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The purpose of this research is to study how genetic algorithms (GA's) are applied in the field of Game 
Theory. GA's are effective approaches for machine learning and optimization problems. In this work, 
genetic algorithm is utilized to determine the behavior of an opponent in Prisoners’ Dilemma. The 
opponent behavior will be modeled by means of adaptive automaton. The basic problem of this study is 
the well-known Prisoner Dilemma. The primary purpose of this research is to determine the opponent 
behavior towards finding a better strategy to be followed by the player, since the best strategy to be 
followed depends on the opponent behavior. The results of our proposed model showed the capability 
of our model to identify the opponent model efficiently. Based on the provided knowledge about the 
opponent model, the dynamic strategy showed better results when compared to other well-known 
strategies. 
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INTRODUCTION 
 
In recent years, Game Theory and Decision Theory were 
tightly related to the field of Artificial Intelligence through 
the use of intelligent agents. Game theory was adopted 
to represent and model multi-agent systems. Several 
researches were conducted for the purpose of 
incorporating learning in game theory. Some modern 
approaches of opponent modeling, in multi-agent 
systems, have modeled an agent by classifications (Riley 
and Veloso, 2000; Steffens, 2002). GA's have been used 
in game theory in several forms, such as searching for 
optimal strategy using automata with multiplicities 
(Genetic Automata) (Ghnemat et al., 2005) and 
characterizing a form of social learning. GA's have 
become a tool for representing and modeling particular 
types of economic problems. One reason for that is the 
ability of simulating the behavior of the individual’s action 
efficiently. Several applications of GA in economic 
modeling have been introduced (Birchenhall, 1995; Miller, 
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1996; Axelrod, 1997; Curzon, 1997). They were applied 
in well-known game models such as cobweb-type and 
prisoner's dilemma models. 

The expression ‘Game Theory’ was created by Von 
Neumann and Morgenstern in 1944. Since then, the 
applications of game theory are found in economics, 
politics, biology, computer science, psychology and 
sociology. Game theory provides a language to formulate 
structure, analyze, and understand strategic scenarios 
(Turocy, 2001). In Game theory, the actions of several 
agents are interdependent. These agents can be 
individuals, groups, firms, or any combination of these. 

The applications of game theory have been utilized in 
economics; at which such applications have been used in 
studying competition for markets, advertising, and 
planning under uncertainty (Martin, 1978). In addition, the 
applications of game theory are extensively utilized in the 
field of computer science. They have been used in 
interface design, discourage understanding, network 
routing, load sharing, resource allocation, and service 
transactions on the internet. The best reason for studying 
games is that games can model many  real-life  situations 
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to achieve the individual goals and maximize its payoffs. 
 
 
Learning algorithms in game theory 
 
Learning is an active area of research in many disciplines 
and it includes several concepts such as self-organizing 
neural networks, learning automata, and reinforcement 
learning (Lucas, 2005). The main objective of learning 
algorithms is to have systems that are capable of 
adapting their behavior in real time within complex 
environment without explicating learning signals. 

Learning techniques can be directly applied to game 
theory. Game characters can exploit some sorts of 
learning characteristics that make the game much more 
playable. This capability enables characters to invest in 
complex and long-term dynamics. Until now, there is no 
such a perfect game that fully exploits these 
characteristics (Lucas, 2005). However, Yannakakis 
(Georgios and Hallam, 2005) used what he called an 
objective measure of interestingness in order to evolve 
behaviors of Pac-Man and other similar games. 

Intelligent agents have strong ties with the problem of 
opponent modeling and inherently inhibit learning 
models. Intelligent agents are required to interact with 
their environment in an intelligent way. Interaction 
between agents includes information gathering, conflict 
resolution, task allocation, resource sharing and 
cooperation. This interaction is similar to the payoff matrix 
in the context of Game Theory. However, finding a 
strategy for interaction is a hard problem and an adaptive 
strategy is required based on the agent’s interaction 
experience (Carmel and Markovitch, 2000). 

In Carmel and Markovitch (2000), a model-based 
approach was presented to learn a strategy for 
interaction in which the adaptive agent holds a model of 
its opponent’s strategy. This model is used to determine 
which strategy that the agent should respond to a given 
opponent’s strategy. It requires an adaptation method to 
cope with the unknown strategies of the opponent. The 
model could infer the opponent’s model based on its 
input/output behavior. 

