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A TWO-LEVEL DISCRETIZATION METHOD FOR THE STATIONARY MHD
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Abstract. We describe and analyze a two-level finite-element method for discretizing the equations of stationary,
viscous, incompressible magnetohydrodynamics (or MHD). These equations, which model the flow of electrically
conducting fluids in the presence of electromagnetic fields, arise in plasma physics and liquid-metal technology
as well as in geophysics and astronomy. We treat the equations under physically realistic (“nonideal”) boundary
conditions that account for the electromagnetic interaction of the fluid with the surrounding media.

The suggested algorithm involves solving a small, nonlinear problem on a coarse mesh and then one large, linear
problem on a fine mesh. We prove well-posedness of the algorithm and optimal error estimates under a small-data
assumption.
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1. Introduction. Under the assumptions of the magnetohydrodynamic
(or MHD) approximation (see, for example, [13]), the flow of a viscous, incompressible, elec-
trically conducting fluid, interacting with electromagnetic fields, is governed by the Navier-
Stokes and pre-Maxwell equations, coupled via the Lorentz force and Ohm’s law. These
equations arise in plasma physics, geophysics, and astronomy as well as in connection with
numerous engineering problems, such as controlled thermonuclear fusion, liquid-metal cool-
ing of nuclear reactors, electromagnetic casting of metals, and MHD sea water propulsion.

We consider the stationary form of the complete, nonlinear system of MHD equations,
in three space dimensions and under physically realistic (“nonideal”) boundary and interface
conditions that account for the electromagnetic interaction of the fluid with the outside world.
This problem amounts to solving a coupled, nonlinear system of eight equations (involving
two unknown three-dimensional vector fields and two unknown scalar fields) in a bounded
domain ofR3 in addition to an auxiliary, linear div-curl system in all ofR3 . In our approach,
which is based on earlier work in [6], [7], and [8], the latter is reduced to the computation of
certain singular integrals.

After finite-element discretization, the problem gives rise to a very large, nonlinear sys-
tem of algebraic equations. If those are solved by means of a simple linearization and iteration
scheme, the system matrix must be reassembled (or at least recalculated) at each step of the
iteration, resulting in very high computational complexity. In the present work, we therefore
propose a two-level finite-element discretization method that involves solving the full, non-
linear problem only on a rather coarse mesh, followed by the solution of just one large, linear
system of equations on a much finer mesh.

We establish well-posedness of this algorithm in the case of unique solvability of the con-
tinuous problem (that is, under a small-data assumption) and prove that if the two meshsizes
(H andh) are properly scaled (H2 . h . H), then the resulting errors of approximation are
of the same (optimal) order as those obtained by solving the full, nonlinear problem on the
finer mesh.
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This two-level algorithm may be recursively applied to yield a multi-level method; in
particular, our analysis implies convergence of a full multi-level Newton method, in which
the meshsize is successively decreased by a factor of two. In order to minimize the number
of levels and thus, the amount of work required to achieve the desired accuracy of approxi-
mation, one would choose the meshsize at each level to be proportional to the square of the
meshsize at the previous level. With this scaling, however, the sheer size of the problem
and the limitations of present-day computing hardware preclude the use of more than a very
small number of levels. In light of these limitations and in order to simplify the exposition,
we will focus our attention on the basic two-level algorithm and comment only briefly on its
multi-level generalization (see Section 5).

The present paper extends earlier work of Layton et al. in [4] and [5], which is based on
ideas proposed in [14] and [15]. Our scaling condition (h ∼ H2) is reminiscent of a similar
condition in [9]. For additional background material, we refer to [1]–[3], [10], [12], and the
references quoted in [4]–[8].

The remainder of the paper is organized as follows. After a brief description of the physi-
cal problem and its mathematical formulation (Section 2), we collect some preliminary results
for the continuous problem and its finite-dimensional approximation (Sections 3 and 4); these
results, the proofs of which may be found in [8], are needed for the subsequent analysis. In
Section 5 we present our two-level discretization algorithm, prove its well-posedness (in the
case of small data), and state an optimal error estimate. Section 6 is devoted to the proof of
the error estimate, and some concluding remarks are given in Section 7.

2. The Problem. We are concerned with the stationary flow of a viscous, incompress-
ible, electrically conducting fluid, confined to a regionΩ (a bounded Lipschitz domain in
R

3 ), in the presence of stationary body forces, electric and magnetic fields, and electric cur-
rents. Assuming all external field sources (if any) to be known, the flow can be completely
described in terms of the following unknown quantities: the fluid velocityu and pressurep,
the current densityJ (in the fluid), the electric potentialφ, and the magnetic fieldB. The
governing equations are the Navier-Stokes equations and Ohm’s law,

−η∆u + ρ(u · ∇)u +∇p− J×B = F(2.1)

and

σ−1J +∇φ− u×B = E ,(2.2)

along with the divergence constraints,

∇ · u = 0 and ∇ · J = 0 ,(2.3)

reflecting the conservation of mass and charge. The viscosityη, densityρ, and conductivity
σ of the fluid are positive parameters;F is a given body force, andE represents a given,
externally generated electric field. (Physically,E should be assumed to be irrotational and
could then be absorbed into the potential gradient; we allow an arbitrary fieldE, for reasons
of symmetry in the equations.)

