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The primary objectives of this research are to develop simulation models for multistage production 
system under processing time and quality variation, to identify areas of potential bottleneck in 
production system and to determine the optimum production lot size for each station in a multistage 
production system under the uncertainties to minimize the WIP level and lead time and thereby the total 
system cost. A simulation model is developed based on a live case from a Malaysian company. Taguchi 
approach for orthogonal array is used in designing experiments and these are executed in WITNESS. 
The models are verified and validated by face validity, the historical data from the company and 
analytical model. The delivery performances, average lead time and work-in-progress (WIP) in the 
system, are examined for different experimental scenarios. Interaction effects and confirmation tests 
are also performed. The optimal batch sizes respectively for polishing unit (PU), quality control (QC) 
and packing stations are 8, 16 and 3 at minimum WIP and lead time. If the company uses these optimal 
batch sizes, a total of 24% improvement can be obtained. The simulation models show that Gasketing 
station is the bottleneck and batch size selection in PU station is the most critical decision in the 
system. The interaction effects are insignificant. The main contribution of this research is determination 
of the optimal lot sizes under imperfect quality of product and stochastic processing time. This 
approach can be generalized to any multistage production system, regardless of the precedence 
relationships among the various production stages in the system.  
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INTRODUCTION 
 
The classical lot sizing model which assumes the output 
of the production process is of perfect quality. However, 
in more realistic manufacturing system, non-conforming 
items may produce as time goes. These non-conforming 
items need to be screened out. The presence of defective 
product motivate in a smaller lot size. Optimum lot size 
for each stages even more complicated in multistage 
production system when cycle time for each stage is 
different. The    number   of   defectives    may    vary    in 
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Abbreviation: WIP, Work-in-progress; PU, polishing unit; QC, 
quality control; CV, coefficient of variation. 

multistage production system where the products move 
from one stage to another. Depending on proportion of 
defective items, the optimal batch sizes in the stages also 
varies. 

Multistage production is common in manufacturing 
industry. Serial production system such as assembly 
system, semiconductor fabrication facilities and packing 
system are special type of multistage production system 
(Hadjinicola and Soteriou, 2003). The fundamental 
challenge of multi-stage production is the propagation 
and accumulation of uncertainties, which influences the 
conformity of the outputs (Du and Chen, 2000). 

A simulation model is a surrogate for actually 
experimenting with a manufacturing system, which is 
often infeasible or not cost-effective. This approach is 
more    realistic    to    model a real manufacturing system  
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(Oraifige, 2006). Therefore, in this article, simulation 
model is chosen for study the multistage production 
system under quality and processing time variations. 

Uncertainty always present in manufacturing environ-
ment. These uncertainties affect the performance of a 
system, including its service level in terms of fill rate or 
delivery lead time, which in turn affects the bottom line of 
an enterprise in today’s competitive environment (Liu et 
al., 2004). For details on the factors and sources of 
various uncertainties, the authors humbly like to refer the 
readers to Wazed et al. (2009b). 

Lead time refers to the time span from material 
availability at the first processing operation to completion 
at the last operation. This time is composed of processing, 
waiting and transportation times. However, lead time may 
differ from early planned due to uncertainty. Lead time 
uncertainty may increase the total cost of the product 
because it provokes either some shortages or surplus in 
inventories which in turn increase either backlogging or 
holding cost respectively. The manufacturing lead time 
increased with an increase in batch size. This added 
complexity in the production environment. Long manufac-
turing lead time permits a buildup of buffer inventory and 
reduces customer satisfaction. However, small batch size 
may reduce the productivity and stock out and this 
increase the total expected cost. Thus, an optimum lot 
size must be obtained when processing time and quality 
are stochastic.  

