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In this article, we generalize the Legendre wavelet s operational matrix of derivatives to fractional o rder 
derivatives in the Caputo sense. Legendre wavelets and their properties are employed for deriving 
Legendre wavelets operational matrix of fractional derivatives and a general procedure for forming thi s 
matrix is introduced. Then truncated Legendre wavel ets expansions together with these matrices are 
used for numerical solution of Bagley–Torvik fracti onal order boundary value problems. Several 
examples are included to demonstrate accuracy and a pplicability of the proposed method. 
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INTRODUCTION 
 
The idea of derivatives of non integer order initially 
appeared in a letter from Leibniz to L’Hospital in 1695. 
For three centuries, studies on the theory of fractional 
order were mainly constraint to the field of pure theoreti-
cal mathematics, which were only useful for mathema-
ticians. In the last several decades, many researchers 
found that derivatives of non-integer order are very 
suitable for the description of various physical phenol-
mena such as damping laws, diffusion process, etc. 
These findings evoked the growing interest of studies of 
fractional calculus in various fields such as physics, 
chemistry and engineering. For these reasons, we need 
reliable and efficient techniques for the solution of 
fractional differential equations (Li and Zhao, 2010; Miller 
and Ross, 1993; Oldham and Spanier, 1974; Podlubny, 
1999; Saadatmandia and Dehghan, 2010). 

The existence and uniqueness of solutions for 
fractional differential equations have been investigated by 
many authors such as Podlubny (1999). Most fractional 
differential equations do not have exact analytic solution, 
therefore approximation and  numerical  techniques  must  
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be used. In the last decades, several methods have been 
used to solve fractional differential equations, fractional 
partial differential equations, fractional integro-differential 
equations and dynamic systems containing fractional 
derivatives, such as Adomian's decomposition method 
(Gejji and Jafari, 2007; Momani and Noor, 2006; Momani 
and Shawagfeh, 2006; Ray et al., 2006); He's variational 
iteration method (Momani and Odibat, 2006; Odibat and 
Momani, 2006); homotopy perturbation method (Momani 
and Odibat, 2007; Sweilam et al., 2007); homotopy 
analysis method (Hashim et al., 2009); collocation 
method (Al-Mdallal et al., 2010; Rawashdeh, 2006); 
Galerkin method (Ervin and Roop, 2005) and other 
methods (Kumar and Agrawal, 2006; Yuste, 2006). 

Wavelets theory is a relatively new and emerging area 
in mathematical research. As a powerful tool, wavelets 
have been extensively used in signal processing, nume-
rical analysis and many other areas. Wavelets permit the 
accurate representation of a variety of functions and 
operators. In this paper, The Legendre Wavelets are first 
introduced, then by using shifted Legendre polynomial 
and their properties, the operational matrix of derivative 
and fractional derivative are derived. Then, applications 
of these matrices for solving Bagley–Torvik fractional 
order boundary value problems are described.  Illustrative  



7372          Int. J. Phys. Sci. 
 
 
 
examples are given to demonstrate the efficiency and 
capability of the proposed method. 

The article is organized as follows: Subsequently, this 
study introduces some necessary definitions and mathe-
matical preliminaries of the fractional calculus theory and 
Legendre wavelets which are required for establishing 
the results of this study. This was followed by 
establishing the Legendre operational matrix of deriva-
tives, and the fractional derivatives are derived and the 
general procedures for forming these matrices are 
introduced, after which Bagley–Torvik fractional order 
boundary value problems are introduced and then a 
method based on Legendre wavelet and its operational 
matrices are established for solving these fractional 
boundary value problems. Finally, the study is concluded.  
 
 
PRELIMINARIES AND NOTATIONS 
 
In this section we give some necessary definitions and mathe-
matical preliminaries of the fractional calculus theory, Legendre 
polynomials and wavelets which are required for establishing our 
results (Canuto et al., 1988; Li and Zhao, 2010; Oldham and 
Spanier, 1974; Podlubny, 1999; Saadatmandia and Dehghan, 
2010).  
 
