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Image segmentation is one of the significant techniques in image processing to distinguish desired 
parts from its background for further analysis. It provides visual means for inspection of anatomical 
structure of human body, identification of disease, tracking of its development and input for surgical 
planning and simulation. Active contour models are regarded as promising and vigorously research 
model-based approach to computer assisted medical image analysis. However, it is not trivial to assess 
whether one segmentation algorithm performs more superior than the other. Therefore, a systematic 
assessment tool is designed and implemented to examine all the important aspects of active contour 
models. Meanwhile, a novel supervised evaluator including analytical method and empirical methods 
are proposed to acts as objective evaluator.  The obtained results highlighted both the strengths and 
limitations of the studied active contour models. A proper area usage of each active contour model is 
also suggested at the end of this paper. 
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INTRODUCTION 
 
Image segmentation (Lai et al., 2011) is the process by 
which an image is broken into similar pieces or in which 
desired parts (region of interest, ROI) of an image are 
extracted and processed (Linda and George, 2001). It 
provides informative input for further image analysis. 
Numerous techniques incorporating artificial intelligence, 
such as heuristic optimization are proposed to perform 
the segmentation (Hao and Pu, 2011; Noor et al., 2011; 
Zhu et al., 2011). Its importance and application in the 
biomedical image processing are numerous, where it aids 
physicians greatly in providing visual means for 
inspection of anatomical human body (Worth et al, 1997), 
identification of disease, iris recognition which requires a 
fast and yet accurate iris segmentation (Zhaofeng et al., 
2009), fingerprint recognition (Mehtre and Chatterjee,  
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1989) and tracking of disease development, such as 
brain tumor (Taylor, 1995). Also, it serves as input for 
surgical planning (Khoo et al., 1997), image-guided 
surgical (Grimson, 1997) and simulation (Dzung et al., 
2000). However, segmentation remains a fundamental 
problem of computer vision (Linda and George, 2001) in 
low level image processing (Mirzaei et al., 2011), such as 
Marr-Hildreth (Mark and Alberto, 2002) and Canny edge 
detection (Canny, 1986); however, are not effective in 
locating an object of image especially medical images 
which usually appears in arbitrary shapes. The 
consideration of local information alone by these kinds of 
techniques could make incorrect assumptions during 
integration progress and subsequently would produce in-
feasible object boundaries (McInerney and Terzopoulos, 
1996). 

In contrast, the energy minimization deformable 
models, such as active contour model provide a partial 
solution. It is invariably labeled as a promising and  
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vigorously research model-based method to computer-
assisted medical image analysis (McInerney and 
Terzopoulos, 1996). The basic idea of active contour is 
allowing a contour to contort to minimize energy 
functional to achieve objective. These deformable models 
are capable of segmenting, matching and tracking 
images of anatomical structure (Dzung et al., 2000). 

However, it is not trivial to assess whether one 
segmentation algorithm performs better than the other 
(Fenster and Chiu, 2005). Each active contour model has 
its own advantages and limitation. Misused of these 
methods would lead to the wrong medical diagnosis and 
redundancy in resources. Critical issues that deal with the 
application of active contour models in biomedical 
applications include the complex procedure (execution 
time), numerous parameter selection and sensitivity to 
the placement of initial contour (capture ability). Besides, 
to date, the popular methods to examine the effective-
ness of segmentation are based on subjective evaluation 
method and edge detection. These current evaluators are 
tedious, time consuming and the applications are res-
tricted to the edge-based active contours. Thus, in order 
to assess the performance of each active contour model 
in image segmentation, a systematic assessment tool is 
proposed for all important aspects. The comparative 
results will highlight the strengths and restrictions of the 
active contour models. The studied models are Kass, 
localized region based (LRB), level set (LS), distance 
snake (Distance) and Chan-Vese active contour without 
edges (CV).   

Subsequently, typical active contour models for digital 
image segmentation are reviewed after which details of 
the designed performance evaluation are given. This is 
followed by establishing the result of the analysis on each 
active contour model in accordance with their 
characteristic. Finally, to illustrate the performance and 
properties of the active contour model, experimental 
results are drawn. 
 