The magnetic fieldB can be written as

B = B0 + B(J) ,(2.4)

whereB0 comprises field components generated by known external sources (permanent mag-
nets and/or electric currents flowing in circuits outside the fluid), whileB(J) is induced by
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the unknown currentJ in the fluid. Under mild assumptions onJ, the Biot-Savart law implies
that

B(J)(x) = − µ

4π

∫
Ω

x− y
|x− y|3 × J(y) dy ,(2.5)

for x ∈ R
3 , whereµ is the magnetic permeability. (For simplicity we assume the fluid, as

well as any materials outside, to be nonmagnetic, so thatµ is constant throughout space.)
Equations (2.1)–(2.3) need to be supplemented by suitable boundary conditions foru and

J on Γ, the boundary of the regionΩ occupied by the fluid; in the simplest case,u = 0 and
J ·n = 0, wheren denotes the outward-pointing unit normal vector field onΓ. Here we allow
the fluid to be mechanically driven through boundary forcing; this leads to a nonhomogeneous
Dirichlet boundary condition,

u = g onΓ,

whereg must satisfy
∫

Γ g · n = 0 (since∇ · u = 0 in Ω). We also allow electric current to
enter and leaveΩ through the boundary, that is, we prescribe the flux,

J · n = j onΓ,

wherej must satisfy
∫

Γ
j = 0 (since∇ · J = 0 in Ω). Obviously, ifj 6= 0, then the current

loop must be closed in the exterior ofΩ, that is, we must have an external current distribution
Jext in R3 \ Ω with Jext · n = j on Γ (and, of course,∇ · Jext = 0 in R3 \ Ω). In fact, to
arrive at a well-posed problem, we have to prescribeJext rather than justj, for otherwise,B0

(the magnetic field generated by sources outside the fluid) could not be directly determined.
However, givenJext, we can write

B0(x) = Bext(x)− µ

4π

∫
R3\Ω

x− y
|x− y|3 × Jext(y) dy ,(2.6)

for x ∈ R3 , whereBext comprises field components generated by external sources other than
Jext (if any). See [8] for further details.

We are now in a position to give a precise formulation of the problem.
PROBLEM 2.1. Given positive parametersη, ρ, σ, andµ, and data

F ∈ H−1(Ω), E ∈ L2(Ω),
g ∈H1/2(Γ) with

∫
Γ g · n = 0,

Jext ∈ L2(R3 \ Ω) with∇ · Jext = 0 in R3 and
∫

Γ Jext · n = 0,
Bext ∈W1(R3 ) with∇ ·Bext = 0 in R3 and∇×Bext = 0 in Ω,

find

u ∈H1(Ω) with∇ · u = 0 in Ω andu = g onΓ,
J ∈ L2(Ω) with∇ · J = 0 in Ω andJ · n = Jext · n onΓ,
p ∈ L2(Ω)/R andφ ∈ H1(Ω)/R,

such that Equations (2.1)–(2.3) are satisfied, withB given by (2.4), (2.5), and (2.6).
Here and in the sequel,L2 andH1 denote the usual Lebesgue and Sobolev spaces of

square-integrable functions on the respective domains (that is, onΩ, R3 \Ω, orR3 );W 1(R3 )
is the completion ofH1(R3 ) with respect to the normf 7→ ‖∇f‖L2(R3). We think of
H−1(Ω) as the norm dual ofH1

0 (Ω), which is the subspace ofH1(Ω) consisting of the func-
tions that vanish onΓ. Finally,H1/2(Γ) denotes the trace space ofH1(Ω), endowed with
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the usual infimum norm, andH−1/2(Γ) is the norm dual ofH1/2(Γ). Throughout, bold-face
type indicates a space ofR3 -valued functions (so that, for example,L2(Ω) = (L2(Ω))3).

For all of the following analysis, we assume a set of parametersη, ρ, σ, µ and a set of
dataF, E, g, Jext, Bext to be given as in Problem 2.1, and we setj := Jext · n.

3. Weak Formulation and Preliminary Results. We now give a weak formulation
of Problem 2.1 and state some preliminary results, which will be needed in the subsequent
analysis (see [8] for proofs and further details).

To begin with, let us define

Y1 := H1(Ω), Y2 := L2(Ω), Y := Y1 ×Y2,
X1 := H1

0(Ω), X2 := L2(Ω), X := X1 ×X2,
and

M1 := L2(Ω)/R, M2 := H1(Ω)/R, M := M1 ×M2.

All these spaces are understood to be endowed with their natural Hilbert-space structures,
inherited fromL2(Ω) andH1(Ω).

Multiplying Equations (2.1)–(2.3) by appropriate test functions and integrating (by parts)
over the domainΩ in the usual way, we obtain two variational equations of the form

a0

(
(u,J), (v,K)

)
+ a1

(
(u,J), (u,J), (v,K)

)
(3.1)

+ b
(
(v,K), (p, φ)

)
=
∫

Ω

F · v +
∫

Ω

E ·K ∀ (v,K) ∈ X

and

b
(
(u,J), (q, ψ)

)
=
∫

Γ

j ψ ∀ (q, ψ) ∈M ,(3.2)

wherea0 : Y × Y → R (a bilinear form),a1 : Y × Y ×Y → R (a trilinear form), and
b : Y ×M → R (a bilinear form) are given by

a0

(
(v1,K1), (v2,K2)

)
:= η

∫
Ω

(∇v1) : (∇v2) + σ−1

∫
Ω

K1 ·K2

+
∫

Ω

((
K2 ×B0

)
· v1 −

(
K1 ×B0

)
· v2

)
,

a1

(
(v1,K1), (v2,K2), (v3,K3)

)
:=

ρ

2

∫
Ω

((
(v1 · ∇)v2

)
· v3 −

(
(v1 · ∇)v3

)
· v2

)
+
∫

Ω

((
K3 × B(K1)

)
· v2 −

(
K2 × B(K1)

)
· v3

)
,

and

b
(
(v,K), (q, ψ)

)
:= −

∫
Ω

(
∇ · v− 1

|Ω|
∫

Ω
∇ · v

)
q +

∫
Ω

K · (∇ψ) .