The idea of using evolution computing for developing 
adaptive strategies rather than searching for a sub-
optimal strategy was introduced and discussed in 
(Gallagher and Ryan, 2003). As pointed out in Outkin 
(1998), game theory can be viewed as the theory of 
strategic interaction, since it considers at the tactical 
value of a decision without taking the future into account. 
It also pre-assumes the equilibrium condition, such as 
Nash equilibrium, where time is not assumed to play a 
role. On the contrary, human politics, economics and 
business history provide us with examples which 
ascertain that dynamic strategies are dominant in our 
world. 

The model presented in Outkin (1998) aims to expand 
the  domain  of game theory to  investigate  evolving  and 

 
 
 
 
non-equilibrium strategies and including non-linearity and 
non-equilibrium properties. Subsequently, it models the 
process of decision making in this kind of environment. In 
this new configuration, temporary equilibrium, and chaotic 
behavior could arise; hence in the economic context, it 
needs local interactions and learning by agents. The 
adaptive strategy model is based on automata networks 
as a modeling tool for game theory. It studied cooperation 
and local interaction in the Prisoner's Dilemma Game. 
The deterministic and stochastic best response is played, 
when local interactions are investigated. For dynamic 
strategies, it is a world of disequilibrium, incomplete 
information and a rational decision maker who cannot 
rely on static or bounded strategies, rather develop an 
adaptive and dynamic strategy. One possible solution is 
that agent can search all possible scenarios based on 
historic information and then picks up the best one. 
However, this solution could be hard to implement since it 
is hard to predict the future evolution of the system. On 
the other hand, the search space will be exponential if it 
is required to optimize n periods ahead, where these 
periods cannot be solved analytically or even numerically. 

However, from the agent point of view, it is better to 
follow heuristic strategy that is based on some acquired 
knowledge, hoping that the embedded experience is 
sufficient. Another important point is that the collective 
problem solving behavior could lead to learning in the 
evolutionary system, where each individual can hold a 
simple strategy and the global performance of the system 
as a whole is powerful. Therefore, it is important to define 
the interaction between players and their information 
sharing. 

In Game Theory-based adaptive strategies, it is 
important to address that the player whom the agent 
plays with, was recognized in the domain of business 
more than the theoretical domain. One possible definition 
for an adaptive strategy, in the context of Game Theory, 
is a strategy that uses rational as well as heuristic rules 
and changes them according to the player's experiences 
in the game (Outkin, 1998). Opponent modeling in the 
context of games has been investigated in Carmel and 
Markovitch (1995), Smith (1982), Jansen (1992) and 
Findler (1977). Opponent modeling did not achieve much 
improvement in practice, as in chess, where it is not 
essential to achieve high performance, while it is 
essential to success in poker as illustrated in Billings et 
al. (1998). 
 
 
Prisoner’s dilemma 
 
Prisoner’s Dilemma is a game which models the story of 
two prisoners held suspect of a serious crime. If one of 
the prisoners testifies, or becomes a witness against the 
other, he will be rewarded, or goes free (a payoff of 5), 
while the other will serve a long prison sentence, (payoff 
0). If both testify, their punishment  will  be  relatively less,
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Table 1. The philosophy of Prisoner’s Dilemma. 
 

Prisoner Prisoner B stays  silent Prisoner B betrays 

Prisoner A Stays Silent Each serves six months 
Prisoner A serves ten years 
Prisoner B goes free 

   

Prisoner A Betrays 
Prisoner A goes free 
Prisoner B serves ten years 

Each serves five years 

 

 

Table 2. The Payoff Matrix of Prisoner’s Dilemma. 
 

Matrix 
Player II 

Cooperate Defect 

Cooperate 
Player I 

3.3 0.5 

Defect 5.0 1.1 

 
 
 

five years each (payoff 1 for each). However, if they both 
cooperate with each other, they will only be imprisoned 
for a short term or just six months as shown in Table 1. 

Prisoner’s Dilemma is a strategic game between two 
players. Each player has two strategies, called 
“Cooperate” and “Defect,” which are labeled C and D 
respectively. The game is played as follows: Player (I) 
chooses a row, either C or D and player II chooses either 
C or D simultaneously.  Each choice has a payoff for the 
two players. For example, the strategy combination (C; 
C) has payoff 3 for each player, and the combination (D; 
D) gives each player payoff 1. The combination (C; D) 
results in payoff zero for player (I) and payoff 5 for player 
(II). When (D; C) is played, player I gets 5 and player II 
gets 0. 