 

Medical imaging modalities 
 

Medical imaging is a technique and process employed to 
produce images of the anatomical structure and 
physiological part of the human body (Paul, 2002). 
Medical imaging modalities include Ultrasound, CT scan, 
MRI and Nuclear Medicine PET (Dhawan, 2003; William 
et al., 2002; David et al., 2001; Joseph 1996, 1997, 1998, 
1999, 2010; Paul, 2002). These modalities are cate-
gorized into invasive and non-invasive techniques. The 
invasive techniques include operation and endoscope, 
while non-invasive techniques comprise of modalities, 
such as MRI, Ultrasound, X-ray, CT and PET. All these 
medical imaging modalities provide different measure-
ments enabling physicians to accomplish clinical tasks, 
such as patient diagnosis and monitoring more safely and 
effectively. 

 
 
 
 
Digital image and image preprocessing techniques 
 
A computer image is a matrix of pixels (Linda and 
George, 2001; Mark and Alberto, 2002; Gonzalez et al., 
2004). The value of each pixel is proportional to the 
brightness of the corresponding point in the scene. The 
matrix of pixels is generally square and described as N × 
N m-bit pixels, where N is the number of points along the 
axes and m regulates the number of brightness values 
(Mark and Alberto, 2002). The intensity histogram shows 
the brightness levels of image. For 8-bit pixels, the 
brightness ranges from zero (black) to 255 (white). The 
image energy is inversely proportional to the intensity, 
gradient magnitude and image features.   

The wiener low pass filter is deployed to degrade noise 
that is caused by constant power addictive (Lim and Jae, 
1990). A pixel-wise adaptive Wiener method is utilized in 
the Wiener filter (Tachaphetpiboon and Amornraksa, 
2008). The local mean and standard deviation of the 
each neighbor’s pixel is estimated statistically. 
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where  is the M by N local neighborhood of each pixel. 
Equation 3 shows the estimation of pixel-wise Wiener 

filter where  denotes the noise variance. 
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Laplacian filter is one of the edge enhancement filters. It 
uses second derivatives information about the image 
intensity changes through a difference equation. It is 
generated by using convolution filter with a kernel (Fisher 
et al., 2003). 
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The unsharp contrast enhancement filter can be created 
using negative Laplacian filter by varying α value in the 
range of 0.1 to 1.0. The negative Laplacian filter is given 
as: 
 































1

151

1

)1(

1                               (5)                                                            



  

 
 
 
 
Snakes and its variants 
 
Snakes (Kass et al., 1987) or active contours are curves 
described inside an image domain which deform under 
the control of internal energy and external energy (Xu 
and Prince, 1998). The internal energy responsible for 
smoothness and stretchiness of the contour, whereas the 
external energy pulls the contour to the region-of-interest 
(ROI). The curve evolution method is deploying an 
energy minimization function and it can be represented 
as:  
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where α and β denotes weighting parameters that 
regulate the smoothness and stretchiness of snake, 

respectively. The external energy  is obtained from 
the image which value is small at the ROI. Euler equation 
must be satisfied to minimize E. 
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Xu and Prince (1998) introduced new external forces 
which consist of static and dynamic forces. The gradient 
vector field (GVF) is described as the vector field v(x,y) = 
(u(x,y), v(x,y)) which minimizes the energy functional: 
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where f denotes gray level or binary edge map, while the 
µ regularizes the effect of the first term in the intergrand 
which is a same smoothing term utilized by Horn and 
Schunck (1981) in their formulation of optical flow. 

Li and Acton (2007) proposed another new external 
force which is computed by convoluting a vector field with 
the edge map obtained from the image. Cohen and 
Cohen (1993) and Lei et al. (2008) introduced another 
type of external function which is given as: 
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where Q(v) denotes the minimum normalized Euclidean 
distance from v to an edge point with the edge point 
identified by a thresholded gradient. This force is formed 
as the negative of the external energy gradient and 
enables a large magnitude for the external force in the 
image and consequently the capture range is enlarged. 
The initial contour can be located far away from the 
desired boundary if there are no spurious edges along 
the way. By using a finite element method, the deform-
able contour is represented as a continuous curve in the 
form of weighted sum of local polynomial basic functions. 
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The result has good stability and convergence in the 
energy minimization process.  