 
The fractional derivative 
 

Here, we introduce a fractional differential operator D α
 proposed 

by Caputo in his work on the theory of viscoelasticity. 
 
 
Definition 1 
 

A real function ( ), 0f x x > , is said to be in the space 

,C Rµ µ ∈ if there exists a real number p µ>  such that 

1( ) ( )pf x x f x= , where 1( ) [0, )f x C∈ ∞ , and it is said to 

be in the space mC µ  iff ( ) , .mf x C m Nµ∈ ∈  

 
 
Definition 2 
 

The fractional derivative of ( ),f x in the Caputo sense is defined 

as: 
  

( ) 1 ( )

0

1
( ) ( ) ( ) ( ) ,

( )

xm m m mD f x J f x x t f t dt
m

α α α

α
− − −= = −

Γ − ∫  (1) 

for 11 , , 0, .mm m m N x f Cα −− < ≤ ∈ > ∈
 

 
For the Caputo derivative we have: 
 

0 [ ]

( 1)
[ ]

( 1 )

and
D x

x and
α β

β α

β α β
β β α β

β α

+

− +

 ≤ ∈
= Γ + > ∈Γ + −

Z

Z
 (2) 

 
 
 
 
In which [ ]α denotes the smallest integer greater than or equal 

toα . 
 
 
Lemma 1  
 

if 1 , ,m m m Nα− < ≤ ∈ and , 1,f C µ µ∈ ≥ −  then  

( ) ( )D J f x f xα α =  (3) 

 
and 
 

1
( )

0

( ) ( ) (0 ) , 0.
!

km
k

k

x
J D f x f x f x

k
α α

−
+

=

= − >∑  (4) 

 
Miller and Ross (1993), Oldham and Spanier (1974), Podlubny 
(1999) and Saadatmandia and Dehghan (2010) show more details 
on the mathematical properties of fractional derivatives and 
integrals. 
 
 
Shifted Legendre polynomials and their properties   
  
The well-known Legendre polynomials are defined on the interval [-
1, 1] and can be determined with the aid of the following recurrence 
formulae (Canuto et al., 1988): 
 

1 1( 1) ( ) (2 1) ( ) ( ), 1, 2, 3,...,m m mm L t m t L t m L t m+ −+ = + − =  
(5)  

 

where 0 1( ) 1, ( )L t L t t= = .  

 
In order to use Legendre polynomials on the interval [0,1] we define 
the so-called shifted Legendre polynomials by introducing the 
change of variable t = 2x - 1. Let the shifted Legendre polynomials 
Lm (2x – 1) be denoted by Pm (x).Then Pm (x) can be obtained as 
follows: 
 

1 1( 1) ( ) (2 1)(2 1) ( ) ( ), 1, 2, 3,...,m m mm P x m x P x mP x m+ −+ = + − − =
 

where 0( ) 1P x = and 1( ) 2 1P x x= − .  

 

The analytic form of the shifted Legendre polynomial ( )mP x of 

degree m  can be expressed as 
 

2
0

( )!
( ) ( 1)

( )! ( !)

km
m k

m
k

m k x
P x

m k k
+

=

+= −
−∑

 (6) 
 
The orthogonality condition for these polynomials is  
 

1

0

1
,

( ) ( ) 2 1
0 .

m n

for m n
P x P x dx m

for m n

 == +
 ≠

∫  (7) 

 
In the next theorem we derived a relation between shifted Legendre 
wavelets and their derivatives that is very important for deriving the 
operational matrix of the derivative for the Legendre wavelet.  