Quality is defined as the degree to which a system, 
component, or process meets specified requirements or 
meets customers’ expectations (Aas et al., 1992). Quality, 
in this article, means a measure of perfection of a product. 
In the operations management literature, two concepts of 
quality stand out. One defines it as the degree of 
conformance to design specification. The second view 
considers quality of the design itself. A quality uncertainty 
of the unacceptable material condition not only affects the 
change of finished products, but also creates an 
additional time required at a resource to rework the parts. 
Such additional time spent at a resource, delays the 
planned work to be released to the resource. The factors 
of quality variation are found at Wazed et al. (2009a). 
EOQ model generally considers inventory holding costs 
for finished goods not for WIP inventories (Koo et al., 
2007). In an unbalanced manufacturing, WIP inventories 
are more important than the parts completed through the 
bottleneck machine. Porteus (1986) has developed the 
earliest EOQ model. It has shown a relationship between 
lot size and quality. Porteus research has encouraged 
many researchers to deal with modelling the quality 
improvement problems. Zhang and Gerchak (1990) have 
considered a joint lot sizing and inspection policy studied 
under an EOQ model where a random proportion of units 
are defective. Makis and Fung (1998) have studied the 
effect of machine failures on the optimal lot size and on 
the optimal number of inspections in a production cycle.  
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Ouyang et al. (2002) have investigated the lot size, 
reorder point inventory model involving variable lead time 
with partial backorders, where the production process is 
imperfect. Chan et al. (2003) provided a framework to 
integrate lower pricing, rework and reject situations into a 
single EPQ model. To identify the amount of good quality 
items, imperfect quality items and defective items in each 
lot, a 100% inspection is performed. Ben-Daya and 
Rahim (2003) developed a multistage lot-sizing model for 
imperfect production processes. The effect of inspecting 
errors in screening non-conforming items at each stage 
has been incorporated. 

The effects of the reworking of defective items on the 
economic production quantity (EPQ) model with back-
logging as studied by Peter Chiu (2003). In his study, a 
random defective rate is considered and when regular 
production ends, the reworking of defective items starts 
immediately. Ouyang et al. (2007) have investigated the 
integrated vendor-buyer inventory problem. In their model, 
it is assumed that an arrival order lot may contain some 
defective items and the defective rate is a random 
variable. Also, shortage is allowed and the lead time is 
controllable and reducible by adding extra crashing cost.  

Yang and Pan (2004) have developed an integrated 
inventory model that minimizes the sum of the ordering/ 
setup cost, holding cost, quality improvement investment 
and crashing cost. They simultaneously optimize the 
order quantity, lead time, process quality and number of 
deliveries while the probability distribution of the lead time 
demand is normal.  

There are few batch sizing models those explicitly take 
lead time into account in a stochastic manufacturing 
system. In these researches, the manufacturing facility is 
usually modelled by a queuing system. Karmarkar (1987) 
has examined the relationships between manufacturing 
lead times, WIP inventories and batch size. Karmarker et 
al. (1992) have presented a multi-item batching heuristic 
with the objective of minimizing the queuing delay. They 
develop upper and lower bounds on the optimal batch 
size. Based on the bounds, three batch sizing heuristics 
are presented and tested.  

Hong (1995) has developed a mathematical model to 
study the effect of reduction in manufacturing lead time 
and increase in process quality on lot size computation 
and total relevant cost. Kuik and Tielemans (1999) 
presented a batch sizing model that minimizes the 
average queuing delay for a multi-item, single-machine 
work-centre. Later, they investigated the relationship 
between batch size and lead time variability.  

The major limitations of the earlier studies are (i) the 
combined effects of quality and lead time uncertainties in 
a multistage production system are ignored; (ii) None of 
the studies have considered a multistage production 
problem in determining the optimal lot size under the 
uncertainties; (iii) Most models are mathematical model 
which can address one type of uncertainty at a time;  
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Figure 1. Manufacturing cell layout of the factory. 

 
 
 
(iv) None of them brought out live case study. Thus this 
article deals with a multistage lot sizing model in an 
imperfect production process taking processing time as 
one of the decision variable. The lot size is optimized with 
the minimization of the two cost factors; WIP cost and 
long lead time cost in all stages in the production system. 
 
 
RESEARCH/ EXPERIMENTAL DESIGN 
 
In this article, various research scenarios are created based on a 
Malaysian company under quality and processing time uncertainties. 
The company, namely ABC (a given name), is producing air filter 
products for diverse air filtration system. ABC also produces 
chemical filtration system to filter the unwanted gases. The 
production line in the company can be divided into primary and 
secondary filter production lines. The secondary filter production 
line is under this research and the product is AAI (a given name) air 
filter. Parts and material required to produce AAI filters are media, 
separators, gasket, bond, cell sides and gel seal. The product 
undergoes eight stages; therefore, it represents a multistage 
production system. Fixed factors such as number of stages, mean 
processing time, average defective rate and other variables that are 
required in this research are collected from the floor and face-to-
face conversation. The manufacturing cell layout of the system is 
shown in Figure 1. 