We note that the term ina1 that stems from the convective force in Equation (2.1) has
been “skew-symmetrized.” As a consequence, the forma1

(
(v0,K0), (·, ·), (·, ·)

)
is skew-

symmetric onY × Y, for every(v0,K0) ∈ Y. Furthermore, the divergence in the first
integral inb has been projected onto the space ofL2-functions with mean zero. Therefore,
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the formb is well defined onY ×M , independent of the choice of representatives for the
quotient spacesM1 = L2(Ω)/R andM2 = H1(Ω)/R. None of these changes affects the
continuous problem, but they are useful for treating the discrete problem.

With the above definitions, Problem 2.1 is equivalent to the following.
PROBLEM 3.1. Find (u,J) ∈ Y with u|Γ = g and (p, φ) ∈ M such that Equa-

tions (3.1) and (3.2) are satisfied.
LEMMA 3.2.

(a) The formsa0, a1, andb are bounded on their respective domains, with norms
denoted by‖a0‖, ‖a1‖, and‖b‖, respectively.
(b) The forma0 is positive definite onX ×X; that is, there exists a numberα > 0
such that

a0

(
(v,K), (v,K)

)
≥ α ‖(v,K)‖2Y ∀ (v,K) ∈ X .

(c) The formb satisfies the Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup condi-
tion onX×M ; that is, there exists a numberβ > 0 such that

inf
(q,ψ)∈M

sup
(v,K)∈X

b
(
(v,K), (q, ψ)

)
‖(v,K)‖Y‖(q, ψ)‖M

≥ β .

THEOREM 3.3. Problem 3.1 is well posed for small data. That is, if the dataF, E,
g, Jext, and Bext are sufficiently small inH−1(Ω), L2(Ω), H1/2(Γ), L2(R3 \ Ω), and
W1(R3 ), respectively, then Problem 3.1 has a unique solution(u,J, p, φ). Moreover, the
solution satisfies

‖(u,J)‖Y <
α

‖a1‖
(3.3)

(withα and‖a1‖ as in Lemma 3.2).
We refer the interested reader to [8] for a more detailed analysis of the well-posedness of

Problem 3.1. Here we just note that the smallness assumptions on the data can be made quite
explicit and must be interpreted relative to the parameters of the problem,η, ρ, σ, andµ. For
example, givenany set of data(F,E,g,Jext,Bext), the necessary smallness assumptions
are satisfied (and Problem 3.1 has a unique solution) provided that the viscosityη and electric
resistivityσ−1 of the fluid are sufficiently large.

Another noteworthy fact is that the estimate (3.3)impliesuniqueness. That is, if Prob-
lem 3.1 has a solution(u,J, p, φ) satisfying (3.3), then there are no other solutions.

4. Finite-Dimensional Approximation and Basic Error Estimates. Let B denote a
Banach space and(Bh)h∈I a family of finite-dimensional subspaces ofB, whereI is a sub-
set of the interval(0, 1) having0 as its only limit point. We say that(Bh)h∈I is a finite-
dimensional approximation ofB (or thatBh approximatesB, for short) if for everyf ∈ B,
we haveEB(h, f)→ 0 ash→ 0, where

EB(h, f) := inf
fh∈Bh

‖f − fh‖B

denotes the error of best approximation off by elements ofBh.
In all of the following, we assume that(Yh

1 )h∈I , (Yh
2 )h∈I , (Mh

1 )h∈I , and(Mh
2 )h∈I

are finite-dimensional approximations of the spacesY1 = H1(Ω), Y2 = L2(Ω), M1 =
L2(Ω)/R, andM2 = H1(Ω)/R, respectively. This implies, of course, that the product spaces
Yh := Yh

1 ×Yh
2 andMh := Mh

1 ×Mh
2 approximateY = Y1 ×Y2 andM = M1 ×M2,
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respectively. Recalling thatX1 = H1
0(Ω), X2 = Y2, andX = X1×X2, we also setXh

1 :=
Yh

1 ∩X1, Xh
2 := Yh

2 , andXh := Xh
1 ×Xh

2 . Finally, we letYh
1 |Γ denote the trace space of

Yh
1 , that is, the subspace{vh|Γ; vh ∈ Yh

1 } of H1/2(Γ). Note that automatically,(Yh
1 |Γ)h∈I

is a finite-dimensional approximation ofH1/2(Γ), the trace space ofY1. However, an extra
assumption (see Assumption 4.3 below) is needed to guarantee that(Xh

1 )h∈I approximates
X1.