 
 
 
 
Theorem 1 
 

Let ( )mP x  be the shifted Legendre polynomials into [0, 1] and 

' ( )mP x be derivative of ( )mP x
 
with respect to x . Then we have 

 
1

'

0

( ) 2 (2 1) ( )
m

m k
k
k m odd

P x k P x
−

=
+

= +∑
 

                                      (8) 

 
 
Proof 
 

Suppose the Legendre expansion of function ( )u x be 

0

ˆ( ) ( ),k k
k

u x u L x
∞

=

=∑
 

(9) 

then 
'( )u x  can be represented as (Canuto et al., 1988) 

 

' (1)

0

ˆ( ) ( )k k
k

u x u L x
∞

=
=∑

                                                    (10) 
 
where  

(1)

1

ˆ ˆ(2 1) , 0k p
p k
p k odd

u k u k
∞

= +
+

= + ≥∑  (11) 

 

Now, by taking ( ) ( )mu x L x=  in Equation 10 we have ˆ 1mu =  

and ˆ 0iu =  for i m≠ . Consequently  

  

(1) 2 1 , 1
ˆ

0k

k m k is odd k m
u

otherwise

+ + ≤ −
= 
  (12)

 

 
Now Equation 6 implies that  
 

( )
1

'

0

( ) 2 1 ( )
m

m k
k
m k odd

L x k L x
−

=
+

= +∑ .                                  (13)

 

 

By

 

substituting

 

2 1x t= −  in Equation 8 we have  
 

( )
1

'

0

( ) 2 2 1 ( )
m

m k
k
m k odd

P t k P t
−

=
+

= +∑  .                                    (14)

 

 
This proves the desired result.  
 
 
Wavelets and Legendre wavelets 
 
In recent years, wavelets have found their way into many different 
fields of science and engineering (Hosseini et al., 2011; 
Mohammadi and Hosseini, 2010, 2011; Razzaghi and Yousefi, 
2001). Wavelets constitute a  family  of  functions  constructed  from  
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the dilation and translation of a single function called the mother 
wavelet. When the dilation parameter a and the translation 

parameter b vary continuously, we have the following family of 
continuous wavelets:  
 

1

2
, ( ) | | ( )a b

t b
t a

a
ψ ψ

− −= , , 0a b R a∈ ≠  (15) 

 

Legendre wavelets ( ) ( , , , )nm t k n m tψ ψ=  have four 

arguments; n , k can assume any positive integer, m is the 
order for Legendre polynomials and t  is the normalized time. They 

are defined on the interval [0,1)  by; 
  

1
12 1

( 1/ 2) 2 (2 (2 1))
2 2

0

( )

k
k

m k k

n n
m L t n t

nm

otherwise

tψ
+

+ ++ − + ≤ <

= 


 (16)  

 

where 0,1,...,m M=  and 0,1,..., 2 1.kn = −   
 

The coefficient ( 1/ 2)m +  is for orthonormality. Here ( )mL t  

are the well-known Legendre polynomials of order m , which have 

been previously described. A function ( )f t defined over [0, 1) can 

be expanded in the terms of Legendre wavelets as; 
 

0 0

( ) ( )nm nm
n m

f t c tψ
∞ ∞

= =

=∑∑                                                      (17)  

 

where ( ( ), ( ))nm nmc f t tψ= , and (.,.)  denotes the inner 

product.  
 

If the infinite series in Equation 17 is truncated, then it can be 
written as 
 

2 1 1

0 0

( ) ( ) ( )
k M

T
nm nm

n m

f t c t C tψ
− −

= =

= = Ψ∑∑                                (18) 

 

where C and ( )tΨ  are 2 ( 1) 1k M + ×  matrices given by  
 

0,0 0,1 0, 2, (2 1),0 (2 1),1 (2 1),
[ , ,..., ,..., ,..., , ,..., ]k k k

T
M M M

C c c c c c c c
− − −

=   

0,0 0,1 0, (2 1), (2 1),0 (2 1),1 (2 1),
( ) [ , ,..., ,..., ,..., , ,..., ]k k k k

T
M M M

t ψ ψ ψ ψ ψ ψ ψ
− − − −

Ψ =

 
(19) 

 
 
OPERATIONAL MATRICES OF DERIVATIVE AND FRACTIONAL 
DERIVATIVE 
 
In the following study we introduce a new method for deriving 
Legendre wavelet operational matrix of derivative and fractional 
derivative. 
 