Polishing unit (PU), quality control (QC) and packing stations 
process a batch of parts at a time. The main target of this article is 
to find optimum batch sizes at these stations. Efficiency test of the 
filters is done in QC station. If the filter is in good condition, the filter 
will be sent to the next buffer for packing process. Repairs on any 
defect are performed at rework station. The filter will scrap if the 
quality is not accepted or the repair work fails to ensure its 
efficiencies. 

In this study, the decision variables are the production batch 
sizes in every stage (viz. PU, QC and packaging) and  the  noise  or 

uncertain factors are processing time and defective proportion of 
items. The effects of these factors will give a more realistic and 
mimic to the real system because system is normally subject to 
these uncertainties. By varying the batch in stages, the waiting time 
and the WIP level are adjusted for an optimized total cost and 
reasonable machine productivity. Four levels of the factors are 
expected to have better chance of identifying the influence of both 
linear and nonlinear behaviors. The ranges of factor levels are 
selected based on capacity limitation and in consultation with the 
engineers in the company (Table 1). 

Since this study contains three control factors of four levels and 

two noise factors of three levels for each, thus ( ) 57634 23 =×  
design points are required in case of full (or complete) factorial 
design. In order to reduce the size of experimentation, a partial 
factorial design is applied using orthogonal array. In this study, the 

5
16 4L  is the most suitable array, because it fulfills the requirement. 

This orthogonal array can accommodate five control factors of four 
levels each. It is possible to assign three control factors (batch size) 
to the first three columns and the remaining columns are left empty 

for the error of experiment. A total of ( ) 144316 2 =× simulation is 
needed to obtain optimum combination batch sizes in stages. Each 
experiment is simulated with nine replications (two noise factors of 
three levels each).  

A second set of experiments are designed using the same 
method with only two control factors (viz. batch size in station PU 
and in station QC) to test their interaction effect on WIP level and 
lead time. The batch size in packing station is kept fixed at 5.  

Mean value, signal to noise ratio and ANOVA are used to see the 
main and interaction effects. The average value and its signal to 
noise ratios of WIP level and lead times have been observed and 
analyzed. In order to evaluate the experimental results statistically, 
analysis of variance (ANOVA) is applied. Statistical significance 
tests of effects are made at 5% significance level. The smaller, the 
better the characteristic used for WIP and lead times. 

When the optimum level of batch sizes is selected, a confirmation  
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Table 1. Control factors and their levels for Taguchi method. 
  
Control factors (batch size) Level 1 Level 2 Level 3 Level 4 
PU 8 10 20 25 
QC 16 20 24 28 
Packing 1 3 5 8 

 
 
 

Table 2. Defective fraction of the company for past few months. 
 

Month Reject Output Defective fraction (%) 
January 1 712 0.140 
December  2 930 0.215 
November  10 1368 0.731 
October  3 1439 0.208 
September  0 905 0 
Average: 0.259. Standard Deviation 0.278. 

 
 
 

Table 3. Manufacturing processing time for each station. 
  

Station Av. setup time per piece (s) Av. setup time per batch (s) Av. cycle time (s) 
Folding 13.4 279.0 311.8 
Assembly - - 122.6 
Strapping - - 105.6 
PU 9.3 355.1 345.2 
Gasketing - - 374.5 
Packing - 36.0 75.4 
QC 12.0 11.1 12 

 
 
 
test is performed to see whether the level of batch sizes can offer 
any improvement. The result from confirmation test that lies within 
the range of the confidence interval is said to be reproducible and 
able to adapt in real situation. 
 
 
Data collection and validation 
 
In order to build the simulation model and to set the initial level of 
various factors in the model, data are needed to be collected. The 
data includes processing time at each stages, setup time, average 
defective proportion, manufacturing layout etc. Table 2 shows the 
number of rejected filter for September 2008 to January 2009 
periods.  

The time required to position each part into fixed places before 
operation is carried out is set up time per piece. Setup time per 
batch is the time to load the batch material and prepare the 
machine. Processing time is the period during which a part is 
actually worked on. The average setup time per piece/batch and the 
average cycle time are shown in Table 3. 