Li and Acton (2006) proposed a weighting function 
which is added into external energy to minimize the noise 
sensitivity of snake. Similarly, Lu and Shen (2006) uses 
shape similarity metric method to modify the snake in 
order to solve the noise problem. In this method, Fourier 
descriptor (Bryan, 1998, 1999, 2000; Gang et al., 2008) is 
an aspect for the distribution description of image pixels 
on image contour.  

Lankton (2008) proposed a novel local region-based 
structure. The energy minimization is based on the 
investigation of each point along the curve where the 
energy is calculated in its local region. The curve 
evolution breaks the local neighborhoods into local 
interior and exterior and thus, computes the local 
energies. The smoothed Heaviside function is used for 
establishing the interior of closed contour. For the exterior 
contour, it is represented by (1- Hφ(x)). 

Chunming et al. (2005) presented a new variational 
energy functional using level set function. It eases the 
costly re-initialization procedure by forcing the level set 
function near to a signed distance function. In the 
traditional methods (Vicent et al., 1997; Ravikanth et al., 
1995; Osher and Fedkiw, 2003), the level set function 
can lead to shocks shape, while evolving the curve. The 
new energy functional was proposed to address the 
problem and is given as:  
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where µP(Ф) is internal energy which penalizes the 
difference of Ф from sign distance function. (Ф) is 

external energy which consists of univariate Dirac 
function and Heaviside function. Chan and Vese (2001) 
introduced another model by taking the information within 
the regions into consideration not only at their edges. The 
segmentation problem was explicated by (Mumford and 
Shah, 1989) and level sets (Osher and Sethian, 1988). 
   
 
Objective evaluation 
 
Pratt (1978) brought about a figure of merit (FOM) that 
balances the types of errors induced by the absence of 
valid edge points, failure to localize edge points and 
classification of noise fluctuation as edge points. The 
equation is defined as: 
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where  denotes max { , }x and  and  entitle the 
number of ideal and actual edge map points, ’a’ is a 
scaling constant and ’d’  is  the  distance  between  actual 
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and ideal edge points.  It is a normalization rating factor 
where R equals to unity is the perfect detected edge. Ji 
and Haralick (1999) proposed a novel quantitative 
evaluation of edge detectors by utilizing the minimum 
kernel variance criterion. They found out that the decision 
of determining a pixel as an edge is based on the 
outcome of the convolution of image with a kernel.   

The global consistency error (GCE) which is developed 
by (Martin et al., 2001) acts as an objective evaluation of 
consistency between image segmentations. The resultant 
image of one algorithm is compared with respective 
manually segmented image to quantify the error 

measure. For a given pixel , consider the segments   

and  that contain , the segments are sets of pixels 

and denoted as C( , ) and C( , . Let the \ 

symbolize the set difference, and thus the local 
refinement error (LRE) and GCE are defined as:  
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By referring to Equation 12, if one segment is inclusive of 
the other, then the pixel is in the area of refinement and 
the LRE value is zero. The GCE forces all the local 
refinement to be in the same direction and thus, it 
assesses one segmentation can be viewed as a 
refinement of the other to which extent.  
 Meila (2005) presented Variation of Information (VoI) 
as a measurement of information loss and gain between 
the two clustering. The clusterings are viewed as 
elements of a lattice and its distance apart across the 
lattice is estimated based on mutual information metrics 
and entropy. In short, this nonnegative metric measures 
the amount of randomness in one segmentation which 
cannot be explained by the other. A random clustering 

with clusters , ,..  is entitled by a random variable 

X with X={1…k}, such that  = | | / n i Є X and n =  

the VoI between two clustering X and Y represented as: 
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where H(X) is representing the entropy of  X and I(X,Y) is 
mutual information between  X and  Y. The lower the 
value of VoI denotes the greater similarity.  

Probabilistic Rand Index (PRI) (Unnikrishnan et al., 
2007) calculates the fraction of pixels whose labeling are 
consistent between the computed segmentation and the 
ground truth, averaging across multiple ground truth 
segmentations to account for scale variation in human 

perception. Consider a set  of  ground  truth  images  { , 
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the segmentation of a test image and thus, the PRI is 
defined as: 
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This measure takes values in [0, 1] with maximum 1 
when all the segmentations are identical.  