In matrix games, any two-player game in strategic form 
can be described by a table shown in Table 2.  Generally, 
a player may have more than two strategies. Each 
strategy combination defines a payoff pair, like (D; C), 
which is given in the respective table entry. From the 
other perspective, Prisoner’s Dilemma game is found to 
be symmetric, where the game stays the same when the 
players are exchanged. For this game, the payoffs matrix 
is said to be transparent, where both players can act 
simultaneously without knowing the other’s action, which 
makes the symmetry possible. Defect is a strategy that 
dominates Cooperate in Prisoner’s Dilemma. No rational 
player will choose a dominated strategy, since the two 
players will lose if they continue playing with it. What 
makes up the dilemma is that there is a risk for each 
prisoner if he does not defect and, at the same time, the 
other testifies. On the other hand, if the prisoner testifies 
and the other does not, he will have fewer payoffs. In 
such a repeated game, patterns of cooperation can be 
established as players’ rational behavior outweighs their 
gain from the current defecting. 

Prisoner’s Dilemma has various applications where 
individual’s defections at the  expense  of  others  lead  to 

overall less desirable outcomes. Examples include arms 
races, litigation instead of settlement, environmental 
pollution or cut-price marketing. The game-theoretic 
justification of Prisoner’s Dilemma on individual sides is 
sometimes taken as a case for treaties and laws, which 
imposes cooperation. However, there is some inefficiency 
on the outcome of the Prisoner’s Dilemma game. For 
example, the game is fundamentally changed by playing 
it more than once and the payoffs matrix can be a subject 
to change. 

Prisoner's Dilemma will be considered as a standard 
model in this study. Prisoner’s Dilemma makes a useful 
framework for manifesting the significance of decision-
making in ethical way by social environment (Turocy, 
2001). However, the main goal of this research is to build 
up an adaptive automata-based model which is capable 
of determining the opponent behavior. Once the 
opponent behavior is determined, the model will find the 
best strategy to be chosen in order to achieve higher 
payoff compared to the opponent’s strategy. 
 
 
RELATED WORKS 
 
Genetic algorithms (GA) 
 
GA is efficiently used in solving complex functions and 
combinational optimization problems (Spears, 1993). GA 
can be described by fixed length strings which encode 
the problem within binary string (Abraham and Jainm, 
2005). The other techniques in Evolutionary Algorithms 
are phenotypic algorithms which are used directly in the 
parameters of the system itself (AL-Salami, 2009). The 
commonly used method in GA's is the roulette wheel 
selection. The main operation of the GA is the 
recombination operator which acts as a natural 
recombination. However, GA is found easy to be used 
and can be operated in many kinds of optimization 
problems (Spears, 1993). From the other perspective, 
genetic algorithms are stochastic search and global 
minimization technique, for systems with complicated 
potential energy surface. GA can be viewed as a system 
of individuals that constitutes a population in which each 
individual represents a solution to the target problem. The 
population is allowed to evolve and emerge towards sub-
optimal solutions. GA's have means to represent the 
population,     perform     mating     (crossover)    between 
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estimate opponent’s strategy. Exploiting the standard GA's to our problem is explained in details. 

 

 

 

 

 

 

 

Figure 1: The overall structure of the proposed model 
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Figure 1. The overall structure of the proposed model. 

 
 
 
individuals, mutate the population members and select 
the best members for a new generation (Abraham and 
Probert, 2006). 

 
 
Applications of genetic algorithms in game theory 

 
Here, we overview the applications and utilization of GA 
in game theory. Periaux et al. presented two works on 
applying GA-based approaches to solve different 
optimization problems. In their first work Périaux et al. 
(2001) they applied GA approach on DDM-nozzle 
optimization problems (Domain Decomposition Method-
nozzle). The new GA approach is presented as a new 
evolutionary strategy for the multiple objective designs 
optimization of internal aerodynamic shape operating with 
transonic flow using non-cooperative game. Later, 
Periaux et al. (1997) presented another GA-based 
approach to solve bi-objective optimization problem by 
adopting the concept of Game Theory (Périaux et al., 
1997). Ismail et al. (2007) used GA-based approach for 
finding the optimal strategy in Game Theory of two 
players. The approach is mainly focuses on utilizing the 
relationship between Game Theory and linear 
programming in implementing the fitness function. The 
utilization of GA's-based approaches was also presented 
by Chen et al. (2002) and Hamblin and Hurd (2007). The 
later used an alternative method of searching for optimal 
solutions in biological communication game, since it is 
particularly difficult to model the game using evolutionary 
stable strategy. On the other hand, Jen et al. combined 
two   approaches   of   game  theory  and  co-evolutionary 

 
 
 
 
computation to support a negotiation model to resolve 
agent’s conflict. The main idea of Jen’s approach is to 
use Nash equilibrium and Pareto concept to optimize the 
agent’s resolution regardless the other agent’s strategy. 