Validation of data is performed to ensure that these are for the 
right issue and useful. The recorded data were scrutinized by the 
production engineers who are familiar with the specific processes 
and adjustment has been taken.  

The range of coefficient of  variation  (CV)  of  processing  time  is  

chosen in between the CV calculated from the historical processing 
time. Thus, three levels of CVs are tested: 0.05 (low stochastic), 0.1, 
0.2 (high stochastic). Based on the historical data, three defective 
rates are considered: 0.26% (sample mean), 0 (perfect), 0.74% 
(highest).  

Based on the manufacturing cell in Figure 1 and the collected 
data, a simulation model is developed in WITNESS (Figure 2). 
Finally, the authors used the WIP (the average number of product 
that has not been completed but has already undergone the first 
process) and lead time (average time a raw material needed to 
process before becoming a final product) for measuring the 
performance. 
 
 
Model validation 
 
The model validation is performed to test the overall accuracy of the 
model and the ability to meet the objectives. In this study, the 
simulation model is verified by historical data, face validity and 
analytical modeling. Part of historical data such as defective rate 
and processing time is used to build the model and the total number 
of throughput is used to determine whether the model behaves as 
the system does. Pre-simulation shows that the total number of 
throughput is about the same as in the real system. The authors 
have  authenticated  the  models   by   an   expert   and   authorized  
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Figure 2. WITNESS model of entire assembly process. 
 
 
 

Table 4. Comparison of throughput/day and lead time among real system/simulation/analytical model. 
 

 Average throughput per day Average manufacturing lead time (min) 
Real system 50 - 60  
Simulation  55 29.74 
Analytical model  31.52 

 
 
 
WITNESS trainer for face validity. The suggestions and proposed 
corrections are adjusted and verified.   

Since the manufacturing system is a set of elemental system 
composed of a number of various interconnected queues, thus 
these multi stages are modeled as network of queuing. This 
analytical model is used to calculate the waiting time in the system. 
The total manufacturing lead time for a part can be calculated by 
summing the total waiting time and processing time. This analytical 
solution is then compared with the simulation result. Table 4 shows 
the comparison of the outcomes of the models. The variation in 
average manufacturing lead time might be due to the assumptions 
made in analytical model. 
 
 
DATA ANALYSIS AND DISCUSSION 
 
The authors have conducted a total of 144 experiments 
for   the   first   set   of   experiments.  Table 5  shows  the 

summary of experimental results for the average WIP 
level and lead time with corresponding S/N ratio for each 
setting. The average of lead time and WIP level are fall 
within 613 ±  61 and 60 ±  6 respectively.  
Since the experiment design is orthogonal, the effect of 
batch size at each station for different levels is separated 
out. Table 6 shows the response for mean and S/N ratio 
for average WIP level and the same for average lead 
time is in Table 7. Since the characteristic of these 
factors are the smaller the better, the batch sizes are 
chosen based on smaller mean and larger the S/N ratio. 
Because, the larger the S/N ratio the smaller the variance 
are around the desired value. 

Figures 3 and 4 shows the effects of variation in levels 
of control factors for (a) mean value and (b) S/N ratio of 
WIP  level and lead time respectively. It is pellucid that an  
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Table 5. Experimental result for each sample. 
 

 Batch size in station Average lead time Average WIP level 
Experiment PU QC Packing Mean S/N smaller Mean S/N smaller 

1 8 16 1 559.98 -54.96 55.37 -34.87 
2 8 20 3 566.12 -55.06 55.98 -34.97 
3 8 24 5 582.80 -55.31 57.62 -35.22 
4 8 28 8 603.01 -55.61 59.62 -35.51 
5 10 16 3 562.63 -55.00 55.63 -34.91 
6 10 20 1 585.63 -55.35 57.90 -35.26 
7 10 24 8 596.19 -55.51 58.95 -35.42 
8 10 28 5 606.17 -55.65 59.93 -35.56 
9 20 16 5 614.09 -55.76 60.72 -35.67 
10 20 20 8 636.88 -56.08 62.97 -35.99 
11 20 24 1 636.90 -56.08 62.98 -35.99 
12 20 28 3 646.00 -56.20 63.88 -36.11 
13 25 16 8 639.55 -56.12 63.24 -36.03 
14 25 20 5 643.67 -56.17 63.64 -36.08 
15 25 24 3 653.82 -56.31 64.65 -36.22 
16 25 28 1 674.02 -56.57 66.65 -36.48 

 
 
 

Table 6. Response Table for average WIP level. 
 