We also choose a family(gh)h∈I of approximate boundary datagh ∈ Yh
1 |Γ such that

gh → g in H1/2(Γ) ash → 0. We then consider a family of finite-dimensional approxima-
tions to Problem 3.1, as follows.

PROBLEM 4.1. Find (uh,Jh) ∈ Yh with uh|Γ = gh and(ph, φh) ∈Mh such that

a0

(
(uh,Jh), (vh,Kh)

)
+ a1

(
(uh,Jh), (uh,Jh), (vh,Kh)

)
(4.1)

+ b
(
(vh,Kh), (ph, φh)

)
=
∫

Ω

F · vh +
∫

Ω

E ·Kh ∀ (vh,Kh) ∈ Xh

and

b
(
(uh,Jh), (qh, ψh)

)
=
∫

Γ

j ψh ∀ (qh, ψh) ∈Mh .(4.2)

In order to prove the well-posedness (for small data) of Problem 4.1 and to establish
optimal error estimates, we need two conditions on the finite-dimensional spaces involved.
First, we assume that the formb satisfies the inf-sup condition onXh ×Mh, uniformly with
respect toh ∈ I.

ASSUMPTION4.2. There exists a numberβ > 0 such that

inf
(qh,ψh)∈Mh

sup
(vh,Kh)∈Xh

b
(
(vh,Kh), (qh, ψh)

)
‖(vh,Kh)‖Y‖(qh, ψh)‖M

≥ β ∀h ∈ I .

Our second assumption is needed to deal with the nonhomogeneous essential boundary
condition for the velocity field.

ASSUMPTION4.3. There exists a uniformly bounded family(Πh)h∈I of linear projec-
tionsΠh fromY1 ontoYh

1 such thatΠh(X1) ⊂ X1 for all h ∈ I.
REMARK 4.4.

(a) Uniform inf-sup conditions are standard in the theory of mixed variational prob-
lems. Numerous pairs of finite-element spaces satisfying such conditions have been
devised and analyzed in the literature (see [8] and [10] for specific examples that
are relevant in connection with Problem 4.1).
(b) Assumption 4.3 is less standard, but known to be satisfied for most of the com-
monly used finite-element spaces (see [11]). The crucial property that distinguishes
the projectionsΠh in Assumption 4.3 from, say, theorthogonalprojections ofY1

ontoYh
1 , is that they preserve homogeneous Dirichlet boundary values. One imme-

diate consequence of this property is that the spacesXh
1 = Yh

1 ∩X1 approximate
the spaceX1.
(c) Another consequence of Assumption 4.3 is the existence of a uniformly bounded
family(Λh)h∈I of linear lifting operatorsΛh : Yh

1 |Γ → Yh
1 . These lifting operators

are needed to deal with the nonhomogeneous essential boundary condition for the
velocity field; their uniform boundedness is crucial in deriving uniform (that is,h-
independent) estimates for Problem 4.1.
(d) As observed in Remark 2. above, Assumption 4.3 ensures that the spacesXh ×
Mh approximate the spaceX×M . That being the case, Assumption 4.2 implies that
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the inf-sup condition onX×M (see Lemma 3.2(c)) holdswith the same constantβ
as in Assumption 4.2.

In analogy to Theorem 3.3, we now obtain the well-posedness of Problem 4.1, under
smallness assumptions that are independent ofh.

THEOREM 4.5. There exists a positive constantc, independent ofh, such that if the
data(F,E,g,Jext,Bext) and(F,E,gh,Jext,Bext) have norms less thanc in H−1(Ω) ×
L2(Ω)×H1/2(Γ)×L2(R3 \Ω)×W1(R3 ), then Problems 3.1 and 4.1 have unique solutions
(u,J, p, φ) and(uh,Jh, ph, φh), respectively. Moreover, these solutions satisfy

‖(u,J)‖Y <
α

‖a1‖
and ‖(uh,Jh)‖Y <

α

‖a1‖

(withα and‖a1‖ as in Lemma 3.2).
The following result is an optimal estimate for the error in approximating the solution

of Problem 3.1, in the case of unique solvability, by a solution of Problem 4.1. (See the
beginning of this section regarding notation.)

THEOREM 4.6. Let ‖a0‖, ‖a1‖, and‖b‖ denote the norms of the formsa0, a1, andb.
Choose constantsα andβ as in Lemma 3.2(b) and Assumption 4.2, and letλ be an upper
bound for the norms of the lifting operatorsΛh of Remark 4.4(c).

Suppose that(u,J, p, φ) and (uh,Jh, ph, φh) are solutions of Problems 3.1 and 4.1,
respectively. Setν := ‖(u,J)‖Y, νh := ‖(uh,Jh)‖Y, and assume thatν < α

‖a1‖ . Then we
have

‖(u,J)− (uh,Jh)‖Y
≤
(

1 + ‖a0‖+(ν+νh)‖a1‖
α−ν‖a1‖

)(
1 + ‖b‖

β

)(
(1 + λ)EY(h, (u,J)) + λ‖g− gh‖H1/2(Γ)

)
+ ‖b‖

α−ν‖a1‖EM (h, (p, φ))

and

‖(p, φ)− (ph, φh)‖M
≤ ‖a0‖+(ν+νh)‖a1‖

β ‖(u,J)− (uh,Jh)‖Y +
(

1 + ‖b‖
β

)
EM (h, (p, φ)) .

