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Abstract
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Lipschitz functions. As an application, we obtain the boundedness of the
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1 Introduction and preliminaries
As the development of singular integral operators (see [1-3]), their commutators have
been well studied (see [4—6]). In [5-7], the authors prove that the commutators generated
by the singular integral operators and BMO functions are bounded on L?(R") for 1 < p < co.
Chanillo (see [8]) proves a similar result when singular integral operators are replaced by
the fractional integral operators. In [9-11], the boundedness for the commutators gener-
ated by the singular integral operators and Lipschitz functions on Triebel-Lizorkin and
LP(R") (1 < p < 00) spaces are obtained. In [12], some singular integral operators with gen-
eral kernel are introduced, and the boundedness for the operators and their commutators
generated by BMO and Lipschitz functions are obtained (see [12, 13]). The purpose of this
paper is to prove the sharp maximal function inequalities for the commutator associated
with some integral operator with general kernel and the BMO and Lipschitz functions. As
an application, we obtain the boundedness of the commutator on Lebesgue, Morrey and
Triebel-Lizorkin space. The operator includes Littlewood-Paley operators, Marcinkiewicz
operators and Bochner-Riesz operator.

First, let us introduce some notations. Throughout this paper, Q will denote a cube of
R" with sides parallel to the axes. For any locally integrable function f, the sharp maximal
function of f is defined by

1
# _ _ .
M (f)(x)—ngg—m| fQ If ) = fo| dy;
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here, and in what follows, f = |Q|™ [, 0 f(x) dx. It is well known that (see [1, 2])

M#(f) x)%supmf@/[f(y)— | y.

We say that f belongs to BMO(R") if M*(f) belongs to L>®(R") and define ||f||zmo0 =
|M*(f)|| ;o< . It has been known that (see [14])

If = fargllBamo < Ckl[f |l sao-

Let

=g [yt

For 1 > 0, let M, (f)(x) = M([f|")}"(x).
ForO<n<land1<r<oo,set

1 . 1/r
Mn,r(f)(x)=zlllz(Wlef(y)l dy) :

The A, weight is defined by (see [1])

1
Ap= {weLlOC(R”) sup(|Q|/ (x)dx)(|é|/w(x) V- 1)a,’x)p <oo},

l<p<oo,
and

A {WELP

loc

(R") : M(w)(x) < Cwi(x), a.e.}.

For 8>0andp>1,let Flf *°(R™) be the weighted homogeneous Triebel-Lizorkin space

(see [11]).
For B > 0, the Lipschitz space Lip,(R") is the space of functions f such that
Lf @) -fO)l _
11l
[fllLip, = xyeR” |x _y|ﬁ

x7y

In this paper, we will study some integral operators as follows (see [12]).

Definition 1 Let F;(x,y) be defined on R" x R" x [0,+00) and b be a locally integrable
function on R", set

R = [ EefO)dy
and

FOW = [ (66 -b0)Filw s )

for every bounded and compactly supported function f.
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Let H be the Banach space H = {/: ||h|| < 0o}. For each fixed x € R", we view F;(f)(x) and
Ff(f)(x) as the mappings from [0, +00) to H. Set

T(f)(x) = || F:(f)(x)

’

which T is bounded on L?(R"). The commutator related to F,f’ is defined by
T°()(x) = |2 () ()|

and for F; we find that there is a sequence of positive constant numbers {Cy} such that for
any k> 1,

/2| . |(||B(x,y)—ﬂ(x,z)|| +|E,x) - Egn)|) ) dx < C
y—2Z|<|X—Y

and

1/q
( [ (|Euey) = Fuw2) | + [Exr) —Ft<z,x>||)qdy)
2k|z—y| <|x—y|<2k+1|z—y)|
< G241z -y) ™",
wherel<g' <2and1l/qg+1/q =1.

Definition 2 Let ¢ be a positive, increasing function on R* and there exists a constant
D > 0 such that

©(2t) < Dy(t) fort=>0.

