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SCALE-SELECTIVE VALIDATION OF 
MORPHODYNAMIC MODELS 

J. Bosboom1 and A.J.H.M. Reniers1,2 

Although it is generally acknowledged that the practical predictability at smaller scales may be limited, output of 
high-resolution morphodynamic area models is mostly presented at the resolution of the computational grid. The so-
presented fields typically are realistic looking, but not necessarily of similar quality at all spatial scales. Unfortunately, 
commonly used single-number validation measures do not provide the necessary guidance as to which scales in the 
output can be considered skilful. Also, differences in skill throughout the model domain cannot be discerned. Here, 
we present a new, scale-selective validation method for 2D morphological predictions that provides information on 
the variation of model skill with spatial scale and within the model domain. The employed skill score weighs how 
well the morphological structure and variability are simulated, while avoiding the double penalty effect by which 
point-wise accuracy metrics tend to reward the underestimation of variability. The method enables us to tailor model 
validation to the study objectives and scales of interest, establish the resolution at which results are ideally presented 
and target model development specifically at certain morphological scales. 
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INTRODUCTION  
The traditional approach to morphodynamic model validation is to compute a single-number 

validation metric, such as the mean-squared error (MSE) or an MSE-based skill score, for the entire 2D 
model domain or a limited number of subdomains  (e.g. Sutherland et al. 2004). The validation of high-
resolution morphodynamic models, however, brings about a range of new validation questions. Are 
there spatial displacement errors? Is the variability well represented at all scales? Is it necessary to 
accurately predict shorter-scale features to make reliable longer-term predictions? At which spatial 
scales does the model have sufficient skill? Does the skill vary within the model domain? These 
questions are not easily addressed with the traditional validation approach. Clearly, new techniques 
must be developed, which separately assess the various scales of interest in the morphology and 
patterns of bed change and take both similarity in structure and amplitude into account.   

In other fields, notably meteorology, scale-dependent verification methods have been proposed 
that are able to describe the scale at which a forecast attains a particular level of skill (e.g. Roberts and 
Lean 2008); for an overview, see Gilleland et al. (2010). Also, in the field of image processing, Wang 
et al. (2004) determine the closeness of images using a multi-scale method, which incorporates image 
details at different resolutions. These methods typically utilize band-pass filters (Fourier, wavelets, 
etc.) or smoothing filters for the separation of scales. For 2D morphology and arbitrarily shaped model 
domains, the application of such band-pass filters and the physical interpretation of the results is far 
from trivial. Methods based on smoothing filters are appealing due to their simplicity, but often limited 
in the aspects of model performance that can be considered. For instance, no information on spatial 
variation of skill in the model domain is provided.  

Fotheringham et al. (2002) analyse spatially varying relationships between measured variables by 
local regression modelling (i.e. in a neighbourhood around a regression point) and generalize this 
method to the computation of local weighted statistics in a sliding window. Our expectation is that 
such a conceptual framework, which allows the computation of a whole range of localised statistics, 
may not only be useful for data analysis but for model validation purposes as well.  

The choice of validation metrics must be close to the intuitive judgement of morphologists. Point-
wise accuracy metrics, such as the MSE, are useful, but tend to penalize, rather than reward, the 
model’s capability to provide information on morphological features of interest (Bosboom and Reniers 
2014; Bosboom et al. in press). Bosboom et al. (in press) showed that this behaviour is also inherited 
by the MSE-based skill score and can be traced back to the implicit weighting in the MSE of the 
similarity in structure and amplitude of the fluctuations. To circumvent these issues, Taylor (2001) 
suggests an alternative weighting of these aspects.  
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In this paper we present a new, scale-selective method for 2D morphological predictions that 
provides maps of prediction quality at various spatial scales. It bears similarities to localized data 
analysis (Fotheringham et al. 2002) in that it computes local validation metrics in a sliding window. 
The validation metrics are chosen to be close to the intuitive judgement of morphologists, viz. metrics 
pertaining to the structure and amplitude of the pattern and combined in a measure of pattern skill, in 
line with the skill score proposed by Taylor (2001). The various statistics are calculated for a range of 
window sizes, leading to maps of amplitude similarity, structural similarity and skill per scale. Note 
that the term “scale” is thus defined as geographical extent or areal size of focus. Aggregation of the 
results enables the determination of the smallest scale with useful domain-averaged skill. Attractive 
aspects of the method are the simplicity of implementation, application and interpretation of the results.  

