (N |

JeNm
= |NU) / bi(s)ds
—vam
k—NmuZl
< kN(lﬂ/,) / %ds = klkam(ot+1)+N(1+M) kl um(lx+1) _ Um(a+1) ]
N a+1 1k
k—Nmym

then it is easy to show that

r

JN(+H) lim / / [B(kNmu™y — (=D Bk NMr=my™) gl (Dul — Dv™)dxdt = 0
N
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At the same time,
Jim N1 / / [B(RNmu) — P~V B(k=Nmp=myM))g, Dodxdt
St

= N0+ klgg@ // [B(k_N'"uZ") — rm(p_l)B(k_N'"r_mv'")]gnDe(Z)nj(t)dxdt
Sr

< lim N1 / / ‘B(k*Nmu;f) —r’”(”’l)B(k’Nmr’mvm)‘ (DO, n(0)ddt

T k>0
Sr
< khm EN(+)—1=Nm(1+e) // ‘uzﬂha) 4 plp—2—a) ym(1+a) |Dy0(y)|y=z77(t)dxdt -0

St

Then, if we let k — oo, n — o and let r — 1 in (2.32), since 4 < o , we have

K] —
12111 f/ nj(t)sgn. (u, — v) (u;;t v) dxdt <0,
St

in other words,

lin} // 1; (8) (e — v) ,dxdt > 0.
St

Let j — oo. Then

lim [ (ue(x, s2) — v(x $2)),dx < lim [ (ue(x, s1) — v(x, s1)),dx.
r—>1RN r—>1RN
Similarly, we have

ll_r)r%/ (v(x, s2) — up(x, s2)),dx < 11_1)111/ (w(x, s1) — we(x, 51)),dx. (2.33)
RN RN

Let s; = 0. Then

up, > 1im uy,.
r—1

It follows that

(e, MDY g (x, ) r—1 m(p—1)-1
e R N e R (LG 2

which implies that

U

Tlmip— 1) = 1]¢ .

Upe =

Page 13 of 16
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Denote w = t'uy(x, t), v = m(p—ll)—l’ By (2.34), w; > 0. By (2.1),

T T
//t’ywt'ﬂRdxdt= —‘//}DuZﬂp_zDuZ1 - Dyypdxdt

T B T By
T T
—RNO+#) / B(k™N"™u"\Dyyrdxdt + y / f 1y () Yrdxdt
T T Byr
p—1 1 (2.35)
T T T
< updxdt + |Duk | dxdt |Dyrr|Pdxdt
T
T Bar T Bar T Bar

T
+k—Nm(a+1)+N(1+M)f/‘uz(‘“l) |Dyrg|dxdt.

T Byr

From (2.15), (2.18) and (2.35), we obtain (2.26).

3. Proof of Theorem 1.2
Proof of Theorem 1.2. By Lemmas 2.1-2.3, there exists a subsequence {Ur;} of {uy}

and a function v such that on every compact set K € S
ur; — v in C(K), Dy — Dv™ in LqOC(ST), Ukl (sp) < ¢

Similar to what was done in the proof of Theorem 2 in [9], we can prove v satisfies
(1.11) in the sense of distribution.

We now prove v(x, 0) = cd(x). Let x e C(l)(BR). Then we have

/uk(x, t)xdx—/wkxdx

RN R

t t
-— / / |Du"P~*Duf" - Dy dxds — KN+ / / B(k™N™u"YDy dxds.

0 RN 0 RN

(3.1)

t
m|P—2py, m
To estimate /0 / | Du' | Du; - Dydxds | ithout loss of the generality, one can
RN

assume that u; >0. By Holder inequality and Lemma 2.1,

t

// D"~ Duf" - Dy dxdt

0 RV

p—1 1

‘ T
wm p _ B B p
§C|:// k . 2|Du,’2‘|pdxdri| .|://(1+u§€)2(p l)u,(zp Dl s)dxdri|
o (110 o 1 (3.2)
¢ p
< c|:// (u,(ﬁ_l)(m_s) + ug_l)(”m)dxdr:|
0 Be

1
‘ m(p—1)+ p —s pid
<c //uklp N dxdr i,

0 Bp
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where s € (0, ), d = m(p_ll)_,\[}]fp_w < p» g = max(uy, 1).

Hence from (3.1), we get

t
/ukxdx—fuokxdx 5ctd+k*N’"(°‘+l)+N(1+“)//u;l"(Ml)leldrds. (3.3)

N RN 0 RN
Letting k — oo, t — 0 in turn, we obtain

lim [ vxdx= x(0) [ ¢dx.
t—>0RRN RN

Thus

v(x, 0) =cs(x), c = [ pdx,
RN

v(x, ) is a solution of (1.11) and (1.12). By the assumption on uniqueness of solution,
we have v(x, t) = E.(x, t) and the entire sequence {i;} converges to E. as k — oo. Set ¢
=1.

Then

up(x, 1) = FNu(kx, EN*) — E.(x, 1)

uniformly on every compact subset of R". Thus by writing kx = k’, K" = ¢, and
dropping the prime again, we see that

1 1 1
tru(x, t) — Ec(xtNe, 1) =trE.(x, t)

1
uniformly on the sets {x e RN : |x| <atNe }, a > 0. Thus Theorem 1.2 is true.
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