More interesting GA's-approaches in Game Theory 
were presented by Macy (1996) and Phelps et al. (2005). 
Macy used evolutionary game theory to study the viability 
of cooperation in a predatory world. The work is 
differentiating the selection and learning processes 
whether it is hard-wired or soft-wired based on the 
organism that carries them. However, the differentiation 
was operationalized using artificial neural networks. 
Phelps has considered the use of evolutionary 
optimization with a principled game-theoretic analysis for 
automatic double-auction strategies acquirement. His 
approach relies on utilizing GA's for searching for a 
hitherto-unknown best response. 
 
 
MATERIALS AND METHODS 
 
The idea of the proposed model is to learn the opponent behavior, 
through opponents’ actions, and then play the suitable strategy 
against it. The learning is based on keeping tracks of opponent's 
actions and then evolves GA's to estimate opponent’s strategy. 
Exploiting the standard GA's to our problem is explained in details. 

The proposed model is based on learning and adaptation, where 
the learning process is based on GA’s. The proposed model is 
carried out as follows: 
 
1 Generate initial sequence.  
2 Receive response (feedback) from the opponent. 
3 Evolve GA-based strategies in order to find the best matched 
strategy that is much closer to the opponent strategy. 
4 The player decides the next action based on the output in step 3. 
 
With reference to Figure 1, feedbacks will be received from the 
opponent and the player attempts to estimate the opponent strategy 
based on the received feedbacks. This estimation is based on 
learning through time from the opponent’s behavior. 

The model consists of two main phases. The first phase is 
responsible for modeling the behavior of the opponent, while the 
second phase is responsible for determining the best strategy to 
play. The initial sequence will be randomly initialized. This will 
guarantee that we span the states and transitions of finite automata 
which represent the opponent model as will be described later. 

In Prisoners’ Dilemma, the possible actions are either Cooperate 
(C) or Defect (¬C). The actions can be represented by the binary 
values 1 and 0, respectively. Therefore, the player's sequence and 
feedback from the opponent can be represented by a stream of 
zeros and ones. We assume that the opponent plays a 
deterministic strategy (stochastic strategies are not considered) and 
the opponent model will be represented in adaptive automaton.    

The initial sequence is virtually applied to each individual’s 
strategy. Consequently, the output of each strategy is compared 
with the feedback of the opponent, and hence the fitness is 
evaluated. The fitness evaluation is carried out by matching the 
player’s strategies and the opponent’s strategies, at which better 
strategies will be rewarded. The cycle of GA is then applied 
(selection, replication, crossover, mutation, fitness assignment) in 
order to evolve the strategies and find the best matched strategy. 
Our strategies are modeled in an adaptive automaton. Each state 
represents the state of the player based on previous input. 
Transition from one state to another is based on the feedback from 
the opponent and the taken action by the player itself.  
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Figure 2. The proposed adaptive automata. 

 

 

 
 

 

 

Figure 3: Adding new transition from S2 to S1 
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Figure 3. Adding new transition from S2 to S1. 

 
 
 
Modeling strategies in finite automata 
 
Automata refer to self-organized machines which combine current 
inputs with the history of previous inputs, in order to formulate the 
resulting behavior. There are several types of automata, including: 
deterministic finite automata, non-deterministic automata, 
pushdown automata, adaptive automata and so on. 

A finite automaton is a dynamic system that changes its behavior 
at discrete periods. Finite automata are constructed by fixing a set 
of a finite memory. Regardless the length of the input string or 
whether the input string is simple or complex, the automata should 
be, efficiently, able to give the right decision. There are two classes 
of finite automata: deterministic finite automata (DFA) and non-
deterministic finite automata (NFA). In contrast to NFA, each pair of 
state and input symbols in DFA will lead to one and only one 
transition to the next state (Geffert et al., 2007). 