This paper is organized as follows: first our method of scaled skill is explained. Next, we 
demonstrate the method by comparing model predictions and data for the Bornrif, a dynamic attached 
bar at the Wadden Sea island of Ameland. Finally, the main conclusions are summarized. 

SCALED SKILL 
This section outlines our approach to quantify the skill and similarity in structure and amplitude 

per spatial scale as well as aggregated over all scales. First, we define normalized measures of 
amplitude and structural similarity and demonstrate that these can be expected to depend on the 
considered spatial scale, viz. geographical extent or areal size of focus. Next, we describe the method 
for deriving localised versions of these statistics. Finally, the approach is outlined to combine the maps 
of amplitude and structural similarity into a skill map per spatial scale and aggregate these maps for the 
entire model domain.  

 Aspects of model performance: structural and amplitude similarity per scale 
A skilful model should be able to accurately simulate both the structure and the variance of 

fluctuating signals. These notions can be represented by the correlation ρpo  and the ratio of the 
standard deviations of predictions and observations ˆ p o    (Bosboom et al. in press). The 

correlation ρpo (with −1 ≤ ρpo ≤ 1) measures the tendency of observations and predictions to vary 
together. A non-perfect correlation, i.e. smaller than unity, may result from incorrect locations, shapes 
and relative magnitudes of features. A value of ˆ p o   larger or smaller than 1 indicates an 

overestimation or underestimation, respectively, of the variance of the signal.  
In the following, we use the correlation as a normalized measure of the structural similarity 

between predictions and observations. We further define a normalized measure for amplitude 
similarity:  
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with q a coefficient (set to 2 in this paper). Perfect agreement is indicated by η = 1. As opposed to 
ˆ , the parameter   is bounded and invariant under the exchange of predictions and observations. 

Hence, over-prediction and under-prediction are now equally penalized. When it is important to 
distinguish between over- and under-prediction, ̂ can be used. Note that Eq. 1 can be rewritten as: 
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which, with q =1, is the form as used by Wang et al. (2004) and Koh et al. (2012) and named contrast 
measure and variance similarity, respectively.   

In morphodynamic modelling, where the predictand is the bathymetry, the interpretation of ρpo and 
ˆ p o    in terms of bed features is far from trivial, since multiple scales are generally present in the 

observed and computed bathymetry (Fig. 1) and larger scales may overwhelm the smaller scales. Fig. 1 
(middle panel) indicates that the overall correlation can be negative, whilst the correlation can be 
positive if we zoom in to a smaller area. This situation can of course also be reversed, with positive 
correlation for larger scales and negative correlation for smaller scales (Fig. 1, top panel). The latter 
situation may be closer to what we expect from a typical morphodynamic simulation. Not only the 
correlation but also the ratio of the standard deviations between predictions and observations may vary 
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with spatial scale. For example, Fig. 1 (bottom panel) shows an overestimation of the variability for the 
larger scale and an underestimation for the smaller scale. 

   

 
 
Figure 1. Scale-dependency of comparisons between observations o and predictions p. Top panel: the 
correlation is higher at the larger scale; middle panel: the correlation is higher at the smaller scale. Bottom 
panel: the amplitude similarity is also dependent on the scale. 

Localized statistics 
In order to generate maps of localised statistics, the structural and amplitude similarity are 

computed locally within a sliding window that moves across the domain. Herewith, we obtain fields of 
localised statistics for a particular window size. In order to account for various spatial scales, viz. areas 
of different geographical extent, we repeat this process for multiple window sizes.  