COROLLARY 4.7. Suppose that the dataF, E, g, Jext, andBext and the discretization
parameterh are sufficiently small to guarantee the existence of unique solutions(u,J, p, φ)
and (uh,Jh, ph, φh) of Problems 3.1 and 4.1, respectively, satisfying‖(u,J)‖Y < α

‖a1‖
and‖(uh,Jh)‖Y < α

‖a1‖ (with α and‖a1‖ as in Lemma 3.2).
Then there exists a constantc, independent ofh, such that

‖(u,J, p, φ)− (uh,Jh, ph, φh)‖Y×M ≤ c
(
EY×M (h, (u,J, p, φ)) + ‖g− gh‖H1/2(Γ)

)
.

In particular, (uh,Jh, ph, φh)→ (u,J, p, φ) in Y ×M , ash→ 0.
We note that it is possible (and numerically feasible) to choose the approximate boundary

datagh so that‖g− gh‖H1/2(Γ) is of the same order asEY1(h,u). See [8] for details.

5. Two-Level Algorithm. We now present a two-level algorithm for the approximation
of solutions to Problem 3.1, in the case of unique solvability. As in Section 4, we choose
finite-dimensional approximationsXh, Yh, andMh of the spacesX, Y, andM , satisfying
Assumptions 4.2 and 4.3, and approximate boundary datagh with gh → g in H1/2(Γ). The
idea of the algorithm is the following: Instead of directly solving Problem 4.1 on a fine grid
(with meshsizeh), first solve Problem 4.1 on a coarse grid (with meshsizeH) and then solve a
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suitable linearization of Problem 4.1 on the fine grid. We will show that with proper scaling of
the meshsizesh andH, the resulting errors are of the same order as those obtained by solving
the full, nonlinear problem on the fine grid. The algorithm may be applied recursively, so that
optimal accuracy of approximation can be achieved by solving one small, nonlinear problem
and then a sequence of linear problems on successively finer grids (we elaborate on this aspect
at the end of this section).

ALGORITHM 5.1.
Step 1. Solve the following nonlinear problem (on a coarse mesh).

PROBLEM 5.2. Find (uH ,JH) ∈ YH with uH |Γ = gH and(pH , φH) ∈MH such
that

a0

(
(uH ,JH), (vH ,KH)

)
+ a1

(
(uH ,JH), (uH ,JH), (vH ,KH)

)
(5.1)

+ b
(
(vH ,KH), (pH , φH)

)
=
∫

Ω

F · vH +
∫

Ω

E ·KH ∀ (vH ,KH) ∈ XH

and

b
(
(uH ,JH), (qH , ψH)

)
=
∫

Γ

j ψH ∀ (qH , ψH) ∈MH .(5.2)

Step 2. Solve the following linear problem (on a fine mesh).
PROBLEM 5.3. Find (uh,Jh) ∈ Xh with uh|Γ = gh and(ph, φh) ∈Mh such that

a0

(
(uh,Jh), (vh,Kh)

)
+ a1

(
(uh,Jh), (uH ,JH), (vh,Kh)

)
(5.3)

+ a1

(
(uH ,JH), (uh,Jh), (vh,Kh)

)
− a1

(
(uH ,JH), (uH ,JH), (vh,Kh)

)
+ b
(
(vh,Kh), (ph, φh)

)
=
∫

Ω

F · vh +
∫

Ω

E ·Kh ∀ (vh,Kh) ∈ Xh

and

b
(
(uh,Jh), (qh, ψh)

)
=
∫

Γ

j ψh ∀ (qh, ψh) ∈Mh .(5.4)

Note that Problem 5.3 is nothing but the Newton linearization of Problem 4.1 at the point
(uH ,JH , pH , φH).

Under suitable smallness assumptions on the data, the well-posedness of Problem 5.2 is
guaranteed by Theorem 4.5. As for Problem 5.3, we have the following.

LEMMA 5.4. Suppose that(uH ,JH) ∈ YH satisfiesνH := ‖(uH ,JH)‖Y <
α
‖a1‖ (with α and ‖a1‖ as in Lemma 3.2). Then Problem 5.3 has a unique solution

(uh,Jh, ph, φh).
Proof. Let (uH ,JH) ∈ YH be given withνH := ‖(uH ,JH)‖Y < α

‖a1‖ . Choosing a

lifting uh0 ∈ Yh
1 for gh and settinguh = uh0 + ûh in (5.3) and (5.4), we obtain an equivalent

pair of equations of the form

ah
(
(ûh,Jh), (vh,Kh)

)
+ bh

(
(vh,Kh), (ph, φh)

)
= `h1 (vh,Kh) ∀ (vh,Kh) ∈ Xh(5.5)

and

bh
(
(ûh,Jh), (qh, ψh)

)
= `h2 (qh, ψh) ∀ (qh, ψh) ∈Mh ,(5.6)
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whereah is a bilinear form onXh ×Xh, defined by

ah
(
(vh1 ,K

h
1 ), (vh2 ,K

h
2 )
)

:= a0

(
(vh1 ,K

h
1 ), (vh2 ,K

h
2 )
)

+ a1

(
(vh1 ,Kh

1), (uH ,JH), (vh2 ,Kh
2 )
)

+ a1

(
(uH ,JH), (vh1 ,Kh

1), (vh2 ,Kh
2)
)
,

while bh is the restriction ofb to Xh ×Mh, and`h1 and`h2 are certain linear functionals on
Xh andMh, respectively.