Boundary displacement error (BDE) is proposed by 
Freixenet et al. (2002) to measure the average 
displacement error of boundary pixels between two 
segmented images. The distance between the pixel and 
the closet pixel in the other boundary image is defined as 
error of one boundary pixel.   
 
 
MATERIALS AND METHODS 
 

Database design 
 
With the intent of assessing the performance of active contour 
models, a standard A to Z alphabet database is created. The 
purpose of utilizing alphabets as testing images is on account of the 
uniqueness and various boundary concavities patterns. It provides 
distinct and typical problems encountered in biomedical image 

segmentation. It is known that one of the two main problems 
associated with the utility of active contours is the convergence to 
the boundary concavities (Xu and Prince, 1998). The font used for 
alphabet database is Times New Roman with size 300 and 
resolution of 512 × 512. 
 

 
Proposed indicator for segmentation accuracy assessment of 

active contour models 
 
A novel supervised evaluator that is proposed includes analytical 
method and empirical methods. The equation is given as: 
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where E depicts the non-segmented area of desired ROI, P is the 
unwanted segmented area, A is the ideal area of ROI, α and β are 
the scaling factors. The default scaling factors are set at 1. The 
range of the indicator is [0, 1], where the 1 is the highest value for 
the perfectly segmented area.  
   α and β are the parameters used to penalize regions that are 

offset from the ideal region. α is used to penalize the region E, 
whereas β is the coefficient of P. The parameters can be relatively 
adjusted to indicate the significant error caused by false



  

Chai et al.          6333 
 
 
 

Table 1. The accuracy index for each active contour model.  
 

Alphabet 
Proposed indicator value (M) 

Kass LRB LS Distance CV 

A 0.5072 0.7157 0.6977 0.6437 0.9009 

B 0.4558 0.5015 0.5004 0.4777 0.9344 

C 0.5314 0.8998 0.8901 0.7542 0.9235 

D 0.3801 0.4379 0.4394 0.4179 0.9647 

E 0.4793 0.9506 0.9180 0.7295 0.9176 

F 0.5148 0.9661 0.9282 0.7458 0.9127 

G 0.5288 0.9580 0.9071 0.7611 0.9512 

H 0.5297 0.9867 0.9145 0.7659 0.9524 

I 0.5639 0.9877 0.9523 0.7917 0.9870 

J 0.5984 0.9715 0.8960 0.7763 0.9339 

K 0.5299 0.9382 0.9103 0.7660 0.9398 

L 0.5623 0.9705 0.9269 0.7690 0.9531 

M 0.5990 0.9563 0.9121 0.7571 0.9432 

N 0.6103 0.9479 0.8935 0.7406 0.9289 

O 0.3426 0.3733 0.3727 0.3606 0.9432 

P 0.5442 0.6559 0.6501 0.5974 0.9349 

Q 0.3649 0.3949 0.3999 0.3855 0.9263 

R 0.5606 0.7025 0.6901 0.6268 0.9524 

S 0.6168 0.9327 0.8921 0.7558 0.9163 

T 0.6289 0.9876 0.9378 0.7638 0.9884 

U 0.6000 0.9691 0.9088 0.7406 0.9631 

V 0.6330 0.9365 0.8963 0.7647 0.9186 

W 0.6292 0.9459 0.9005 0.7638 0.9231 

X 0.6316 0.9196 0.8691 0.7473 0.9248 

Y 0.6329 0.9402 0.8878 0.7555 0.9253 

Z 0.6299 0.9449 0.9046 0.7555 0.9466 

Average 0.5460 0.8420 0.8076 0.6890 0.9387 
 
 
 

segmentation. For example, higher value of β is deployed to 
emphasize the offset caused by the unwanted area. On the 
contrary, α is set lower than β to indicate the subordination of error. 
The default scaling factors are set at 1. 
 
 

Image preprocessing 
 
The preprocessing techniques, such as noise removal filter (Wiener 
filter) and edge enhancing filter (Laplacian filter) are used to 
compensate the effect of resizing of the input image.  The purpose 
of image resizing is to accelerate the segmentation algorithm. 
However, it triggers the aliasing. It usually appears as "stair-step" 
patterns or as moiré (ripple-effect) patterns in the output image.  
Thus, these filters are utilized to reduce the undesired effect. 
 