For the ith grid-point the local weighted means io  and ip  of the observations o and predictions p, 

respectively, are given by:  

 i ij jj
o w o   (3)  

 i ij jj
p w p   (4)  

with wij is a weighting factor dependent on the proximity to the location i and 1ijj
w  . All results 

shown in this paper are obtained with a very simple (and fast) window, viz. a rectangular window with 
a width W, uniform weights within the window and wij = 0 elsewhere in the domain (Fig. 2). Hence, wij 

= wij(W). A more sophisticated approach uses a distance decay function given by for instance a bi-
square kernel with a variable bandwidth (see e.g. Fotheringham et al. 2002).  

Of course, Eqs. 3 and 4 simply compute a (weighted) moving average. However, we can now 
extend the concept to arbitrary statistics, for instance the standard deviations σo,i and σp,i of 
observations and predictions, respectively:   

  
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Similarly, the local correlation ρpo,i  between predictions and observations is determined by: 
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Note that in Eqs. 6 and 7, the local rather than the global mean values are used.  
 

  
 
Figure 2. The rectangular window, around grid-point i, with window width W and weights wij.  

Now, the local amplitude similarity is given by:  
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Note that all above statistics, which are formulated in terms of bed levels, could also be formulated in 
terms of cumulative bed change. 

How to construct a skill score?  
The correlation between predictions and observations and the ratio of the standard deviations of 

predictions and observations are important ingredients of the often used accuracy measure MSE. The 
fluctuating or pattern part of the MSE can be written as (see e.g. Bosboom et al. in press): 

  22 2
fluct ˆMSE 1o po po         

 (9)  

Between two predictions with the same positive correlation, MSEfluct is minimized for ˆ po  , 

hence for .p po o    In the case of a negative correlation, MSEfluct is minimized for ˆ 0  and thus 

for 0.p   As a consequence, the MSE tends to reward the underestimation of the variability (see also 

Bosboom et al. in press). Nonetheless, a morphologist may prefer features to be predicted at the right 
amplitude albeit displaced above a featureless prediction (Bosboom and Reniers 2014). Therefore, we 
use an alternative weighting with the following behaviour: for any given variance the skill score 
increases monotonically with increasing correlation and for any given correlation the skill score 
increases as the modelled variance approaches the observed variance (Taylor, 2001).  

A general form for a local pattern skill score in terms of the normalized measures for structural 
similarity ρpo,i and amplitude similarity ηi  then reads:  

  1
,2 1   ,  0 1

m n
i po i i iS S      (10)   

Note that Si is a function of the window width W. The weighting of structural and amplitude 
similarity must, to a certain extent, be decided upon subjectively. The coefficients m and n allow the 
user to define the most appropriate weighting for the situation under consideration. In this paper, we 
have used m = 1 and n = 1 in Eq. 10 and q = 2 in Eq. 8.  

A domain-averaged skill score S as a function of W can be obtained by averaging Si (Eq. 10) over 
all grid-points i. We hypothesize that the smaller scales, down to the grid scale, are not as well 
predicted as the larger scales up to the scale of the entire domain, and that there is a minimum spatial 
scale above which the skill is sufficient, i.e. larger than a user-defined target skill (Fig. 3). For a real-
life case, this hypothesis is put to the test in the next section.  
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Figure 3. Hypothesized qualitative behaviour of the skill score S versus the spatial scale, which ranges from 
the grid scale to the entire domain. For larger spatial scales the skill value approaches the whole-map skill 

value    1 2 1  
po

S computed using the values at all grid-points.  

EXAMPLE 
In this section, we demonstrate our method by applying it to measured and computed bathymetric 

fields for the Bornrif, a dynamic attached bar at the North-western edge of the Wadden Sea island of 
Ameland. First, we briefly describe the measurements and computations. Next, we show the maps of 
local statistics that are subsequently pooled into map-mean values per spatial scale. Finally, we explore 
the relationship between information richness and skill.   

Bornrif 

The Bornrif morphodynamic evolution was computed with Delft 3D from 1993 to 2008, using a 
grid with a resolution of 50 × 50 m in the central part of the model domain and 100 × 50 m closer to 
the model boundaries (Achete et al. 2011). A detailed description of this Delft3D simulation and the 
available data is found in Bosboom et al. (in press). Here, we focus on the results for 1998, hence five 
years after the start of the simulation (Fig. 4).  