The formah is positive definite; in fact,

ah
(
(vh,Kh), (vh,Kh)

)
≥
(
α− νH‖a1‖

)
‖(vh,Kh)‖2Y ,

for all (vh,Kh) ∈ Xh, thanks to Lemma 3.2(b) and the skew-symmetry of the forma1 with
respect to its second and third arguments. This, along with the fact thatbh satisfies an inf-
sup condition (Assumption 4.2), allows us to apply Corollary 4.1 in [1, Chapter I]. We infer
the existence and uniqueness of a solution(ûh,Jh, ph, φh) of Equations (5.5) and (5.6) and,
thereby, the well-posedness of Problem 5.3.

REMARK 5.5. Under the assumptions of Lemma 5.4, let(uh,Jh, ph, φh) be the unique
solution of Problem 5.3 (the linear problem) and let(ũh, J̃h, p̃h, φ̃h) be a solution of Prob-
lem 4.1 (the corresponding nonlinear problem). It is not hard to show that

‖(ũh, J̃h)− (uh,Jh)‖Y ≤
‖a1‖

α− νH‖a1‖
‖(ũh, J̃h)− (uH ,JH)‖2Y

and

‖(p̃h, φ̃h)− (ph, φh)‖M ≤
‖a1‖
β

(
1 +
‖a0‖+ 2νH‖a1‖
α− νH‖a1‖

)
‖(ũh, J̃h)− (uH ,JH)‖2Y ,

with constants as in Theorem 4.6. This is essentially a special case of the usual quadratic
error estimate for Newton’s method.

We will now state an optimal error estimate for Algorithm 5.1. In principle, such an esti-
mate could be obtained by combining our basic error estimate for Problem 4.1 (Theorem 4.6)
with the Newton estimate in Remark 5.5. The following, however, is a slightly sharper result,
which we will derive by directly comparing the solution of Problem 5.3 to the solution of the
continuous problem, Problem 3.1.

THEOREM 5.6. Let ‖a0‖, ‖a1‖, and‖b‖ denote the norms of the formsa0, a1, andb.
Choose constantsα andβ as in Lemma 3.2(b) and Assumption 4.2, and letλ be an upper
bound for the norms of the lifting operatorsΛh of Remark 4.4(c).

In addition, suppose that(uH ,JH) ∈ Y satisfiesνH := ‖(uH ,JH)‖Y < α
‖a1‖ and that

(u,J, p, φ) and(uh,Jh, ph, φh) are solutions of Problems 3.1 and 5.3, respectively. Then
we have

‖(u,J)− (uh,Jh)‖Y
≤
(

1 + ‖a0‖+2νH‖a1‖
α−νH‖a1‖

)(
1 + ‖b‖

β

)(
(1 + λ)EY(h, (u,J)) + λ‖g − gh‖H1/2(Γ)

)
+ ‖b‖

α−νH‖a1‖EM (h, (p, φ)) + ‖a1‖
α−νH‖a1‖‖(u,J)− (uH ,JH)‖2Y

(5.7)

and

‖(p, φ)− (ph, φh)‖M
≤
(

1 + ‖b‖
β

)
EM (h, (p, φ)) + ‖a0‖+2νH‖a1‖

β ‖(u,J)− (uh,Jh)‖Y
+ ‖a1‖

β ‖(u,J)− (uH ,JH)‖2Y .

(5.8)
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Before turning to the proof of Theorem 5.6, we state a simple corollary, discuss the
question of optimal scaling of the meshsizesh andH, and comment on a possible multi-level
generalization of Algorithm 5.1.

COROLLARY 5.7. Suppose that the dataF, E, g, Jext, andBext and the discretization
parameterH are sufficiently small to guarantee the existence of unique solutions(u,J, p, φ)
and(uH ,JH , pH , φH) of Problems 3.1 and 5.2, respectively, satisfying‖(u,J)‖Y < α

‖a1‖
and ‖(uH ,JH)‖Y < α

‖a1‖ (with α and ‖a1‖ as in Lemma 3.2), and let(uh,Jh, ph, φh)
denote the unique solution of Problem 5.3.

Then there exist constantsc1 andc2, independent ofh andH, such that

‖(u,J, p, φ)− (uh,Jh, ph, φh)‖Y×M
≤ c1

(
EY×M (h, (u,J, p, φ)) + ‖g− gh‖H1/2(Γ)

)
+ c2

(
EY×M (H, (u,J, p, φ)) + ‖g− gH‖H1/2(Γ)

)2

.

Corollary 5.7 implies that with proper scaling of the meshsizesh andH, the two-level
method (Algorithm 5.1) yields the same accuracy of approximation as that obtained by solv-
ing Problem 4.1 (the full, nonlinear system of equations) on the fine grid. For example, if
‖g − gh‖H1/2(Γ) and the errors of best approximation ofu, J, p, andφ by elements ofYh

1 ,
Yh

2 , Mh
1 , andMh

2 all behave as powers ofh, then the scalingh ∼ H2 (or more generally,
H2 . h . H) guarantees optimal accuracy of Algorithm 5.1.