 

RESULTS AND DISCUSSION 
 

Accuracy 
 

It can be seen as shown in Table 1 that the most 
accuracy segmentation technique among the investigated 
active contour models is CV. This assessment is to  

evaluate the best proposed indicator value that can be 
achieved by each active contour model. The same 
experiment was executed five times for each active 
contour model in order to get the best score. Averagely, 
the CV gives the best score, 0.9387. It is also observed 
that the initial contour for the Kass, LRB and distance had 
to be placed as near as possible to the boundary of 
object to get the best score. In some cases, especially 
the LS where the number of iterations is excessive, it will 
lead to over segmentation. Moreover, Kass, LRB, LS and 
distance show the incapability to segment images that 
contain interior contour, such as alphabet A and B. The 
consistency of giving the output can be seen on the 
Figure 1, where CV always gives the score above 0.9 
over all the alphabets.  
 
 

Execution time 
 
The average execution time of each active contour, 
tested with 50, 100, 150 and 200 Iterations are  shown  in  
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Figure 1. The segmentation accuracy of each active contour model using A to Z 

alphabets. 
 

 
 

 
 
Figure 2. Average execution time of each active contour, tested with 50, 100, 150 and 

200 iterations. 
 
 
 

Figure 2. From Figure 2, it is found that the highest 
convergence speed of all the algorithms is the LS. The 
LS method implemented new variational formulation that 
drives the level set function approach a signed distance 
function. Consequently, the curve evolves without the re-

initialization step. For the CV, the speed is relatively fast, 
because it involves no re-initialization step. By virtue of 
the simplicity of the Kass method which only considers 
the internal and external energy, the algorithm is 
considerably faster than the LRB and distance. The
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Method Without noise 
With noise 

SNR = 107.6066 dB 

With noise 

SNR = 98.0641 dB 

Input image 

   

Kass 

   

LRB 

   

LS 

   

CV 

   

 

 
 
Figure 3. Illustration on the effect of imposing noise on segmentation. 

 
 
 
subsequent step of LRB which requires re-initialization of 
each pixel proved costly as the time spent increases 
rapidly with the number of iterations. For the distance, the 
computation of image vector field impedes the 
segmentation in the initial stage. However, once the 
vector field is established, the contour evolves smoothly. 
 
 
Noise resistance 
 
Segmentation algorithm that possesses the high 
resistance to noise is favorable as the noise will distort 
the information in the image. The effect of the imposing 

noise on segmentation using the alphabet 'T' is shown in 
Figure 3. The result of segmentation with the existence of 
noise can be assessed in two techniques, by using the 
proposed indicator and the execution time. Based on the 
results from Table 2, the existence of noise in image 
impedes the overall segmentation performance. 

The segmentation accuracy of LS has deteriorated 
57.9% when compared with the result without noise. This 
indicates that the LS is the most sensitive to the 
existence of noise. On the other hand, the LRB exhibits 
highest resistance against the noise, which only drops 
12%. Concerning the execution time, the distance 
computational   time  increases  sharply  by  68.7%  when 
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Table 2. Relative error of segmentation for M, proposed indicator value and TS, time spent on images without noise and with noise. 
 

 
 Without 

noise 
With noise 

(SNR=107.6066 dB) 

Relative error 
(%) 

 With noise 

(SNR=98.0641 dB) 

Relative error 
(%) 

 With noise 

(SNR = 88.5217 dB) 

Relative error 
(%) 

Kass  
M 0.4191 0.3664 12.573  0.3624 13.5347  0.3696 11.8166 

TS  15.7763 15.6284 0.9375  16.8827 7.0131  26.7342 69.458 

 

LRB  
M 0.6277 0.5520 12.0525  0.5188 17.3387  0.5069 19.2458 

TS  40.4532 40.7192 0.6575  41.7197 3.1308  42.4197 4.8612 

 

LS  
M 0.9330 0.3927 57.9147  0.3869 58.5331  0.3946 57.7079 

TS  11.0721 11.1321 0.5419  11.12 0.4326  11.1928 1.0901 

 

Distance  
M 0.7578 0.6553 13.5271  0.4275 43.5914  0.3633 52.0605 

TS  27.3575 46.1627 68.7387  76.0215 177.882  69.2804 153.24 

 

CV  
M 0.9456 0.7861 16.8662  0.7091 25.0116  0.5975 36.8089 

TS  10.6809 12.0867 13.1618  13.6526 27.5226  15.5467 45.5561 
 

SNR, signal-to-noise-ratio. 
 