Consider a system which consists of a finite set of states, an 
output function and a transition function. The later determines the 
next state of the system based on the input and the current state of 
the system. The output function determines the output of the 
system based  on  the  state.  The  system  moves  to  a  new  state 
based on the new input value. This process can continue for a finite 
number of iterations. Modeling strategies in finite automata will 
enable our model to generate complex strategies. Figure 2 
represents the design of the adaptive automata used in our learning 
model. 

The symbol m refers to a dynamic memory that is used to store 
the last m actions taken by both players in the game. The size of m 
varies from 3 to 5 moves in any given round. The player’s next 
action will be determined based on the feedback received from the 
adaptive automaton. The adaptive automaton in Figure 2 shows 
two states S1 and S2, where the two states refer to Cooperate and 
Defect, respectively. The adaptive automaton is designed to be 
biased towards cooperative behavior. The player will start the first 

few moves by cooperating (at least 4 moves). The input  ( )  to  the 

adaptive automaton is the total number of cooperation actions 
taken by both players in the last m moves. The subsequent actions 
will be computed as follows: 

 
(i) If the total number of cooperate actions in the last m moves 

is , then player remain cooperate (where [| |] is a 

rounding function which rounds the given input to its nearest integer 
number). 
(ii) If the total number of cooperate actions in the last m moves 

is , then the automaton will move from S1 to S2 

and the player start defecting. 
(iii) As the number of cooperate actions is less than the predefined 
value 

, the player remains in S2. 

(iv) The adaptive function attached to the automaton is activated 
when the number of cooperate actions is increased based on the 

opponent’s behavior, where . 

(v) At this point, new transaction will be inserted [using the function 
ins ()] from S2 to S1 to change the player’s behavior from defect to 
cooperate as shown in Figure 3. 
 

Since the model relies on a variable size memory ( ), the 

model will be able to react against several types of strategies and 
change the player’s behavior irregularly. Consider the tournament 
involved strategies that remembered three, four or five previous 
games, then there are 64, 256 and 1024 possibilities for the 
previous three, four and five games, respectively (Tables 3, 4 and 
5). Recall that Cooperate action is encoded by 1, while Defect 
action is encoded by 0. The sequence CC refers to the player and 
opponent moves, respectively. 

Both player’s and opponent’s actions will be treated as input to 
the adaptive automaton. The automaton will move from state i to 
state j based   on  the  number  of   cooperation   actions   taken   in 
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Table 3. Possible moves when m = 3. 
 

Moves Code Case 

CC CC CC 111111 (Case 1) 

CC CC CD 111110 (Case 2) 

CC CC DC 111101 (Case 3) 

… … … … … 

… … … … … 

DD DD DC 000001 (Case 63) 

DD DD DD 000000 (Case 64) 
 
 
 

Table 4. Possible moves when m = 4. 
 

Moves Code Case 

CC CC CC CC 11111111 (Case 1) 

CC CC CC CD 11111110 (Case 2) 

CC CC CC DC 11111101 (Case 3) 

… … … … … … 

… … … … … … 

DD DD DD DC 00000001 (Case 255) 

DD DD DD DD 00000000 (Case 256) 
 
 
 

Table 5. Possible moves when m = 5. 
 

Moves Code Case 

CC CC CC CC CC 1111111111 (Case 1) 

CC CC CC CC CD 1111111110 (Case 2) 

CC CC CC CC DC 1111111101 (Case 3) 

… … … … … … … 

… … … … … … … 

DD DD DD DD DC 0000000001 (Case 1023) 

DD DD DD DD DD 0000000000 (Case 1024) 
 
 
 

the last m games. Table 6 shows an example for some encoded 
strategies when the model remembers the last m games. 

 
 

 
 
 
 

However, our adaptive automaton differs from other automata-
based models from different perspectives. Our automaton is fully 
based on a set of dynamic parameters ( , m). These parameters 

are designed to monitor the cooperation level between players. 
From the other perspective, the automaton is designed to 
encourage the players to show more cooperative behavior rather 
than simply model their strategies. This is possible as the transition 
rules are formulated such that the players keep cooperating until 
half of the number of cooperative moves drop to m-1. 

 
 
Mapping the model to GA operations 

 
The structure of chromosome 

 
The chromosome represents the state transition table as shown in 
Table 7. The rows of the state transition table are lined up in the 
chromosome structure. Each line represents one state and its 
possible input (C, ¬C). Under each input, two entries must exist (the 
next state and the output). The Cooperate (C) is denoted by 1, and 
the Defect (¬C) is denoted by 0. 