In view of Theorem 5.6, it is clear that the algorithm may be applied recursively, with a
sequence of meshes satisfyingh2

l−1 . hl . hl−1. First the nonlinear problem is solved on
the coarsest mesh (h0); then a sequence of linear problems is solved on finer and finer meshes
(h1, h2, . . .). Here, the linear problem at levell is the Newton linearization of the nonlinear
problem (at that level) about the approximate solution obtained at levell − 1. Since we
can choosehl = hl−1/2, our analysis implies in particular the convergence of a traditional,
multi-level Newton method, provided that the initial mesh is fine enough.

The scalinghl ∼ h2
l−1 would be optimal in the sense that it minimizes the number of

levels and thus, the amount of work required to achieve the prescribed accuracy; but as was
noted already in the introduction, with this scaling only a very small number of levels (two or
three) is numerically feasible, in view of the formidable size of the problem.

6. Proof of Theorem 5.6. Let all assumptions of Theorem 5.6 be satisfied. Being so-
lutions of Problems 3.1 and 5.3, respectively,(u,J, p, φ) and(uh,Jh, ph, φh) satisfy Equa-
tions (3.1) and (5.3). Using the same test function(vh,Kh) in both equations, subtracting
one from the other, and rearranging terms, we obtain

a0

(
(u,J)− (uh,Jh), (vh,Kh)

)
+ a1

(
(u,J)− (uh,Jh), (uH ,JH), (vh,Kh)

)
+ a1

(
(uH ,JH), (u,J)− (uh,Jh), (vh,Kh)

)
+ a1

(
(u,J)− (uH ,JH), (u,J)− (uH ,JH), (vh,Kh)

)
+ b
(
(vh,Kh), (p, φ) − (ph, φh)

)
= 0 .

(6.1)
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Now let (wh,Lh) ∈ Yh, (rh, χh) ∈Mh, and(vh,Kh) ∈ Xh. Then

a0

(
(wh,Lh)− (uh,Jh), (vh,Kh)

)
+ a1

(
(wh,Lh)− (uh,Jh), (uH ,JH), (vh,Kh)

)
+ a1

(
(uH ,JH), (wh,Lh)− (uh,Jh), (vh,Kh)

)
+ a1

(
(u,J)− (uH ,JH), (u,J)− (uH ,JH), (vh,Kh)

)
+ b
(
(vh,Kh), (rh, χh)− (ph, φh)

)
= a0

(
(wh,Lh)− (u,J), (vh,Kh)

)
+ a1

(
(wh,Lh)− (u,J), (uH ,JH), (vh,Kh)

)
+ a1

(
(uH ,JH), (wh,Lh)− (u,J), (vh,Kh)

)
+ b
(
(vh,Kh), (rh, χh)− (p, φ)

)
.

(6.2)

(Note that the difference between the left-hand and right-hand sides of (6.2) equals the left-
hand side of (6.1).)

Now suppose that(wh,Lh) ∈ Yh satisfieswh|Γ = gh and

b
(
(wh,Lh), (qh, ψh)

)
=
∫

Γ

j ψh ∀ (qh, ψh) ∈Mh .

Then,(wh,Lh)− (uh,Jh) ∈ Xh and

b
(
(wh,Lh)− (uh,Jh), (qh, ψh)

)
= 0 ∀ (qh, ψh) ∈Mh .

Setting(vh,Kh) = (wh,Lh) − (uh,Jh) in (6.2) and recalling the skew-symmetry of the
form a1 with respect to its second and third arguments, we obtain

a0

(
(wh,Lh)− (uh,Jh), (wh,Lh)− (uh,Jh)

)
+ a1

(
(wh,Lh)− (uh,Jh), (uH ,JH), (wh,Lh)− (uh,Jh)

)
= a0

(
(wh,Lh)− (u,J), (wh,Lh)− (uh,Jh)

)
+ a1

(
(wh,Lh)− (u,J), (uH ,JH), (wh,Lh)− (uh,Jh)

)
+ a1

(
(uH ,JH), (wh,Lh)− (u,J), (wh,Lh)− (uh,Jh)

)
+ b
(
(wh,Lh)− (uh,Jh), (rh, χh)− (p, φ)

)
− a1

(
(u,J)− (uH ,JH), (u,J)− (uH ,JH), (wh,Lh)− (uh,Jh)

)
,

(6.3)

where(rh, χh) ∈Mh is arbitrary. The left-hand side of (6.3) is bounded from below by(
α− νH‖a1‖

)
‖(wh,Lh)− (uh,Jh)‖2Y ,

while the right-hand side of (6.3) is bounded from above by((
‖a0‖+ 2νH‖a1‖

)
‖(wh,Lh)− (u,J)‖Y + ‖b‖ ‖(rh, χh)− (p, φ)‖M

+ ‖a1‖ ‖(u,J)− (uH ,JH)‖2Y
)
‖(wh,Lh)− (uh,Jh)‖Y .

It follows that

‖(u,J)− (uh,Jh)‖Y ≤ ‖(u,J)− (wh,Lh)‖Y + ‖(wh,Lh)− (uh,Jh)‖Y
≤
(

1 + ‖a0‖+2νH‖a1‖
α−νH‖a1‖

)
‖(wh,Lh)− (u,J)‖Y

+ ‖b‖
α−νH‖a1‖‖(r

h, χh)− (p, φ)‖M
+ ‖a1‖

α−νH‖a1‖‖(u,J)− (uH ,JH)‖2Y .
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Taking infima with respect to(wh,Lh) and(rh, χh), we get

‖(u,J)− (uh,Jh)‖Y ≤
(

1 + ‖a0‖+2νH‖a1‖
α−νH‖a1‖

)
E∗Y(h, (u,J))

+ ‖b‖
α−νH‖a1‖EM (h, (p, φ)) + ‖a1‖

α−νH‖a1‖‖(u,J)− (uH ,JH)‖2Y ,
(6.4)

where

E∗Y(h, (u,J)) := inf
(wh,Lh)∈Yh,wh|Γ=gh

b((wh,Lh),(qh,ψh))=
∫

Γ
j ψh ∀ (qh,ψh)∈Mh

‖(wh,Lh)− (u,J)‖Y .