Let f be a locally integrable function on R”. Set, for 0 <n<nand1<p<n/n,

1 1/p
fllzpne = sup (— / (y)"dy) :
xeRn,d>0 \ @(d)t=P1in Q(x,d)lf |

where Q(x,d) = {y € R" : |x — y| < d}. The generalized fractional Morrey space is defined
by

1779 (R") = {f € Lo (R") ¢ [flpe < 00}

We write LP#(R") = LP#(R") if n = 0, which is the generalized Morrey space. If ¢(d) = d°,
8 >0, then LP¢(R") = [P (R"), which is the classical Morrey spaces (see [14,15]). If p(d) = 1,
then LP?(R",w) = L (R"), which is the Lebesgue spaces.

As the Morrey space may be considered as an extension of the Lebesgue space, it is
natural and important to study the boundedness of the operator on the Morrey spaces
(see [7,16-19]).
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It is well known that commutators are of great interest in harmonic analysis and have
been widely studied by many authors (see [5, 6]). In [6], Pérez and Trujillo-Gonzalez prove
a sharp estimate for the multilinear commutator. The main purpose of this paper is to
prove the sharp maximal inequalities for the commutator. As the application, we obtain
the L”-norm inequality, Morrey and Triebel-Lizorkin spaces boundedness for the com-
mutator.

2 Theorems

We shall prove the following theorems.

Theorem 1 Let T be the integral operator as Definition 1, the sequence {Ci} € I1,0 < 8 <1,
q <s< oo and b € Lipg(R"). Then there exists a constant C > 0 such that, for any f €
C(R") and x € R",

MH(TP(F)) @) < CllbllLip, (Mps(F)E) + Mp s (T()) ().

Theorem 2 Let T be the integral operator as Definition 1, the sequence {2/ C} € I!, 0 <
B<1,q <s<ooandb e Lipg(R"). Then there exists a constant C > 0 such that, for any
feCPR") and x € R,

sup inf ez | [T = el = Clblh, (VDG + M (T()E)

Theorem 3 Let T be the integral operator as Definition 1, the sequence {(kCy} € I, ¢ <s<
oo and b € BMO(R"). Then there exists a constant C > 0 such that, for any f € C3°(R") and
X €eR",

M (TP () &) < Cllbllsaro(Ms(F) &) + My(T(F)) ().

Theorem 4 Let T be the integral operator as Definition 1, the sequence {Cy} € L0o<B<
min(1,n/q'),q' <p<n/B,1/r=1/p—B/nandb € Lipg(R"). Then T? is bounded from LP (R")
to L"(R").

Theorem 5 Let T be the integral operator as Definition 1, the sequence {Ci} € I, 0 < D <
2",0<B<min(L,n/q),q <p<n/B,1/r=1/p—B/nandb € Lipz(R"). Then T? is bounded
from LPP#(R™) to L™ (R").

Theorem 6 Let T be the integral operator as Definition 1, the sequence {2K/Cy} € I1, 0 <
B <min(l,n/q'), q' <p <n/B,1/r=1/p - B/n and b € Lipg(R"). Then T? is bounded from
LP(R") to [ (R").

Theorem 7 Let T be the integral operator as Definition 1, the sequence {kCy} € I* and
b € BMO(R"). Then T is bounded on L (R") for ¢ < p < oo.

3 Proofs of theorems

To prove the theorems, we need the following lemma.
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Lemma 1 (see [12]) Let T be the integral operator as Definition 1, the sequence {Ci} € [,
Then T is bounded on LP(R") for 1 < p < 0o.

Lemma 2 (see [11]) For 0 < 8 <1and 1< p < 0o, we have

1
SQUBP W /QV(X) —fQ| dx

Hf”p]fj'oo ~ »

~
=~

) 1
suplnfw /QV(x) —c‘ dx

Q ¢ »

Lemma 3 (see [1]) Let 0 <p < oo and w € \J,<,.., Ar. Then, for any smooth function f for
which the left-hand side is finite,

/ M) (x)Pw(x)dx < C/ M*(F) (%) w(x) dx.
R R
Lemma 4 (see [8]) Suppose that0<n<n,1<s<p<n/nandl/q=1/p-n/n. Then

”ans(f)”Lq = C”f”l}’

Lemma5 Letl<p < 00,0 < D < 2" Then, for any smooth function f for which the left-hand
side is finite,

