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Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. Estimation of norms of factors of polynomials is a widely investigated extremal problem with numer-
ous applications in functional analysis, number theory, approximation theory. In this note we study the following
problem: let � be a convex body in ��� and consider a product of polynomials ��� , where � is arbitrary and � is a
monic multivariate polynomial. The goal is to find an upper bound for the uniform norm of � on � provided that
such bound for ��� is known.
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1. Introduction. Estimation of norms of factors of polynomials is a classical extremal
problem which has been widely investigated for various norms. This extremal problem fre-
quently arises in number theory, functional analysis, approximation theory, and therefore it
has been studied by many experts in these fields. (For corresponding results and references
see [1].) Most of the known results are related to univariate polynomials. In the present
note we shall consider this question for multivariate polynomials on convex bodies. A typ-
ical problem for norms of factors can be formulated as follows: given a polynomial 	�

��� ,� 	�
���� �����

on ������� � �"!#�%$
with factorization

	�
����&� '()+*�, 
��-�/. ) �10324

���
provide sharp upper bounds for the norm of its factor 052 of degree at most 6 . In other words
we want to estimate the norm of 072 provided that the norm of its product with a monic
polynomial is given. The above question in one variable can be resolved using either Remez
or Markov inequalities.

A. Solution by the Remez inequality. Set8:9 �;� '<)+*�, = . ) � >?A@ ! . )CB >?D@FEHG
Clearly, I , 
 8:9 � � > , and for any �KJL �AM 8N9

and 032 as above we have� 0 2 
���� ��� = ?A@
> E ' G

Here and in what follows I�OP
 G#G3G � stands for the Lebesgue measure in Q O , while RTS#S3S#R3U
indicates the uniform norm on V . Then by the Remez inequality (see [1]) with a proper
absolute constant W �YX

we have

R%0#2�R%Z �Y[A\ 2 9^]_ = ?D@
> E ' G`
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Thus setting > �a6cb�d yields R%0#2�R3Ze��fg
�6�d ' � G
B. Solution by the Markov inequality. Let . L � be such that 052 attains its norm at this

point. Then by the Markov inequality [1] for any � L � , �;�h�NiYjk.l� ,d 2 _ ! . B ,d 2 _nm� 0324
���� �poq� 0324
r.n� � � � �s�t. � R%0Au2 R3Z o R3032�R3Zv� � �-�/. � 6 d R%032�R3Z o �? R%0#2�R3Z G(1.1)

Furthermore, since � , is an interval of length at least
,d 2 _ and w4
����x�;� '()+*�, 

�y�z. ) � is a monic

polynomial we have by the well known Chebyshev theorem

R{w�R Z ] o ? b 'x| , = �} 6 d E ' o ? b�~ '�| , 6 b�d ' G
Finally, this and (1.1) yield that whenever � L � , is such that w4
���� attains its uniform norm
on � , at this point we have

R%0#2�R%Z � ? � 032�

��� ��� ?� w4
��p� � � ? ~ ' 6 d ' ��fg
�6 d ' � G
The asymptotic estimate fg
�6�d ' � obtained above for R%0 2 R Z in case of a fixed

@
is in

general the best possible. Indeed, it is shown in [3] that for every �a��W there exist polyno-
mials 0 2 of degree 6 such that

� 
���� � ���p0 2 

��� �����
whenever � L � and at the same timeR%0 2 R Z o�X 6�d�� with a proper positive constant

X
depending only on � . However, for large

@
the estimate fg

6 d ' � becomes inefficient and it can be replaced (using another method) byfg

� 2 |�' � with a suitable constant � o��

(see [1]).

2. New Results. Our goal is to solve the problem discussed above for multivariate poly-
nomials on convex bodies. Both Remez and Markov inequalities are well developed in the
multivariate setting but the approach using Markov inequality seems to be more suitable for
several variables.

Thus we consider a convex body V in Q O and the space of real multivariate polynomials
in Q O of total degree at most 6 denoted as usual by � O2 . As in the univariate case we shall
consider products of 0#2 L � O2 with “monic” polynomials. We shall call a polynomial� 
����C� �� ] |c�;�;� | ���#� 2 .^�P� ��L � O2
monic if the sum of absolute values of its leading coefficients is 1, i.e., �� ] |T�;�;� | � � * 2 � .P� � � � G
Furthermore, let �s
r. ! � � denote the ball in Q O with center at . and radius � , and for the convex
body V set � 
rV��x���h���p��� � �P�s

. ! � �:�KV ! . L V�� !