 
Theorem 2 
 
 Let ( )tΨ be the Legendre  wavelets  vector  defined  in  Equation  
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19. The derivative of the ( )tΨ can be expressed by 

  

( )
( )

d t
D t

dt

Ψ = Ψ  (20) 

 

where D is the 2 ( 1)k M + operational matrix of derivative 

defined thus: 
 

0 0

0 0

0 0 0

F

F
D

F

 
 
 =
 
 
 

L

L

M M O M

,                                                      (21) 

 

where F is ( 1) ( 1)M M+ × + matrix and its (r,s)th element is 

thus: 
 

1

,

2 (2 1)(2 1) 2,..., ( 1), 1,..., 1 ( )

0

k

r s

r s r M s r and r s odd
F

othewise

+ − − = + = − += 


  

 
(22)

  

 
Proof 
 

By using shifted Legendre polynomial into[0,1]  the rth element of 

vector ( )tΨ  in Equation 19 can be written as; 

  

( )
1

2
, 1

[ , ]
2 2

1
( ) ( ) 2 (2 ) , 1,2,..., 2 1

2 k k

k
k k

r n m m n nt t m P t n i Mψ χ
+

+Ψ = = + − = +
 (23)

 

 

where ( 1) ( 1)r n M m= + + + , 0,1,...,m M= , 

0,1,..., (2 1)kn = − and 1
[ , ]
2 2k k

n nχ +

 

is the characteristic function 

defined as 1
[ , ]
2 2

1
1 [ , ]

( ) .2 2
0k k

k k
n n

n n
t

t
otherwise

χ +

+ ∈= 


 

 
By differentiation with respect to t in Equation 23 we have 
 

1
'2

1
[ , ]
2 2

( ) 1
2 2 (2 )

2 k k

k
k kr

m n n

d t
m P t n

dt
χ

+

+
Ψ = + −    (24) 

 

This function is zero outside the interval
1

[ , ]
2 2k k

n n +
, hence its 

Legendre wavelets expansion only have those elements of basis 

Legendre wavelets in ( )tΨ that are non-zero in the 

interval
1

[ , ]
2 2k k

n n +
 that is, 

( ) , ( 1) 1, ( 1) 2,..., ( 1)( 1)i t i n M n M n MΨ = + + + + + +
 
. Therefore its Legendre wavelet expansion has the following form: 

 
 
 
 

( 1)( 1)

( 1) 1

( )
( )

n M
r

i i
i n M

d t
a t

dt

+ +

= + +

Ψ = Ψ∑
 

 

This implies that the operational matrix D is a block matrix as 

defined in Equation 21. Moreover we have 
0( ) 0

d
P t

dt
=

 
This results to 

( )
0rd t

dt

Ψ = for 1,( 1) 1,..., (2 1)( 1) 1kr M M= + + − + + . 

Consequently, the first row of thevmatrix F defined in Equation 21 

is zero. Now by substituting 
' (2 )k
mP t n−  from Equation 9 into 

Equation 19 we have; 
 

1 1
2

1
[ , ]0 2 2

( ) 1
2 2 2(2 1) (2 )

2 k k

k m
k kr

j n n
j
j m odd

d t
m j P t n

dt
χ

+ −

+
=
+

Ψ = + + −∑   

                                                                                                   (25) 
 
Expanding this equation in Legendre wavelets basis, we have 
 

1 1
2

1
[ , ]

0 2 2

1
1

( 1)
1

( ) 1
2 2 2(2 1) (2 )

2

2 (2 1)(2 1) ( ),

k k

k m
k kr

j n n
j
j m odd

r
k

n M s
s
s r odd

d t
m j P t n

dt

r s t

χ
+ −

+
=
+

−
+

+ +
=
+

Ψ = + + − =

− − Ψ

∑

∑  

 

                                                                                                     (26) 

So if we choose ,r sF  as  

 
1

,

2 (2 1)(2 1) 2,..., ( 1), 1,..., 1 ( )

0

k

r s

r s r M s r and r s odd
F

othewise

+ − − = + = − += 


 
 
then Equation 20 holds and proves the desired results. 
 
 
Corollary 
 
By using Equation 20, the operational matrix for the nth derivative 
can be derived as  
 

( )
( )

n
n

n

d t
D t

dt

Ψ = Ψ  (27)
 

 

where 
nD is the nth power of the matrix D . 