 
 
Fitness function 

 
Strategies are evaluated by the designated fitness function F(x,y). 
The fitness function is operated by XOR’ing the generated strategy 
by the player (represented by a chromosome Cp) and the 
opponent’s strategy (Co). The resulted value will be stored in f. In 
prior to the evaluation process, the chromosome will be converted 
(using the converter T) into a binary string as follows: 

 
Bp = T(Cp)     (1) 
Bo = T(Co)     (2) 
f = F(Bp, Bo) = xi ^ yi                                 (3) 

 
where Bp and Bo denote the binary equivalent of Cp and Co, 
respectively. The aim of the XOR is to construct a difference 
between the compared chromosomes. The fitness function is a 
weighted evaluator, where the difference in most significant bit 
(MSB) will result in a big value in the fitness, which technically 
refers to low fitness. Obviously, completely matched chromosomes 
will have a fitness value of zero, since the outputs are identical. 

For instance, the following two chromosomes represent the 
strategies of one player and one opponent: 
 

 
  

Output 

0 

Output 

1 

Output 

2 

Output 

3 

Output 

4 

Output 

5 

Output 

6 

Output 

7 

Output 

8 

Output 

9 

1 0 1 0 0 0 1 1 1 0 

 

Cp =  

 
 
 

 

 

 

 

Output 

0 

Output 

1 

Output 

2 

Output 

3 

Output 

4 

Output 

5 

Output 

6 

Output 

7 

Output 

8 

Output 

9 

0 0 0 1 0 1 1 0 0 1 

 

fasgg 

Co =  

 
 
 

According to equations (1 and 2), both of Bp and Bo are initialized such that: 
 
Bp = 1010001110 
Bo = 0001011001 
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Table 6. Encoded strategies using random memory size m. 
 

Size of (m) 
Player’s current 

state (Si) 
History 

Number of cooperation 

actions ( ) 
Next 
move 

3 D CCDDDC 3 C 

3 C DDCDCD 2 D 

5 D CCDDCCDCCD 6 C 

4 D CDCCDDDD 3 C 

3 C CCDDCD 3 D 

5 D DDCCDCCDDD 4 C 

4 C CCDCDDCD 4 D 

 
 
 

Table 7. The structure of the chromosome 
 

Starting state 

State0 State1 

C ¬C C ¬C 

Output Next state Output Next state Output Next state Output Next state 

 

Example on representing the Tit-for-Tat strategy is illustrated as follows: 

State 0 Output 0 State 1 Output 1 State 2 Output 2 
…….. 

State n Output m 

0 1 0 0 1 1 0 1 

 
 
     
Based on Equation (3), the integer representation of the fitness 
value f of these two strategies is 727. This value is relatively high, 
which means that the player’s strategy has low fitness. 
 
 
Crossover operation (mating) 
 
Crossover is a genetic operator that combines two chromosomes 
(parents) to produce a new chromosome (offspring). The new 
chromosome might be better than the parents if it takes the best 
characteristics from both of them. In this model, crossover occurs 
during the evolution and according to a crossover probability 
(uniform distribution for determining the crossover point). The 
offspring is formed by concatenating the bits string before point t 
(from parent i) and the bits string after the crossover point t (from 
the other parent j). 
 
 
Mutation 
 
Mutation is a genetic operator that changes one or more gene 
values in a chromosome from its initial state, which might results in 
generating a completely new gene added to the population. This 
operation enables the genetic algorithm to reach a better solution. 
The favor of mutation operation is that it prevents the population 
from stagnating at any local optima. In our model, the mutation 
occurs during the evolution and according to a certain mutation 
probability (specifically 0.01). This probability should usually be set 
fairly low. If it is set too high, the search will be considered a 
primitive random search. 

 
 
Selection 

 
Selection is a genetic operator that selects a chromosome from  the 

current generation’s population and includes it in the next 
generation’s population. The selection is based on the value of the 
fitness. Each individual receives a reproduction probability based 
on the individual’s own objective value and the objective value of all 
other individuals. Hence, it gives preference to better individuals, 
allowing them to pass to the next generation. 

 
 

RESULTS 
 

As a part of evaluating our model, we have initialized the 
model as shown in Table 8. These parameters will be 
tuned to measure the performance of the model from 
several perspectives. 