� 

Vt�&����  ¡�¢#� � �P�s

. ! � �v£KV ! . L VH� G
As above RcS3S3S7R U is the uniform norm on V .

THEOREM 2.1. Let V¤�¥Q O be a convex body, 	¦�§072 � ' , where 0#2 and � ' are
polynomials of degree 6 and

@
, respectively, and in addition � ' is monic. Then

R30324R U � ? 
 @ B � � = �#¨"© � 

Vt�� 

V�� d E ' 6 d ' R1	�R U G(2.1)
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Note that just as in the univariate case estimate (2.1) yields an upper bound for 072 of orderfg
�6�d ' � . This bound is sharp, in general, for fixed
@

which is small relative to 6 , but for
large

@
the following statement provides a more efficient upper bound. In order to formulate

it we need to recall a classical inequality by Kneser (see [1]) stating that for any univariate
polynomials 0 ! � !+ª�«#¬ 0 � �­6 and any interval ® we haveR%0pR#¯�R � R3¯ � V 2 R%0 � R3¯
where V-2 is the Kneser constant. The Kneser constant is sharp in the above inequality and
its exact value can be found in [1]. Roughly, it grows as ° G ° 2 .

THEOREM 2.2. Under conditions of Theorem 2.1, the following estimate holds

R3032�R U � V-2 |�' = ? ©� 

Vt� E ' R�	TR U G
REMARK. It should be noted that the estimate R3072�R U �±fg
�6�d ' � of Theorem 2.1 does

not hold, in general, when V is not convex. For instance, setVs²l�����n
�� ! �p� L Q d �"W � � � � ² ! W � � ��� � ! .-� � G
Consider the polynomial 072 L � ,2 constructed in [3] such that� � ² ' 0#2�
���� �p�h�"! � L � W !3�%$³!7� 032�
rWP� ��oYX ' 6 d ² ' G
Set 	�
�� ! �p���;��� ' 0 2 
���� L �yd2 |�' . Note that � '

is monic. Then clearlyR�	�R3U&´ ���"! R%0 2 R3U&´ oYX ' 6 d ² ' G
Since .-� �

the fg

6�d ' � bound fails here for the nonconvex set V ² .

3. Proofs. In order to verify the new results we shall need some lemmas. The first
lemma is related to the geometry of convex bodies.

LEMMA 3.1. Let V be a convex body in Q O and W¶µ > � � 

Vt� . Then for any � L V
the set �s
�� ! > �¸·FV contains a ball of radius �/�;� > � 

Vt�+J }^� 

V�� .

Proof. Without loss of generality we may assume that �s
rW ! � 
rV��+� L V and �K¹��W . Set�s���­��
 � � > J�
 ? � � � ��� G We claim that�s
�� ! ���x��
r�s

� ! > ��izV�� G(3.1)

Assume first that
� � ��� � 

V�� . Then for any º L �s

� ! > J ? � we have� º �^� > J ? B � � �»��� � > J�
 ? � � � � ���K¼�½A¾ � � � �¿! > � � � 
rV�� G

Hence �s

� ! > J ? �C�Y��

W ! � 

V��+�x�KV G Moreover, for every º L �s

� ! > J ? � we clearly have� �-�/º �n� > J ? B � � � >? � � � � > G
Thus we also have the inclusion ��
�� ! > J ? �e�q�s
�� ! > � G Therefore relation (3.1) holds when-
ever

� � ��� � 
rV�� .
Assume now that

� � � � � 

V�� . Note that
� � �l� ? � 

V�� . For any º L ��
�� ! ��� setÀ �;� ? � � � 

ºy�t�p�+J > G Then � À ��� ? � � � ��J > � � 
rV�� G
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Therefore À L �s
rW ! � 
rV����v�YV . Moreover

ºÁ��� B >? � � � À � = � � >? � � � E � B >? � � � À
where � ! À L V and Wtµ > J�
 ? � � � � � > J�
 ? � 

Vt��� ��� J ?