 
In the next theorem we generalize the operational matrix of the 
derivative of Legendre wavelets to fractional order derivative. 
 
 
Theorem 3  
 

 Let ( )tΨ be the Legendre wavelets vector defined in Equation 19. 

Suppose that 0α >  then 
 

( )( ) ( )D t D tα αΨ = Ψ
                                                             

(28) 



 
 
 
 

where 
( )D α

is the (2 ( 1)) (2 ( 1))k kM M+ × +  operational 

matrix of the fractional derivative of the order 

0α > , 1N Nα− < ≤  in the Caputo sense and its (p,q)th 
elements is 
 

( )( )

1

2
2

0 0

0 1 [ ]

1 ( 1) ( )! 2
2 [ ] 1 2 ( 1)

2 ( )!( !)

pq
k m i kj i jm i

k
jq

i j

p

D

i m i n
m b p M

j m i i

α

α

α
+ + −

= =

≤ ≤




    − + + + ≤ ≤ +   +   

∑∑

                                                                                                    

 (29) 

In which jqb are the qth coefficients of the Legendre wavelet 

expansion of functions 1
[ , ]
2 2

( ) , 0,...
k k

j
j n nf t t j iχ += = . 

 
 
Proof 
 

Suppose that ( ) ,p tΨ  

( 1), 0,1,..., , 0,1,..., (2 1)kp nM m m M n= + + = = − b

e the pth element of the vector ( )tΨ defined in Equation 19. By 

using the shifted Legendre polynomial, ( )p tΨ  can be written as; 

  
1

2
, 1

[ , ]
2 2

1
( ) ( ) 2 (2 )

2 k k

k
k

p m n m n nt t m P t nψ χ
+

+Ψ = = + −  (30) 

 
By using Equation 6 we have 
 

1

2
12 [ , ]

0 2 2

1 ( 1) ( )! (2 )
( ) 2

2 ( )! ( !) k k

k m i k im

p n n
i

m i t n
t m

m i i
χ

+ +

+
=

− + −Ψ = +
+∑

                                                                                                    

 (31) 
 

Expanding (2 )k it n− , Equation 31 can be written as 

 

 
1

2
12 [ , ]

0 0 2 2

1 ( 1) ( )! 2
( ) 2

2 ( )!( !) k k

k m i kj i jm i
j

p n n
i j

i m i n
t m t

j m i i
χ

+ + −

+
= =

  − +Ψ = +   + 
∑∑   

                                                                                                     (32) 
 

Let Dα
be a fractional order derivative, then for Equation 32 we 

have; 
  

1

2
12 [ , ]

0 0 2 2

1 ( 1) ( )! 2
( ) 2 ( )

2 ( )!( !) k k

k m i kj i jm i
j

p n n
i j

i m i n
D t m D t

j m i i
α α χ

+ + −

+
= =

  − +Ψ = +   + 
∑∑   

                                                                                                    (33) 
 
This equation can be rewritten as 
 

 
1

2
2

0 0

1 ( 1) ( )! 2
( ) 2 ( )

2 ( )!( !)

k m i kj i jm i

p j
i j

i m i n
D t m f t

j m i i
α

+ + −

= =

  − +Ψ = +   + 
∑∑

(34)

 

 

where 1
[ , ]
2 2

( ) , 0,...
k k

j
j n nf t t j iχ += = and can be derived as  
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follows: 
 

1 11[ , ] [ , ]
22 2 2 2

1

2
1 [ ,1]

2 2

( )
1

( )
( ) ( )

1
, 0,...,

( ) ( )

kk k k k

k

k k

N j

Ntj
nj n n n nN

N j

n
N

n nN

d t

dtf t D t dx
N t x

d t

dt dx j i
N t x

α
α

α

χ χ
α

χ
α

+ ++ −

+

+ −

 
  

= = +    Γ − −    
 

 
 

= 
Γ − −  

 

∫

∫

  

                                                                                                   (35) 
 

Now, we approximate functions ( ) , 0,...jf t j i=  in terms of 

Legendre wavelets as 
 

2 ( 1)

1

( ) , 0,..., ,
k M

j jq q
q

f t b j i
+

=

= Ψ =∑
 

(36) 

 

where ( )( ), ( )jq j qb f t t= Ψ .  