 

 
Figure 4. Measured (top panel) and computed (middle panel) Bornrif bathymetries for 1998 and the difference 
field p-o between predictions p and observations o (lower panel).  

 

 



 COASTAL ENGINEERING 2014 
 
6

Upon visual comparison of the 1998 computations and data, we can observe differences at various 
locations and spatial scales. For instance, note the differences in the position and extent of the overall 
shape of the Bornrif as well as of the spit that has just attached to the mainland. Further, at relatively 
large water depths to the east of the Bornrif, sand bars are clearly visible in the observations, but 
largely absent in the computations. The area closest to the inlet, to the west of the Bornrif is 
characterized by multiple channels that are not well represented in the computations. Also of interest 
are the nearshore regions; east of the Bornrif, the measurements show multiple bars, which are not 
reproduced by the model. Further, differences can be observed in the slopes of the relatively steep 
near-shore regions, especially along the west flank of the Bornrif, which are crucial for the magnitude 
of the alongshore transport.  

The analysis region, as shown in Fig. 4, covers only that part of the computational domain for 
which data are available during the entire simulation duration. In order to retain all observed scales, the 
spatial validation analysis is performed on the 20 × 20 m grid that the data were presented on. To that 
end, the computations were first interpolated onto the observational grid. In the following we 
demonstrate typical results of applying the method of scaled skill. The central validation question is: 
how skilful is the model in the various regions and at the various spatial scales that can be discerned?   

Maps of local statistics  
Areal maps of structural similarity ρpo,i, amplitude similarity ˆi  and ηi, and pattern skill Si provide 

information on local differences in quality (Fig. 5). Such maps can be produced for various spatial 
scales (i.e. areal sizes of focus). Fig. 5 shows the results at three window sizes W = 0.16, 0.4 and 
0.8km. There is a wealth of information in these figures; here we will only point out some main 
aspects.  

The negative correlation in the area west of the Bornrif clearly indicates the lack of structural 
similarity between the two patterns, except close to the coastline where the correlation is higher again. 
This dissimilarity is quite persistent as the spatial scale increases. Another patch with negative 
correlations at all scales is the result of the computed spit being present at the observed lagoon. In the 
spit area, the largest dissimilarity in amplitude is found somewhat further offshore, reflecting the fact 
that the computed slope is clearly off.    

On the contrary, there are also small-scale patches of negative correlation that are not present 
anymore at the larger scales, for instance in regions further offshore and in the nearshore region east of 
the Bornrif. In these areas, a low structural similarity ρpo,i is combined with a low amplitude similarity 
ηi, which can be seen - from ˆi  being close to zero - to be due to an underestimation of the variability. 

This indicates small-scale, observed features that are not reproduced in the predictions, namely the 
sand bars at deeper water and the nearshore bars. 

As expected, the maps of pattern skill can be seen to combine the characteristics of the maps of 
structural and amplitude similarity. At the smallest window width, the skill areal maps show relatively 
large areas with low skill. At larger window widths only the larger scale deviations remain.  

Pooled skill scores 
Another way of looking at the quality variation is by making histograms of the quality maps (Fig. 

6). The first column clearly shows that grid-points with negative correlation at small spatial scales 
obtain a positive correlation at larger scales. A similar trend can be observed from the second column 
that shows the amplitude similarity. The third column shows that, as a result, the percentage of the 
model domain with low pattern skill scores decreases with spatial scale, as was apparent from the 
pattern skill maps as well (Fig. 5).  

The red lines in Fig. 6 show the domain-averaged values of the quality metrics for the three 
window sizes that are considered. Not surprisingly given the above, the quality according to each of 
these metrics increases with spatial scale. Apparently, the Bornrif morphology can be thought to 
consist of smaller-scale features that are not well represented by the model, on top of a larger-scale 
morphology that is better predicted.   

