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In this work, the variational iteration method and the decomposition method are used to determine the 
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initial value problem. The obtained results show that only few terms are required to deduce 
approximated solutions which are found to be accurate and efficient. 
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INTRODUCTION 
 
The pioneering work of Hodgkin and Huxley (1952), and 
subsequent investigations, has established that good 
mathematical models for the conduction of nerve 
impulses along an axon can be given. These models take 
the form of a system of ordinary differential equations, 
coupled to a diffusion equation. Simpler models, which 
seem to describe the qualitative behavior, have been 
proposed by FitzHugh and Nagumo (FN) (Cohen, 1971; 
Hastings, 1975). This paper is devoted to the study of the 
FN system: 
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with given initial condition: 
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Where b and  are positive constants and )),(( txvf  is 

nonlinear function. Existence and uniqueness for this 
system is given in 1978 by Rauch and Smoller, in which 

they showed that small solutions ),( txv decay to 0 as 

t and large pulses produce a traveling wave. We 

consider the FN equations in the form: 
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and the function )),(( txvf  is given by McKean (1970) 

such as: 
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Where H is the Heaviside step function: 
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The exact solution of this system is given by: 
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Where tcxz  , c is the speed of the traveling wave 

and 3,2,1, ii  are the zeros of the polynomial: 
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and: 
   

( ), 1,2,3i ip p i                                 (8) 

 
A numerical scheme for FN equations (Elibeck et al., 
1981; Rinzel and Keller, 1973; Khalifa, 1979) is the 
“Hopscotch” finite difference scheme first proposed by 
Gordon (1975), and further developed by Gourlay and 
McGuire (1970a, b, 1971). Other possible schemes which 
were considered are (1) finite difference schemes 
(Rinzel, 1977), (2) Galerkin-type schemes (Cannon and 
Ewing, 1977) and (3) collocation schemes with quadratic 
and cubic splines (Khalifa, 1979). In this paper, we use 
the variational iteration and Adomian decomposition 
methods to find the numerical solutions of the FN 
equations which will be useful in numerical studies. In our 

numerical study, we consider the case of 1.0b  and 

3.0a , also: 
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With these parameters, we now can use the exact 
travelling wave solution (Equation 5) to test the 
suggested numerical methods. 
 
 
THE FORMALISM  
 
We introduce the main points of each of the two methods, 
where details can be found in these studies (He and Wu, 
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2006a, b; He, 2004, 2006a, b, 1998, 1999, 2000; Odibat 
and Momani, 2006; Bildik and Konuralp, 2006; Yusufoglu, 
2007; Sweilam and Khader, 2007; Tari et al., 2007; 
Abdou and Soliman, 2005a, b; Soliman and Abdou, 2007; 
Soliman, 2005; Wazwaz, 2006a, b; Wazwaz and Gorguis, 
2004; Adomian, 1994). 
 
 

Variational iteration method (VIM) 
 
VIM is the general Lagrange method, in which an 
extremely accurate approximation at some special point 
can be obtained, but not an analytical solution. To 
illustrate the basic idea of the VIM we consider the 
following general partial differential equation: 
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Where tL and xL  are linear operators of t  and  x, 

respectively, and N is a nonlinear operator.  According to 

the VIM, we can express the following correction 
functional in t and x directions, respectively, as 

follows: 
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Where and   are general Lagrange multipliers, which 

can be identified optimally via the variational theory, and 

),(~ txun  are restricted variations which mean that 

0),(~ txun . By this method, it is first required to 

determine Lagrange multipliers   and   that will be 

identified optimally. The successive approximations 

1( , )nu x t , 0n   of the solution ),( txu  will be readily 

obtained upon using the determined Lagrange multipliers 

and any selective function ),(0 txu . Consequently, the 

solution is given by: 
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The aforementioned analysis yields the following 
theorem. 
 
 
Theorem 1 
 
The VIM solution of the partial differential Equation 10 
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can be determined by Equation 12 with the iterations 
(Equation 11a or 11b).  
 
 
Adomian decomposition method (ADM) 
 

Applying the inverse operator 


t

dtL
0

1 (.)(.)  to both 

sides of Equation 10 and using the initial condition we 
get: 
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We next decompose the unknown function ),( txu by a 

sum of components defined by the following 
decomposition series: 
 

0

( , ) ( , )n

n

u x t u x t




        (15) 

 
The aforementioned analysis yields the following 
theorem: 
 
 
Theorem 2 
 
The ADM solution of the partial differential Equation 10 
can be determined by the series of Equation 15 with the 
iterations (Equation 13).  
 
 
APPLICATIONS 
 
We solve the FN equations using two methods, namely, 
VIM and ADM. 
 
 
The VIM for the FN equations 
 
Consider the FN equations in the form: 

 
 
 
 

( ) 0,

0

t xx

t

v v f v w

w bv

   

 
                                          (16) 

 
Then, the VIM formulae take the forms: 
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Where )0,(),(0 xvtxv  , )0,(),(0 xwtxw  and 0n . 

This yields the stationary conditions: 
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Hence, the Lagrange multipliers are 
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Substituting these values of Lagrange multipliers into the 
functional correction (Equation 17) gives the iterations 
formulae: 
 

,),(),((),(),(

,)),()),((),(),((),(),(

0

1

0

1













t

snn

t

xxsnn

dssxvbsxwtxwtxw

dssxwsxvfsxvsxvtxvtxv





     (20) 

 
We start with initial approximations as: 
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and then, the first iterations are: 
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etc. 