 
Substituting Equation 36 into Equation 34 and by changing the 
order of series we have, 
  

1 (2 1) 1
2

2
1 0 0

1 ( 1) ( )! 2
( ) 2 ( )

2 ( )!( !)

kk m i kj i jM m i

p jq q
q i j

i m i n
D t m b t

j m i i
α

+ + −+ −

= = =

   − +Ψ = + Ψ   +  
∑ ∑∑

                                                                                                     (37) 
 
This leads to the desired results.  
 

It is useful to note that the functions ( ) , 0,...jf t j i= defined in 

Equation 35 can be calculated easily and their Legendre wavelet 
coefficients derived straightforwardly. 
 
 
APPLICATION AND RESULTS 
 
In this study, in order to show the high importance of 
operational matrix of derivative, we apply it to solve 
boundary value fractional problems. These problems are 
considered because closed form solutions are available 
for them. This allows one to compare the results obtained 
using this scheme with the analytical solution.  
 
 
Bagley–Torvik boundary value problems 
 
The general Bagley–Torvik boundary value problems of 
Order 2 have the form (Al-Mdallal et al., 2010) 
 

3
2 2

0 1 2( ) ( ) ( ) ( ) , [0, ],A D y t A D y t A y t f t t T+ + = ∈  (38) 

 
subject to boundary conditions  
 

0 1(0) , ( ) ,y y Tα α= =
                                           

 (39) 
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where 0 1 2 0, , ,A A A α and 1α  are constants with 0 0A ≠ , 

and 1[0, ]y L T∈ .  

In Equation 38, Dα denotes the fractional derivatives in 
the Caputo sense. The existence and uniqueness of the 
exact solution for these problems are discussed by 
Podlubny (1999). In this section, we introduce a new 
method based on Legendre wavelets expansion and its 
operational matrices of derivatives and fractional 
derivatives. For solving the Bagley–Torvik boundary 
value problems of the form (Equation 38) subject to the 
boundary conditions (Equation 39), we approximate the 

( )y t and ( )f t by the Legendre wavelets as 
 

( ) ( )

( ) ( )

T

T

y t C t

f t F t

= Ψ
= Ψ  

                                                          (40) 

 
where vector 

0,0 0,1 0, 2, (2 1),0 (2 1),1 (2 1),
[ , ,..., ,..., ,..., , ,..., ]k k k

T
M M M

C c c c c c c c
− − −

=

is an unknown vector and F is a known vector. By using 
Equations 27 and 28 we have 
 

.)()(

,)()(

)
2

3
(

2

3

)2(2

xDCxyD

xDCxyD

T

T

Ψ=

Ψ=
                                         (41) 

 
Substituting Equations 40 into 41, the residual ( )mR x can 

be derived as 
 

)()( 2

)
2

3
(

1
)2(

0 xCADCADCAxR TTT
m Ψ









++= .  

                                                                                  (42) 
 
By using the typical Tau method (Canuto et al., 1988); we 

generate 2 ( 1) 2k M + −  linear equations by applying  
 

2 ( 1)
( ), ( ) 0, 0,1,..., 2 ( 1) 2k

k
jM

R x x j M
+

Ψ = = + −  (43) 

 
Also, by considering boundary conditions we have 
 

0

1

(0) (0)

(1) (1)

T

T

y C

y C

α
α

= Ψ =

= Ψ =                                                

(44) 

 

Together, Equations 43 and 44 generate 2 ( 1)k M +  set 
of linear equations. These linear equations can be solved 
for unknown coefficients of the vector C . By substituting 
C in Equation (33), an approximation solution ( )y x  can 

 
 
 
 
be obtained. 
 
 
Numerical results 
 
In this study, we will consider the three fractional order 
Bagley–Torvik boundary value problems. We used the 
method described in the “Bagley–Torvik boundary value 
problems” for solving these problems. The algorithms are 
performed by Maple 12 with 16 digits precision. 
 