When extending this analysis to a range of window sizes, we obtain Fig. 7, which shows the 
structural similarity, amplitude similarity and pattern skill versus window size. At the scale of the 
entire domain, the skill is very high, since the larger-scale morphology is reasonably well represented. 
However, at the smaller scales of the spit and the sand bars the skill is lower. Based on this figure, we 
can determine the smallest useful scale, viz. the smallest areal size with a certain desired level of skill. 
If the target skill is set to for instance 0.7 (as in Fig. 3), the smallest scale with sufficient skill is about 
0.6km. 
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Figure 5. Normalized maps of structural and amplitude similarity and pattern skill for three different window 
sizes W = 0.16, 0.4 and 0.8km. For all quality metrics a value of 1 represents perfect agreement.  
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Figure 6. Histograms of the correlation, amplitude similarity and pattern skill for the three window sizes W = 
0.16, 0.4 and 0.8km. Note that the histograms correspond to the respective maps in Fig. 5. The red lines 
indicate the domain-averaged values which can be seen to increase with spatial scale.  

 

 
 

Figure 7. Structural and amplitude similarity and pattern skill as a function of window size.  
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Information content versus skill 
Output of high-resolution morphodynamic area models is generally presented at the resolution of 

the computational grid. The previous findings suggest, however, that the high-resolution detail may not 
be skilful. Consequently, a smoother bathymetry (Fig. 8) may be more skilful than the original, 
computed bathymetry (Fig. 4). The bathymetries in the left and right columns of Fig. 8 are obtained by 
applying a moving average to the original bathymetries, using window sizes of W = 0.4 and 1.6km, 
respectively (using Eqs. 3-4). 

To determine the effect of leaving the high-resolution detail out, we apply the same validation 
procedure as before, at a range of window sizes, but now not to the full-resolution bathymetries, but to 
their smoothed counterparts. The aggregated results are shown in Fig. 9. For clarity, the skill trend for 
the full-resolution bathymetries (Fig. 7) is repeated in Fig. 9. The latter figure confirms that for all 
scales the presented smoother bathymetries are more skilful. Note that for the bathymetries smoothed 
with W = 0.4km, all scales have a skill around or above the target skill of 0.7.   

Evidently, the inclusion of smaller scales, up to the full model resolution, contributes negatively to  
the skill at especially the smaller scales. Of course, the increase in skill for smoother bathymetries 
comes at a loss of information richness; the smoothed bathymetries are less realistic looking than the 
full resolution bathymetries. Ideally, the computational results should be presented at a scale that finds 
a balance between skill and information richness.  

 
 

 
Figure 8. Spatial means, obtained by Eqs. 3-4, of the original high-resolution bathymetries. Left: W = 0.4km 
and right: W =1.6km.  

 
Figure 9. Pattern skill versus window size for bathymetries with a different level of smoothening (a moving 
average at window sizes ranging from 0.16km to 1.6km. The pattern skill at full resolution (Fig. 7) is repeated 
here and indicated with ‘grid scale’. 
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CONCLUSIONS 
We have presented a scale-selective validation method for 2D morphological predictions that 

allows the computation of localised statistics at various spatial scales and the generation of areal maps 
of these statistics. The term “scale” refers to geographic extent or areal size of focus. In this paper, we 
use normalized measures of structural and amplitude similarity and combine these in a measure of 
morphological pattern skill, but other validation metrics can be used as well. Also, the method could be 
supplemented with a bias term at the largest scale.  

Application to the Bornrif showed strong spatial differences in structural and amplitude similarity 
and pattern skill. Further, due to amongst others small-scale observed features that are not (well) 
reproduced in the predictions, a lower domain-averaged prediction quality was found at the smaller 
scales than at the larger scales. In relation to this, it was found that smoothing out the high-resolution 
detail increases the skill of the results especially at the smaller scales, even though the smoothed 
bathymetries are less realistic looking than the full-resolution bathymetries.  

In summary, the method can be used to:    
1. Determine local differences in structural and amplitude similarity and pattern skill; 
2. Determine the smallest scales with sufficient skill; 
3. Establish the resolution at which model-data comparisons are ideally presented; 
4. Target model development specifically at certain morphological scales (we are presently further 

exploring this last item).  
Compared to possible alternative strategies to scale-selective model validation, the method is easy 

to implement and apply, and the results are relatively easy to interpret. This makes it a tool that can be 
readily used for practical purposes.  
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