[MO) oo = CIM* O] -
Proof For any cube Q = Q(xy,d) in R", we know M(xq) € A; for any cube Q = Q(x,d) by

[20]. Noticing that M(xq) <1 and M(xq)(x) < d"/(Jx —xo| —d)" if x € Q°, by Lemma 3, we
have, for f € LP#(R"),

/M(f)(x)’”dx = / M) (%) xqlx)dx
Q R"
< | ME)xPM(xo)(x)dx

R"

<c /R M) M) o) dn

_c / M) (e M) ) dx
Q

oo

#
’ Z /ZkﬂQ\szM (F)x)” M(xQ)(x) dx)

k=0
it |Ql
c( | m*prrdx+y N g 4
= (/QM Ve x+k=0/2’<+1Q\2’<QM ) |2k+1Q| x)

< # d - # —knd
_C</QM ()P x+l§ 2MQM ()2 y)

< C|M* ()]0 D270 (2"d)
k=0
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oo

<c|mM*(’,. Y (27"D) (@)
k=0

= CIM ()0 0(d)

thus

1 1/p 1 . 1/p

and

[MO] e < CIMEN] -
This finishes the proof. O

Lemma 6 Let T be the integral operator as Definition 1, 0 < n<n, 0 <D < 2" and
1<p<oo.Then

| T s < CIlf llzome.

Lemma7 Let0<D<2",0<n<nl1<s<p<n/nandl/q=1/p—nin. Then

1M, 500) ] 10w < CIf llzome.

The proofs of the two lemmas are similar to that of Lemma 5 by Lemmas 1 and 4, we
omit the details.

Proofof Theorem 1 It suffices to prove for f € C5°(R") and some constant Cy, the following
inequality holds:

L / | T*(F)(x) = Co| dx < CllbllLip, (Mps(F) () + Mpo(T()) ().
1Ql Jo
Fix a cube Q = Q(x¢,d) and X € Q. Write, for fi = f x20 and f5 = f x(2q)¢»
F2(F)(@) = (b(x) = bag) Ei(f) (%) = Fi((b = bag)fi) (%) = Fo((b = bag)fs) ().
Then

ol / [EF)@)  E:((bag — b)) (x0) | v

< I—QI/ ” (b(x) —sz)Fz(f)(x)” dx + —/ ||Ft((b_ bao)fi) () ” dx

M / |E.((B = bao)fs) %) = Eo((b = b)) (o) | dx

211 +12 +13.
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For I;, by Holder’s inequality and Lemma 2, we obtain

1/s
~ 1-1/s S
L < Q feup|b(x) byo|IQ </Q|T(f)(x)| dx)

1/s
< C|Q|”Snbnupﬂ|2Q|f”"|2Q|”Sf“"(m'l 57 / T @[ dx)

< ClbllLipy Mps(T(f)) ).

For I, by the boundedness of T, we get

1 . 1/s
]2 < (@ ﬁn|T((b—b2Qm)(x)| dx)

1/s
= (IQI/ (660 = Bl dx)

1 s 1/s
< C|Q|—“S|2Q|‘“"||2Q|“S‘””<W / Qlf(x)| dx)
2

< C||b||LipﬂM/3,s(f)(5C)

For I3, recalling that s > 4/, we have

bz [ 1000l i)~ Fi ]

|Q|/Q

Y T
k=1 =ly=%o

/kd ok d”Ft(x, — Fy(x0,9) | |6() - b2k+1Q|[f(y)|dydx
ko1 W 2kd=ly—xol <2+

1/q
(f ”Ft(x’y) —Ft(xo,y)quy)
|Q| Qo \J2kd<ly-xg|<2k+1d

, 1/q
X sup }b(y) —b2k+1Q‘ (/ZMQVO’)"I dy) dx

yEZk*lQ

1/q
b + b / F, X _F , qd )
|Q| / Zl e 2Q|< des\y—x0|<2k+ldH 1) e(%0,7) ” Y
1/q’
( k+1QLf(y>|q dy> dx

< O3 G2y ™ [21Q gy |24 Q] g
k=1

1 B 1/s
X <|2k+1Q|1—sﬁ/n 2k+1QlfU)| dy)

00
i C Z ||b||Lip/5 |2kQ|ﬂ/an(2kd)—n/q |2k+1Q|l/q _1/5|2k+1Q|1/3_/3/”
k=1
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1 s 1/s
x (|2k+1Q|1—sﬂ/n 2/<+1Qlf(y)| dy)
< ClbllLip, Mp ()& Y _ Ci
k=1

= CllbllLip,Mp,s(f)(%).