It was shown in [8] (see Steps 2 and 3 of the proof of Theorem 3.8, loc. cit.) that

E∗Y(h, (u,J)) ≤
(

1 +
‖b‖
β

)(
(1 + λ)EY(h, (u,J)) + λ‖g− gh‖H1/2(Γ)

)
.

Substituting this into (6.4), we arrive at the desired estimate (5.7).
Now let (rh, χh) ∈Mh and(vh,Kh) ∈ Xh. Recalling (6.1), we obtain

b
(
(vh,Kh), (rh, χh)− (ph, φh)

)
= b
(
(vh,Kh), (rh, χh)− (p, φ)

)
+ b
(
(vh,Kh), (p, φ)− (ph, φh)

)
= b
(
(vh,Kh), (rh, χh)− (p, φ)

)
− a0

(
(u,J)− (uh,Jh), (vh,Kh)

)
− a1

(
(u,J)− (uh,Jh), (uH ,JH), (vh,Kh)

)
− a1

(
(uH ,JH), (u,J)− (uh,Jh), (vh,Kh)

)
− a1

(
(u,J)− (uH ,JH), (u,J)− (uH ,JH), (vh,Kh)

)
≤
(
‖b‖ ‖(rh, χh)− (p, φ)‖M

+
(
‖a0‖+ 2νH‖a1‖

)
‖(u,J)− (uh,Jh)‖Y

+ ‖a1‖ ‖(u,J)− (uH ,JH)‖2Y
)
‖(vh,Kh)‖Y .

It follows that

sup(vh,Kh)∈Xh

b
(

(vh,Kh),(rh,χh)−(ph,φh)
)

‖(vh,Kh)‖Y
≤ ‖b‖ ‖(rh, χh)− (p, φ)‖M +

(
‖a0‖+ 2νH‖a1‖

)
‖(u,J)− (uh,Jh)‖Y

+ ‖a1‖ ‖(u,J)− (uH ,JH)‖2Y .

(6.5)

By virtue of Assumption 4.2, the left-hand side of (6.5) is bounded from below by
β ‖(rh, χh)− (ph, φh)‖M , and we conclude that

‖(p, φ)− (ph, φh)‖M ≤ ‖(p, φ)− (rh, χh)‖M + ‖(rh, χh)− (ph, φh)‖M
≤
(

1 + ‖b‖
β

)
‖(rh, χh)− (p, φ)‖M + ‖a0‖+2νH‖a1‖

β ‖(u,J)− (uh,Jh)‖Y
+ ‖a1‖

β ‖(u,J)− (uH ,JH)‖2Y .

The desired estimate (5.8) follows by taking the infimum with respect to(rh, χh).2

7. Concluding Remarks. We described and analyzed a two-level finite-element dis-
cretization method for the stationary MHD equations in three space dimensions, under phys-
ically realistic boundary and interface conditions. The algorithm involves solving one small,
nonlinear problem on a coarse mesh and one large, linear problem on a much finer mesh. We
established the well-posedness of the algorithm under a small-data assumption and proved



ETNA
Kent State University 
etna@mcs.kent.edu

210 A two-level method for stationary MHD

that if the two meshsizes (H andh) are properly scaled (H2 . h . H), then the error of
approximation is of the same (optimal) order as that obtained by solving the full, nonlinear
problem on the finer mesh.

The algorithm may be applied recursively to yield a multi-level method. One implica-
tion is the convergence of a traditional multi-level Newton method (where the meshsize is
successively decreased by a factor of two) provided that the initial mesh is fine enough. The
convergence theory given by Shaidurov [12, Chapter 6.6] for the (significantly less complex)
Navier-Stokes equations shares this main restriction.

If the meshsize at each level is chosen to be proportional to the square of the meshsize
at the previous level (which is optimal in that it minimizes the number of levels and thus,
the amount of work required to achieve the desired accuracy), then the sheer size of the
problem and the limitations of present-day computing hardware preclude the use of more than
a very small number of levels. However, already our basic two-level algorithm offers some
distinct advantages over more traditional approaches. Specifically, since we have to solve
only one large, linear system, we avoid the repeated finite-element assembly of large system
matrices that would be necessary, for example, if the nonlinear problem was solved iteratively
on a fine mesh. Even if the large, linear system itself is solved by a multi-level method,
all intermediate linear systems can be computed without finite-element reassembly (see, for
example, [2, Chapter 9]). By comparison, a traditional multi-level Newton method for the
full, nonlinear problem would require finite-element reassembly at each new level since the
point of linearization changes from level to level. An additional advantage of our two-level
discretization over multi-level methods is its potentially greater geometric flexibility.

The computational efficiency and robustness of our algorithm will be the subject of future
investigation.
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