The VIM produces the solutions ),(,),( txwtxv as: 
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Where ),,(),,( txwtxv nn will be determined in a 

recursive manner.  
 
 
The ADM for the FN equations 
 
Consider the FN equations in the form: 
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The ADM assumes that the unknown functions 

),( txv and ),( txw  can be expressed by an infinite series 

in the forms: 
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Where ( , ), and ( , )n nv x t w x t  can be determined by 

using the recurrence relations: 
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Such that: 
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Then, the first iterations are:
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Table 1. Comparison between the exact and approximate (VIM) solutions for the FN equations at time T= 5. 
 

x  VIMv
 exactv

 VIMw
 exactw

 

-7.561 0.000865955 0.000865955 0.0000831702 0.0000831702 

-3.561 0.3 0.3 0.0288134 0.0288134 

-0.561 0.662823 0.662823 0.28156 0.28156 

1.439 0.130074 0.130074 0.414489 0.414489 

3.439 -0.25639 -0.25639 0.382524 0.382524 

8.439 -0.215232 -0.215232 0.193024 0.193024 

16.439 -0.0616494 -0.0616494 16.439 16.439 

22.439 -0.023095 -0.023095 0.0197795 0.0197795 

48.439 -0.000325199 -0.000325199 0.000278481 0.000278481 
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etc. 

The ADM yields the solutions ),(,),( txwtxv as: 
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Where ),,(),,( txwtxv nn  will be determined in a 

recursive manner.  
 
 
TEST PROBLEM FOR THE FN EQUATIONS 
 
We discuss the solutions of the FN equations using the 
two considered VIM and ADM methods.  
 
 

The VIM 
 

Solve the FN Equations 2 using the VIM with finite 

iterations at time 5T  . A comparison between the 

computed solutions and the exact solutions at different 
values of x are given in Table 1. We note that the VIM 

solutions converge to the exact solutions, especially 
when n  is increased. Figure 1 shows the behavior of the 

VIM solutions of FN equations at time 5T  . If the exact 

solutions are plotted on Figure 1, we will find out that the 
VIM and exact solutions curves are indistinguishable. 
 
 
The ADM 
 
Consider the same problems and use the ADM with the 
same initial conditions and use the technique discussed 
the formalism. A comparison between the exact solutions 
and ADM solutions are as shown in Table 2 and it seems 
that the errors are very small. Figure 2 shows the 
numerical solutions of the FN equations. The results 
listed in Table 3 are representing the maximum errors at 
different times of VIM and ADM which shows that the 
ADM is better than VIM in the solutions of FN equations. 
Now we show a comparison between our schemes and 
other methods as shown in Table 4.  

It is clear that the suggested methods for solving FN 
equation are the best methods than all other methods. 
Also all other methods give the solution as a discrete 
solution, but our methods give the solution as a function
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Figure 1. The approximated solutions for ),(,),( txwtxv  at time T= 5. 

 
 
 

Table 2. Comparison between the exact solutions and approximation solutions (ADM) for F-N equations 
at time T= 5. 
 

x  ADMv  exactv
 ADMw  exactw

 

-7.561 0.000865955 0.000865955 0.0000831702 0.0000831702 

-3.561 0.3 0.3 0.0288134 0.0288134 

-0.561 0.662823 0.662823 0.28156 0.28156 

1.439 0.130074 0.130074 0.414489 0.414489 

3.439 -0.25639 -0.25639 0.382524 0.382524 

8.439 -0.215232 -0.215232 0.193024 0.193024 

16.439 -0.0616494 -0.0616494 16.439 16.439 

22.439 -0.023095 -0.023095 0.0197795 0.0197795 

48.439 -0.000325199 -0.000325199 0.000278481 0.000278481 
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Table 3. The maximum errors of our suggested methods VIM and ADM. 
 

Time 

VIM  ADM 

Max. errors 

for ( , )v x t  

Max. errors 

for ( , )w x t  

 Max. errors 

for ( , )v x t  

Max. errors 

for ( , )w x t  

2.0 3.66374E-15 4.02456E-16  3.71925E-15 4.71845E-16 

4.0 1.14429E-9 1.09902E-10  1.15225E-9 1.10668E-10 

6.0 3.37523E-7 3.24191E-8  3.37523E-7 3.24191E-8 

 

 
 

Table 4. Comparison between VIM, ADM and other methods. 
 

Method T=1.60 T=10.0 

Finite difference   

C-N 0.848E-2 0.189 

Hopscotch [9] 0.557E-2 0.0506 

   

Collocation method   

Quadratic [6] 0.758E-2 0.138 

Cubic [6] 0.589E-2 0.12 

   

VIM 3.33067E-16 0.000316341 

ADM 4.44089E-16 0.000316341 



 
 
 
 
of x and t . 

 
 
Conclusion  
 
Solutions for the FN equations using VIM and ADM 
methods have been generated. All numerical results 
obtained using few terms of the VIM and ADM show very 
good agreement with the exact solutions. Comparing our 
results with those of previous several methods shows 
that the considered techniques are more reliable, 
powerful and promising. We believe that the accuracy of 
the VIM and ADM, recommend it to be a much wider 
applicability.  
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