The simulator is initialized with the following 
parameters: Number of Chromosomes = 30, Mutation 
Probability = 0.01, Population size = 200 and Maximum 
Random Sequence = 1000. Figure 4 shows that the 
model could achieve good results, that are closed to the 
BestFit value (BestFit refers to the fitness of the best 
chromosome or individual), after 55 generations. It can 
also be noticed that the average fitness AvgFit (the 
average fitness of the whole population) was improved 
through time, which means that learning is continuously 
improved over time. 

The model was evaluated using different values of 
population sizes, specifically n = 10, 50, 100, 150, 200. 
Figure 5 shows the performance of the model for different 
generations’ sizes. The y-axis represents the best 
individual fitness at each population size, while the x-axis 
represents the generation number.  
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Table 8. Parameters Initialization. 
 

Parameter Initialized value 

Number of Chromosomes  30 

Number of States 2 

Size of Memory 3  Random  5 

Mutation Probability 0.01 

Maximum Length of Random Sequence 1000 

Maximum Length of Generation 100 

Number of Simulations 20 

Opponent Strategy Toggle 

Cross Over Probability 0.0 <Random< 1 

 
 
 

 
 

Figure 4. The performance of the model in 100 generations. 

 
 
 

 
 

Figure 5. The effect of population size P on reaching the optimal solution. 



Almanasra et al.         3617 
 
 
 

 
 

Figure 6. The effect of mutation probability (Prob) on the diversity of the individual's fitness. 
 
 
 

 
 

Figure 7. The effect of memory size on the performance of players. 

 
 
 

From the other perspective, we have tested the effect of 
mutation probability on the performance of the proposed 
model. We found that the mutation probability have a 
direct affects on the diversity of the solutions. The results 
presented in Figure 6 show that as the mutation 
probability increases, the diversity of the solutions 
increases. 

In term of memory, experiments shows that considering 
variable-memory size during the run of the model has 
outperformed the fixed-memory size technique. The 
results presented in Figure 7 shows that assigning a 
variable value to the memory size has significantly 
enhanced the mean fitness of the whole population. The 
results have also showed that the larger is the memory 
size, the higher is the mean fitness in early generations. 

At the same time, large memory size has affected the 
learning process after performing approximately 30% of 
the total number of generations. 

The proposed model initially generates a random 
sequence of cooperate/defect actions. The aim of this 
random sequence is to identify the model of the opponent 
by learning its behavior based on its feedback. The 
length of the random sequence should not be so long, 
since it is required to learn the opponent model as fast as 
possible. One hundred experiments were conducted and 
the length of the initial sequence on each experiment was 
determined. Based on these results, the best sequence 
length is found to be of the range 20 to 30 moves, as 
shown in Figure 8. 

In term of strategies performance, Bruno (Beaufils et 
al., 1996) compared different strategies against 
themselves as shown in Table 9. Bruno’s experiments 
showed that each strategy can be defeated by other 
strategies. For instance, the best strategy to be played 
against an opponent who plays Spite strategy is the Tit- 
for-Tat strategy.  



3618          Sci. Res. Essays 
 
 
 

 
 

Figure 8. The frequency of sequence length. 

 
 
 
Table 9. Bruno’s model of different strategies. 
 

Opponent strategy Best strategy 

Always Cooperate (AC) Always Defect (AD) 

Always Defect (AD) Mis-Trust (MT) 

Tit-for-Tat (TFT) Always Cooperate (AC) 

Spite (SPT) Tit-for-Tat (TFT) 

Per-Nasty (PN) Spite (SPT) 

Per-Kind (PK) Always Defect (AD) 

Soft-Majo (SM) Per-Kind (PK) 

Mis-Trust (MT) Always Cooperate (AC) 

Prober (PRO) Mis-Trust (MT) 

Pavlov (PAV) Per-Nasty (PN) 
 
 
  

 
 

Figure 9. The proposed playing scheme. 
 

 

 

 

based on the output of the opponent. The knowledge-base is designed to store all moves during the simulation. The 

player has an access to this knowledge-base in order to predict the opponents’ strategy.   

 

 

 

 

 

 

 

 

 

 

Figure 9: The proposed playing scheme 

 

1.0 DISCUSSIONS 

With respect to our findings illustrated by Figure 5, we conclude that as the population size increases, we can reach 
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Figure 9. The proposed playing scheme. 
 