. Thus by the convexity of V we
obtain that º L V . Hence �s

� ! ���Â�ÃV . Moreover, as above �s

� ! ���Â�Ä�s

� ! > J ? ����s

� ! > � which verifies (3.1) in this case, as well. The proof of the lemma is now complete.

Our next lemma provides a Chebyshev-type estimate for the minimal norm of a monic
multivariate polynomial. Its proof is based on a similar result by Kellogg for homogeneous
polynomials and the univariate Chebyshev inequality. It was shown by Kellogg [2] (see also
[4]) that for every homogeneous polynomial of degree

@
given by Å�
����C� �� ] |T�;�;� | � � * ' X �n� �

we have �� ] |c�;�;� | ��� * ' � X � �n�­© ' R3Å�R3Æ ��Ç ] !
where È O b ,

denotes the unit sphere in Q O .
LEMMA 3.2. Let � ' L � O' be a monic polynomial. Then for any > �aW and . L Q O we

have R � ' R3ÉËÊ ²5Ì 9�Í o ? b 'x| , 
 > J © � ' G(3.2)

Proof. For any À L È O b ,
, Î L �Ï��� � �"!3�3$

setw ' 
�Î��x��� � ' 
 > À Î B .��Ë�h� ' Î ' B � ' b , Î ' b , B S3S#S B �NÐ !
where � ' �;� > ' �� ] |T�;�;� | ��� * ' .^� À � !
and .^� ’s are the leading coefficients of � ' . By the well-known Chebyshev theorem we have� � ' �n� ? ' b , R{w ' R Z � ? ' b , R � ' R3ÉËÊ ²5Ì 9�Í G
Thus using the Kellogg inequality mentioned above and recalling that � ' is monic� � �� ] |T�;�;� | � � * ' � .P� �n� 
 © J > � ' ? ' b , R � ' R%É&Ê ²7Ì 9�Í G
This obviously yields (3.2).

Proof of Theorem 2.1. Let R�	TR%U�� �P! R%0 2 R%U�� � 0 2 
���� � �h� ! � L V . By a Markov-type
inequality proved by Wilhelmsen [5] on convex bodies for any À L È O b ,

, � L V� ÑgÒ 0 2 
��p� �p� ? �N6�d� 

Vt� !
where

ÑgÒ
denotes the derivative in direction À . By this inequality for arbitrary > �±W and� L �s

� ! > ��i�V � 0#24
��p� �po �a� � 0324
����c�/0324

��� �no �a� ? �:6�d� 
rV�� > G(3.3)
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Now according to Lemma 3.1 there exists a ball � of radius �­�;� > � 

Vt�+J }^� 

V�� such that� is a subset of �s
�� ! > �4isV . Applying Lemma 3.2 for the monic polynomial � ' and ball �
we obtain R � ' R É o ? b 'x| , 
���J © � ' G(3.4)

In addition, relation (3.3) holds for every � L � . Thus choosing � L � so that the norm of� ' on � is attained at � we obtain by (3.3) and (3.4)�yoq� 	�
��p� � � � 0 2 

�p� � ' 
��p� ��o � = � � ? > 6�d� 
rV�� E ? b 'x| , 
���J © � ' G
Setting now > ��� 'xÓ Ê U Íd Ê 'x| , Í 2 _ and recalling the value of � yields the needed estimate for �Ô�R%0#2�R U G

Proof of Theorem 2.2. Let � ! � L V be such thatR%0 2 R%U�� � 0 2 
���� �¿! R � ' R%Uq� � � ' 
��p� � G
By the convexity of V we have ®±�;�Õ� � ! � $ �ÖV . Hence applying the Kneser inequality
mentioned above on the interval ® (and for corresponding univariate polynomials) we haveR%0 2 R%UgR � ' R%U � V 2 |�' R1	�R3U G(3.5)

Since � ' is monic and V contains a ball of radius � 

Vt� we obtain using (3.2) with > ��� � 
rV��
together with (3.5) R%0 2 R%U � V 2 |�' 
 ? © J � 

Vt��� ' R1	�R%U G
This completes the proof of Theorem 2.2.
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