 
Example 1 
 
Consider the following boundary value problem in the 
case of the inhomogeneous Bagley-Torvik Equation (Al-
Mdallal et al., 2010); 
 

3
2 22( ) ( ) ( ) 4 2

(0) 0 , (5) 25.

t
D y t D y t y t t

y y
π


+ + = + +


 = =  
 

where the exact solution is 2( ) .y t t=   
 
We solve this fractional boundary value problem by 
applying the method described in the “Bagley–Torvik 
boundary value problems” Section using Legendre 
wavelets expansion and its operational matrices of 
derivatives with M=2, k=1. Using Equation 43, we obtain 
four linear equations and by applying boundary condition, 
we have two linear equations. By solving this linear 
system, we get the unknown vector C . By substituting 
this vector in Equation 40, we obtain the exact solution. 
 
 

Example 2 
 
Consider the boundary value problem 
 

3
5 4 3.5 2.52

128 64
( ) ( )

7 5
(0) 0 , (1) 0.

D y t y t t t t t

y y
π π


+ = − + −


 = =

  

 

The exact solution is 4( ) (1 )y t t t= − . Here, we solve this 
problem using the Legendre wavelets method with M = 6, 
k = 2. Similar to Example 1 by solving the linear system 
derived for this problem, we obtain the exact solution. 
 
 
Example 3 
 
Consider the Bagley–Torvik boundary value problem 
 

3
2 21 1

( ) ( ) ( ) 8 ( ) 8 ( 1)
2 2

(0) 0, (20) 1.48433,

D y x D y x y x t t

y y

ν ν


+ + = − −

 = = −
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Figure 1.  Approximate and exact solutions for Example 3 in the interval [0, 20]. 

 
 
 

Table 1. The absolute errors for different values of M and k. 
 

x  M=10, k=1 M=10, k=2 M=12, k=1 M=12, k=2 

4 3.6 × 10-5 1.3 × 10-5 1.9 × 10-5 9.8 × 10-6 
8 3.8 × 10-5 1.5 × 10-5 7.6 × 10-6 3.4 × 10-7 
12 4.0 × 10-5 9.4 × 10-6 8.8 × 10-7 5.5 × 10-7 
16 2.7 × 10-5 6.5 × 10-7 1.1 × 10-7 5.4× 10-8 

 
 
 
in which ( )tν is the Heaviside function. This example was 

solved theoretically by Podlubny (1999); and the compact 
form of the solution was given by:  
 

0
( ) 8 ( )( ( ) ( 1))

x
y x G x t t t dν ν ν= − − −∫ , (45) 

 

where G  is the fractional Green’s function defined as 
 

1

2

0 0

( )!
( 1)

( )
1 1 32 !

!2 2
2 2 2

j

k

k
jk j

j k t

G x
k

j j k k

∞ ∞

= =

 
+ − 

−  =
 Γ + + + 
 

∑ ∑

 

(46)  

 
In Equation 46, Γ  is the gamma function. Here, we solve 
this problem using the Legendre wavelets method as has 
previously been described with (M, k) = (10, 1), (M, k) = 
(10, 2), (M, k) = (12, 1) and (M, k) = (12, 2). Figure 1 
shows the theoretical solution derived by Podlubny 
(1999) and the approximate solution with (M, k) = (12, 2). 
The absolute errors for different values of x in the interval 
[0,20]are shown in Table 1. From Table 1, we see that 

we can achieve a good approximation with the exact 
solution by using a few terms of Legendre wavelets. 

Conclusion 
 
In this article, a general formulation for deriving the 
Legendre wavelets operational matrices of fractional deri-
vative has been derived. This matrix was used to 
approximate a numerical solution of Bagley–Torvik frac-
tional boundary value problems. Our approach was 
based on the truncated Legendre wavelets expansion 
and the Tau method. The solution obtained for these 
problems show that the proposed method can effectively 
solve them effectively and it is very simple and easy to 
implement.  
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