 
 

when compare with the result without noise. As 
the consequence of the complexity of vector field, 
the overall execution time increases. 
 
 
Position of initial contour 
 

Generally, the position of initial contour gives a 
great impact to the final output of segmentation, 
especially the Kass snake. For the initialization of 
contour far from the object, the LRB and CV 
require longer time than the LS to attract the 
contour to the boundary. The Kass poses the 
weakest capture range where it is only able to 
segment the object that near-object initialization. 
Among all the studied models, only the CV is able 
to segment the cross-object initialization. In short, 
the most flexible initialization is the CV. This 
indicates that most of  the  active  contour  models  

are sensitive to the initial contour location. 
 
 

Multiple objects 
 

The ability to capture multiple objects using 

different active contours is illustrated in Figure 4. 
By visual inspection on Figure 4, the LS and CV 
are able to perfectly segment the multiple objects. 
The LRB requires many iterations and the 
movement of the contour is time-consuming. 
However, it is still possible to segment the objects. 
The Kass and distance shows incapability in 
multiple object segmentation. 
 

 

Segmentation metrics 
 

Tables 3, 4, 5 and 6 give comparative 
performance measure of  five  investigated  active 

contour models using the three evaluation para-
meters. Results show that CV method gives the 
overall best performance with the lowest values of 
GCE, VoI, BDE and highest score of PRI.   
 
 

Conclusion 
 
A systematic assessment tool has been dev-
eloped to assess some of the important aspects of 
active contour models, such as accuracy, 
resistance to noise, execution time consumption 
and multiple object segmentation ability. Further-
more, a novel supervised evaluator based on 
region feature is introduced. Experiment results 
show that the CV demonstrates better result 
generally among all the studied methods, followed 
by LRB and LS. For the evaluation on com-
putational cost, LS has the highest algorithm
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a  b  c  

d  e  f  

 

 
 
Figure 4. Ability to capture multiple objects: (a) Original image, (b) Kass, (c) LRB, (d) LS, 

(e) Distance and (f) CV. 

 
 
 

Table 3. Comparison of each active contour using the GCE index (lower values indicate the 

better segmentation).   
 

Alphabet 
Global consistency error 

Kass LRB LS Distance CV 

A 0.0832 0.0506 0.0493 0.0680 0.0260 

B 0.1320 0.1040 0.1045 0.1320 0.0271 

C 0.0361 0.0271 0.0262 0.0408 0.0249 

D 0.1416 0.1123 0.1126 0.1229 0.0214 

E 0.0582 0.0197 0.0193 0.0449 0.0163 

F 0.0406 0.0155 0.0161 0.0330 0.0141 

G 0.0890 0.0259 0.0281 0.0521 0.0257 

H 0.0816 0.0216 0.0218 0.0498 0.0205 

I 0.0337 0.0072 0.0081 0.0229 0.0063 

J 0.0345 0.0118 0.0119 0.0271 0.0109 

K 0.0861 0.0254 0.0271 0.0566 0.0229 

L 0.0539 0.0108 0.0119 0.0325 0.0095 

M 0.0940 0.0334 0.0361 0.0727 0.0315 

N 0.0687 0.0237 0.0251 0.0492 0.0223 

O 0.1330 0.1174 0.1178 0.1246 0.0299 

P 0.0848 0.0559 0.0560 0.0698 0.0186 

Q 0.1498 0.1305 0.1297 0.1390 0.0353 

R 0.1126 0.0660 0.0671 0.0875 0.0224 

S 0.0758 0.0266 0.0281 0.0447 0.0262 

T 0.0526 0.0094 0.0105 0.0343 0.0085 

U 0.0640 0.0183 0.0205 0.0459 0.0174 

V 0.0641 0.0248 0.0263 0.0409 0.0247 

W 0.0894 0.0412 0.0441 0.0675 0.0405 

X 0.0894 0.0352 0.0364 0.0537 0.0336 

Y 0.0588 0.0235 0.0234 0.0395 0.0230 

Z 0.0737 0.0255 0.0265 0.0478 0.0242 

Average 0.0800 0.04090 0.0417 0.0615 0.0225 
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Table 4. Comparison of each active contour using the VoI index (lower values 
indicate the better segmentation).  
   