This completes the proof of Theorem 1.

Proof of Theorem 2 It suffices to prove for f € Ci°(R") and some constant Cy, the following

inequality holds:
1 , i i
QA /Q|T ()(x) = Co| dx < CllbllLip, (Ms(f) () + M(T(f)) ().

Fix a cube Q = Q(xo, d) and x € Q. Write, for fi = f x2¢ and f2 = f x2q»

FP()(x) = (b(x) = bag) Fi()(x) = Fi((b = bao)fs ) (%) — Fi((b = bao)fs) ().

Then

wﬁ / |EP (1)) = Fi((baq - b)) (%0) | d

|Q|1+ﬂ/n / (b)) @] i+ i / £ - baof) )] dx

W /QHFt((b—sz) 2) (%) = Fi((b = byq)fy) (x0) || dax

= 1[1 + 1]2 + 113

By using the same argument as in the proof of Theorem 1, we get

1/s
= g S| ~bagllQl 1“</}T(f)x)| )
1/s
5cnbnupﬁ|2Q|ﬂ/"|Q|-“S|Q|“S-'~“/"(|Q| f I T( )|’ dx)
= C”b”Llp‘g (T(f))(x)

1 B 1/s
I < ol ( [ 7@ bai)) dx)

¢ P 1/s
=g 4 (/R [CORRAC d’“)

<_© IQII‘”SIZQIW”IZQI”S(L / lf(x)|sdx)1/s
QA 12Q] Jaq

< CllbllLip, M() @),

1
1 = e [, [ 1600~ ol O [Fie) - Ftao )]y

d
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1 o0
< ‘|Q|1+ﬂ/n _/(;Z/zkd o2k ld“Ft(x,y)_Ft(xO)y) |Hb()/)—b2k+1QHf(y)|dydx
k=1 <|y—xg|<2K+

1 o0
* |QU+n /Q kXﬂ: -/zkd<y—xo|<2k+1d [ ) = Fia ) [Barg = bacl £ 0)] dy

C i l/q
= S Ei(x,y) — Fy(xo, "d)
= iQr /QZU” ts) = Flso )| dy

, 1/q
X sup ’b()’)—bzkHQ’(/zMQ[f(y)‘q dy) dx

yEZkHQ

Cc /’ nd 1/q
+ —— |Doks1y — b I(/ F(x,)—F(x,)qd)
|Q|1+BIn QkXﬂ: 2k+1Q 2Q des\y—xoldk“d” XY t\X0,) || y

, 1/q
X < [f(y) |q dy) dx
2k+1Q

o0
< CIQI’W” Z Ck(de)_n/q |2k+1Q|ﬁ/n”b”Lipﬂ |2k+1Q|1/q
k=1

1 B 1/s
* <|2k+lo| g/ O @ )

+ C|Q|—/3/n Z ”b”Lipﬁ |2kQ|ﬂ/an(2kd)—n/q/ |2k+1Q|1/q/
k=1

1 s 1/s
8 <|2’”1Q| fzkuQV @] dx)

]
= C||b||L1pﬂMs(f)(5C) Z 2k’BCk
k=1

< CllbllLip, M) ).

This completes the proof of Theorem 2. O

Proofof Theorem 3 It suffices to prove for f € C§°(R") and some constant Cy, the following
inequality holds:

ﬁa /Q | T"()@) ~ Co| dx < Cllbllzao (M) + Mi(T()) @).