 
 

Bruno’s model inspired us to build a knowledge-base to 
help our model decide the best strategy to be played 
when the opponent model is determined. The overall 
proposed scheme is modeled as shown in Figure  9.  The 

model has two components: the player-opponent 
component and the knowledge-base that guides the 
player to change its behavior based on the output of the 
opponent. The knowledge-base is designed to store all 
moves during the simulation. The player has an access to 
this knowledge-base in order to predict the opponents’ 
strategy. 
 
 

DISCUSSION 
 

With respect to our findings illustrated by Figure 5, we 
conclude that as the population size increases, we can 
reach the optimal solution faster. At the same time, when 
the population size is under certain limit, for example P = 
10, the optimal solution could never be obtained. 
However, we also found that when the mutation 
probability is set to 0.1 (which is relatively large), the 
diversity between individuals keep increasing. On the 
other hand, when the mutation probability is set to less 
than or equal to 0.001, the individual became quickly the 
same and sometimes the optimal value is not reached. 
Therefore, we found that the best setting of the mutation 
is at the probability 0.01. 

In term of memory, experiments showed that the larger 
is the memory size, the higher is the mean fitness in early 
generations. At the same time, large memory size has 
affected the learning process after performing 
approximately 30% of the total number of generations. 

In our second simulation, all the strategies in Table 9 
were played one against each other and against our 
strategies generated by the proposed model. The scores 
of all strategies against each other are shown in Table 
10. The results were obtained from 1000 games. The 
generated strategies from our model have achieved the 
highest payoff when played against well-known 
strategies. The results presented in Table 10 indicate that 
our model could generate the best fit-strategies based on 
the total payoff achieved against all other strategies (total 
of   30571).   Figure   10   illustrates   the   average  score 
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Table 10. Strategies’ scores against each others. 
 

Strategy AD MT AC TFT SPT PK PN SM PRO PAV Total 

AD 0 2997 3000 3000 3000 2001 999 3000 6 3000 21003 

MT 1000 1000 5000 1004 1004 3668 2332 1004 1008 3000 20020 

AC 999 2500 3000 3000 3000 2667 1998 3000 2999 3000 26163 

TFT 999 1003 3000 3000 3000 3663 2331 3000 1007 3000 24003 

SPT 667 1999 4334 2003 671 3335 1666 671 2006 3002 20354 

PK 333 2664 3666 2667 343 2334 1665 3666 2664 2003 22005 

PN 999 2500 3000 3000 3000 2001 2331 3000 2999 3000 25830 

SM 1000 1000 3002 2500 1003 2669 1999 2500 3000 2003 20676 

PRO 998 2995 4996 2999 1002 2669 1996 2999 1004 1998 23656 

PAV 500 1998 3000 3000 3000 2833 1332 3000 2003 3000 23666 

Our Model 992 2990 4982 2983 2989 3659 2329 3661 2991 2995 30571 

 
 
 

 
 

Figure 10. Average score achieved by competent strategies. 
 
 
 

differences between benchmark strategies compared to 
our proposed model. 
 
 
Conclusion 
 
In this paper an approach for modeling the behavior of 
the opponent in game theory was introduced. This 
approach is based on modeling the opponent behavior as 
an automaton. A genetic algorithm approach was 
introduced in order to search for the exact model that the 
opponent plays with. The results showed the ability of the 
model to identify the opponent behavior efficiently. The 
effect of the variation of GA parameters was studied. The 
second step after identifying the opponent model was to 
use this information in order to decide which strategy to 
play. For this issue, a knowledge base was established to 
determine the best strategy to play against a certain 
opponent strategy. 

A comparative study between our approach and well-
known strategies was conducted. The results showed the 

superiority of our approach over the majority of these 
strategies. We can conclude that learning in general 
could be helpful in selecting strategies in game theory. In 
our case, we use GA in order to learn the opponent 
behavior. GA proved to be a powerful tool for opponent 
model learning in game theory. Additionally, the idea of 
playing a strategy based on estimating the opponent 
model, proved to be a good approach for playing in game 
theory, since it gets feedback from the other player and it 
can adapt its strategy based on this feedback. 

This model is not restricted to prisoner dilemma game, 
but it can be applied to all matrix games. The parameters 
of our GA-based model have great effect on its 
performance. For example, if the population size is too 
small, the optimal solution could not be reached, and the 
larger the population size is, the faster the best solution is 
found. On the other hand, the mutation probability 
controls the diversity of individuals. If the diversity is too 
small, then the population can have pre-matured 
convergence. Conversely, if it is too large, then the 
randomness increases in the population and  no  learning 
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could occur. 
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