Alphabet 
Variation of information 

Kass LRB LS Distance CV 

A 0.6361 0.4507 0.4410 0.5318 0.3002 

B 0.9824 0.7713 0.7807 0.9824 0.3105 

C 0.4508 0.2807 0.2863 0.3778 0.2754 

D 1.0600 0.8755 0.8992 0.9876 0.2546 

E 0.5253 0.2276 0.2786 0.3652 0.2175 

F 0.4030 0.1765 0.2339 0.2883 0.1988 

G 0.6788 0.2852 0.3244 0.4440 0.2916 

H 0.6304 0.2211 0.3083 0.3834 0.2694 

I 0.2796 0.1070 0.1358 0.1866 0.0984 

J 0.3173 0.1628 0.1438 0.2302 0.1282 

K 0.6733 0.2975 0.3375 0.4559 0.2778 

L 0.4100 0.1587 0.1883 0.2597 0.1461 

M 0.8111 0.3739 0.4523 0.5819 0.3628 

N 0.6126 0.2578 0.3430 0.4228 0.2786 

O 1.1263 0.9690 0.9808 1.0491 0.3163 

P 0.6515 0.4439 0.4534 0.5424 0.2082 

Q 1.2212 1.0394 1.0483 1.1210 0.3671 

R 0.7870 0.5415 0.5686 0.6698 0.2725 

S 0.6127 0.2817 0.3135 0.4030 0.2878 

T 0.4227 0.1483 0.1976 0.2683 0.1462 

U 0.5404 0.2373 0.2702 0.3796 0.2299 

V 0.5400 0.2806 0.2971 0.3747 0.2771 

W 0.7973 0.4314 0.4771 0.5952 0.4436 

X 0.7099 0.3508 0.3858 0.4775 0.3426 

Y 0.5058 0.2582 0.2734 0.3537 0.2746 

Z 0.6093 0.2867 0.3154 0.4013 0.2787 

Average 0.6536 0.3813 0.4129 0.5051 0.2636 

 

 

 
Table 5. Comparison of each active contour using the BDE index (lower values 
indicate the better segmentation). 

 

Alphabet 
Boundary displacement error 

Kass LRB LS Distance CV 

A 5.2050 2.4750 2.3227 3.1545 0.3813 

B 7.3943 6.7691 6.4258 7.3943 0.5357 

C 13.0452 0.4727 0.4169 1.5106 0.3387 

D 7.5810 5.4015 5.3833 5.4974 0.4448 

E 6.8450 0.9238 0.8991 2.7770 0.5346 

F 8.3042 0.8143 0.7633 3.7226 0.5150 

G 4.3079 0.3780 0.5529 1.5455 0.3467 

H 6.5166 0.6484 0.8144 3.8511 0.6324 

I 5.8261 0.7785 0.7951 3.9335 0.6418 

J 5.8962 0.5923 0.7334 3.0726 0.7065 

K 4.0202 0.6696 0.5348 2.1084 0.4919 

L 4.2095 0.9159 0.8594 3.2148 0.6056 

M 5.2942 0.6221 0.8252 1.9795 0.4149 
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Table 5. Cont’d 
 

N 4.7154 0.4544 0.7676 1.9903 0.4722 

O 5.9653 5.0169 5.0608 4.8021 0.3948 

P 5.9701 3.7958 3.7719 4.3853 0.3580 

Q 5.8594 4.4666 4.2298 4.3449 0.3625 

R 5.2747 2.6574 2.7302 3.5213 0.4199 

S 3.7471 0.3998 0.4877 1.5968 0.3515 

T 5.1244 0.9101 0.7304 3.2562 0.7095 

U 4.0962 0.5604 0.8773 2.3922 0.4777 

V 2.9346 0.2967 0.3300 1.5401 0.3114 

W 3.4300 0.3767 0.4406 1.6403 0.3307 

X 2.7984 0.5503 0.4526 1.4778 0.4641 

Y 3.3629 0.4932 0.5384 2.1300 0.4451 

Z 3.4881 0.4897 0.4904 1.5129 0.4159 

Average 5.4312 1.6127 1.6244 3.0135 0.4655 

 
 
 
 

Table 6. Comparison of each active contour using the PRI index (higher values indicate the better 

segmentation). 
 