Fix a cube Q = Q(xo, d) and x € Q. Write, for fi = f x2¢ and f2 = f x2q)c»
FY(f)(x) = (b(x) = bag) Fe(f)(x) — Fo((b - b2o)fi) (%) = Fe((b = ba2g)fp) (%)

Then

1
Ql

< fa fQ | (bx) - b20) FuF) @) | i + ﬁ /Q IE:((5 = ba)f)) ()] dx

/Q||Ftb(f)(x) — E((baq - b)f2) (x0) | dax

Page 9 of 15
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IQI/ | Ee((0 - 20)f2) @) = Fo((b = b20)fs) (o) | dx

=1L + I, + I115.
For I1I;, by Holder’s inequality, we get
1 , 1/s' 1/s
IIL < —/b(x)—b de) ( / T de)
1 (IQI A x| @ J /T
< ClblismoM;(T(f)) ().

For 1115, choose 1 < r < s, by Holder’s inequality and the boundedness of T', we obtain
1 1/r
I, < <— f |T((6-br)fi) )| dx)
QI Jgn
1/r
< CIQI‘”’( /R n}(b—bzo)ﬁ(xn’dx)

(s=r)/sr
sCIQI‘“’< / Q}b(x)—bwy”/“‘”d) < / e[ dx)

1 s 1/s
C|lb — d
<Cl ||BMO(|2Q| /2Qlf(x)| x)

=< ClbllsmoM;(f)(%).

For III5, recalling that s > ¢/, taking 1 < p < 00, 1 < r < s with 1/p + 1/q + 1/r = 1, by Holder’s
inequality, we obtain

iy i [ [ 0= bl - Ftaa, ] s

|Q| /(;Z,/zkd T d“Ft(x’y)_Ff(xo’y)H|b0’)—szHf0’)|dydx
<|y-xo|< +1

1/q
/ ( / |E4(x, ) = Eu(xor) Iquy)
|Q| Q% 2k d<ly—xo|<2k+1d

1/p 1/r
P r
« ( /2k+lQ|b(x)—b2Q| dx) ( /2k+1QV(y)| dy) dx

o]

<Y k(2ka)" (/2

P Kd<|y-xo|<2k+1d

1 s /s
<ibtiwo( g [ V')

< ClIbllsmoM,(F)(®) Y kCx
k=1

=< ClbllaoM;(f)(%).

1/q
| K, 9) - K(x0,9) | dy)

This completes the proof of Theorem 3. d
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Proof of Theorem 4 Choose g’ <s < p in Theorem 1, we have, by Lemmas 1, 4, and 5,

|T°(f)

= [M(T) .
< Cllblip, (|Mps(TEN || + | Mg,
< Clblluip, (| T + 11120
< CllbllLip, I lr-

i = C[MH(T"(F)

)

This completes the proof of Theorem 4. d
Proof of Theorem 5 Choose g’ < s <p in Theorem 1, we have, by Lemmas 5-7,

[T e = IM(TO)] s = M (T D)

Ly L
< Clbllipg (| Mp.(TE) | o + [ Mps0O)] 1)
< ClblLipg ([T s + 1 l080)
= ClblILip, IIf oo -
This completes the proof of Theorem 5. 0

Proof Theorem 6 Choose ¢’ <s < p in Theorem 2. By using Lemma 3, we obtain

|72 p < €

1
o 1QP /Q!Tbmm = T((b2o = b)) (o)

Q>
< Clibllip, (| M(TH) |- + |MsD) )
< Cliblluips (1T + 1f12r)

< Cl1blLip, I |-

Lr

This completes the proof of the theorem. O

Proof of Theorem 7 Choose ¢’ < s < p in Theorem 3, we have

I 7°O] < 1M(T* ()], < C[M*(T°0) ],
< Clibllsmo (|Ms(TX)) | 1o + | M) )
< Clibllsso (| T 1 + IfNlzr)
< Clbllsuollf -

This completes the proof of the theorem. O

4 Applications
In this section we shall apply Theorems 1-6 of the paper to some particular operators such
as the Littlewood-Paley operators, Marcinkiewicz operator and Bochner-Riesz operator.

Application 1 Littlewood-Paley operators.
Fixed € > 0 and u > (3n + 2)/n. Let ¢ be a fixed function which satisfies:
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(1) [z ¥(x)dx =0,

(2) Y@ < C+ a0,

(3) [¥(x+) — Y @) < Clyl* (1 + [#)"**) when 2y < Jx].

We denote I'(x) = {(y,£) € R"*! : |x — y| < t} and the characteristic function of I'(x) by
Xxr). The Littlewood-Paley commutators are defined by

d
gf;(fxx):( / IHGER t)

. ) . 2 dydt 1/2
sow-[[ [ oo t]

and

) ) t np ) zdydt 1/2
gune-| [ /Rg+1<7t+|x—y|) o |

where
FUOW = [ (606~ b0) il =5 0y,
FOw = [ (660 - @ Enty -2 de

and Y, (x) =t "y (x/t) for t > 0. Set Fi(f)(y) =f * ¥(y). We also define

d
() = ( / IE() ) t)

dvd 172
Sy (f)(x) = ( / /F JFOOL t{j)

and

) ¢ nu 2dydt 1/2
gu(f)(@—(//wl(m) 1AGICY] tn+l> )

which are the Littlewood-Paley operators (see [3]). Let H be the space

o) 1/2
:{h:||h||:(f yh(t)yzdt/t> <oo}
0
172
:{h:“hllz(// ]h(y,t)\zdydt/t"“) <oo},
R$+1

then, for each fixed x € R”, F?(f)(x) and F?(f)(x,y) may be viewed as the mapping from
[0, +00) to H, and it is clear that

or

g () = || Fe

&) = |F

Page 12 of 15
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SARIOES POaSARIER))

and

an/2h
00 |(i) - #0

It is easily to see that gw, ,and gM satlsfy the conditions of Theorems 1-6 (see [21-23]),

Sy(N®) = || xrwE: O]

t npl2
&) = H <m) Ft(f)(y)H

thus Theorems 1-6 hold for gw, ,/,, and gM.

Application 2 Marcinkiewicz operators.

Fixed A > max(1,2n/(n + 2)) and 0 < y < 1. Let Q be homogeneous of degree zero on R"
with fS”’l Q(x")do (x') = 0. Assume that 2 € Lip, (§"~1). The Marcinkiewicz commutators
are defined by

d
%mm:U“Wmufﬂ,

dvd 1/2
wie-| [ [ e SE]

and

. ) ¢ ni . gdydt 1/2
w3 () x) = |://I;$+1<m> |Fz (f)(x’y)| tn+3:| ’

where

Rw= (M)Mﬂ ﬁﬁw@

le—yl<t
and
RO [ (b -be) OB de
ly-zl<t z|
Set

~ Qx-y)
Fe= [ 0

We also define

00 1/2

uao) = ([ IEOWIS)
dvd 1/2

mvmw=(/ﬁwwawFij) ’

and

) ¢ ni zdydt 1/2
0= ([ [ () o 55)
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which are the Marcinkiewicz operators (see [24]). Let H be the space

o) 1/2
H:{h:||h||=</ |h(t)|2dt/t3) <oo}
0
1/2
H:{h:||h||:<// |h(y,t)|2dydt/t”+3) <oo}.
RT—I

Then it is clear that

or

)

wo@ = |[FPOW], el = |EH@)
12O = | xrwErO@N|,  ms)@) = | xroF Q)

’

and

t

nr/2 Y
m) F/(f)(x,9)

W) = “ (

ni/2
D ) - H( ) B(f)(y)H.

t
E+x -yl

It is easy to see that ug, ,u’g, and ! satisfy the conditions of Theorems 1-6 (see [21-24]),
thus Theorems 1-6 hold for I‘ng)zx pcg, and pcf.

Application 3 Bochner-Riesz operator.
Let 8 > (1 —1)/2, BX(7)(€) = (1 - £2|£]2)°f(£) and Bl (z) = t "B’ (z/t) for t > 0. Set

L)) = / (bx) - b)) B3 (x ~ ) () dy.

RM

The maximal Bochner-Riesz commutator is defined by
B (f)(x) = sup|B},(f)(x)].
t>0

We also define

’

Bs(f)(x) = stung?(f)(x)

which is the maximal Bochner-Riesz operator (see [25]). Let H be the space H = {h: ||h] =
supy,q [(£)] < 0o}, then

B () = | B () @)

. BXNHW) = |BXHW)|.

It is easy to see that Bg,* satisfies the conditions of Theorems 1-6 (see [21]), thus Theo-
rems 1-6 hold for Bé’,*.
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