Alphabet 
Variation of information 

Kass LRB LS Distance CV 

A 0.9075 0.9453 0.9469 0.9311 0.9751 

B 0.8017 0.8369 0.8364 0.8017 0.9763 

C 0.9221 0.9781 0.9783 0.9579 0.9795 

D 0.7557 0.7936 0.7919 0.7810 0.9823 

E 0.9095 0.9811 0.9769 0.9490 0.9827 

F 0.9273 0.9844 0.9802 0.9547 0.9837 

G 0.9046 0.9796 0.9751 0.9512 0.9789 

H 0.8967 0.9808 0.9728 0.9421 0.9771 

I 0.9600 0.9907 0.9886 0.9752 0.9918 

J 0.9540 0.9843 0.9883 0.9703 0.9892 

K 0.9051 0.9758 0.9722 0.9483 0.9774 

L 0.9430 0.9859 0.9831 0.9663 0.9869 

M 0.8679 0.9707 0.9615 0.9320 0.9725 

N 0.9030 0.9791 0.9684 0.9447 0.9765 

O 0.7396 0.7644 0.7639 0.7570 0.9759 

P 0.8923 0.9307 0.9288 0.9170 0.9838 

Q 0.7307 0.7601 0.7604 0.7523 0.9731 

R 0.8708 0.9224 0.9195 0.9018 0.9803 

S 0.9197 0.9798 0.9767 0.9567 0.9795 

T 0.9342 0.9858 0.9824 0.9633 0.9869 

U 0.9292 0.9814 0.9783 0.9531 0.9831 

V 0.9333 0.9782 0.9766 0.9608 0.9788 

W 0.8901 0.9668 0.9620 0.9347 0.9650 

X 0.9116 0.9732 0.9701 0.9492 0.9747 

Y 0.9331 0.9796 0.9780 0.9596 0.9781 

Z 0.9175 0.9781 0.9757 0.9560 0.9789 

Average 0.8908 0.9449 0.9420 0.9218 0.9795 
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Figure 5. Application of active contour model in medical image (a) input noisy ultrasound image, 

(b) segmentation using LRB and (c) output image. 

 
 
 
speed. On contrary, the LRB posed the highest 
computational cost. However, this method has the most 
robustness towards noise. In general, the decision of 
placing initial contour has great impact to the final 
segmentation results. Contour which is initialized near to 
the edge of ROI will get the best result. The most flexible 
initialization is the CV. It shows the capability of segment 
object(s) regardless of the distance of initial contour. The 
results from segmentation metrics also show that CV 
gave the minimal boundary error and highest consistency 
among all the investigated models. 

Based on all the experiments that had been carried out, 
it is suggested that the LRB is best suited for analyzing 
the ultrasound image. Its high robustness to the noise 
and considerably high accuracy make it the most 
appropriate method to examine the noisy image. For the 
MRI images, particularly those that entail the scanning of 
brain, the CV is the most suitable in consideration of its 
high accuracy.     

The future research will focus on analyzing more 
properties of active contour model in image segmentation 
and exploring the influences of each property in different 
environment. Besides, the significance and intuition of 
each property in different application would be 
investigated in order to optimize the performance of 
segmentation in different application in future research. 
 
 
RECOMMENDATION 
 
Based on the results and discussion, a few 
recommendations can be drawn out for the area usage of 
studied active contour models in medical images. For the 
noisy ultrasound medical imaging, it is recommended that 
the LRB is the most suitable segmentation method due to 
its high noise resistance. Figure 5 shows the application 
of LRB in a noisy ultrasound image. The initialization of 
contour was placed near to the tumor (ROI) and number 
of iteration was set at 100. Results show that it was able 
to crop the kidney accurately. Active contour models, 

while serving as segmentation tools in medical image 
diagnosis has been selected by considering their 
properties. Different method will give distinct output. LRB 
poses the local segmentation by extracting the tumor 
alone, whereas the CV is global segmentation. The CV 
method is a powerful segmentation tool that could 
perform global anatomical structure segmentation. 
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