Mean PU QC Packing S/N ratio PU QC Packing 
Level 1 57.15 58.74 60.72 Level 1 -35.14 -35.37 -35.65 
Level 2 58.10 60.12 60.03 Level 2 -35.29 -35.57 -35.55 
Level 3 62.64 61.05 60.48 Level 3 -35.94 -35.71 -35.63 
Level 4 64.54 62.52 61.19 Level 4 -36.20 -35.92 -35.74 
Max 64.54 62.52 61.19 Max -35.14 -35.37 -35.55 
Min 57.15 58.74 60.03 Min -36.20 -35.92 -35.74 
Diff 7.40 3.78 1.16 Diff 1.06 0.55 0.18 
Rank 1 2 3 Rank 1 2 3 
Opt 1 1 2 Opt 1 1 2 

 
 
 

Table 7. Response Table for lead time. 
 

Mean PU QC Packing S/N ratio PU QC Packing 
Level 1 577.98 594.06 614.13 Level 1 -55.23 -55.46 -55.74 
Level 2 587.65 608.08 607.14 Level 2 -55.38 -55.67 -55.64 
Level 3 633.47 617.43 611.68 Level 3 -56.03 -55.80 -55.73 
Level 4 652.76 632.30 618.91 Level 4 -56.29 -56.01 -55.83 
Max 652.76 632.30 618.91 Max -55.23 -55.46 -55.64 
Min 577.98 594.06 607.14 Min -56.29 -56.01 -55.83 
Diff 74.79 38.24 11.76 Diff 1.06 0.55 0.18 
Rank 1 2 3 Rank 1 2 3 
Opt 1 1 2 Opt 1 1 2 
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Figure 3. Response graph for (a) mean value and (b) S/Nratio of WIP level. 

 
 
 

 
 
Figure 4. Response graph for (a) mean value and (b) S/N ratio of lead time. 

 
 
 

Table 8. ANOVA for Mean value of WIP level. 
 
Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 1362.74 3 454.25 88.33 1347.32 57.33 
QC 272.91 3 90.97 17.69 257.49 10.96 
Packing 25.35 3 8.45 1.64 9.92 0.42 
Error 689.14 134 5.14 1.00 735.43 31.29 
St 2350.15 143 16.43  2350.15 100.00 
Sm 528955.59 1     
ST 531305.74 144     

 
 
 
increase in the batch size in both PU and QC stations 
yield an increase in WIP level (Figure 3a) and lead time 
(Figure 4a) in the system. For packing station, they 
decrease for level 1 to level 2 but increase for level 2 to 4 
(Figure 3a and 4a). The scenarios are completely 
reversed, as it is expected, in case of  S/N  ratios  (Figure 

3b and 4b). Thus, based on the figures and response 
tables (Table 6 and 7), the batch sizes for PU, QC and 
packing stations are chosen as 8, 16 and 3, respectively. 

Tables 8 and 9 show the ANOVA for average WIP level 
in mean and S/N ratio respectively. These tables show 
the  relative  importance  of  the  control  factors  affecting 
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Table 9. ANOVA for S/N ratio for WIP level. 
 

Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 3.118 3 1.039 805.613 3.114 81.33 
QC 0.635 3 0.212 163.992 0.631 16.48 
Packing 0.069 3 0.023 17.709 0.065 1.69 
Error 0.008 6 0.001 1.000 0.019 0.51 
St 3.829 15 0.255  3.829 100.00 
Sm 20326.909 1     
ST 20330.737 16     

 
 
 

Table 10. ANOVA for mean of lead time. 
 

Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 139284.79 3 46428.26 2095.50 139218.32 80.59 
QC 27896.91 3 9298.97 419.70 27830.45 16.11 
Packing 2599.30 3 866.43 39.11 2532.83 1.47 
Error 2968.93 134 22.16 1.00 3168.33 1.83 
St 172749.93 143 1208.04  172749.93 100.00 
Sm 54104667.47 1     
ST 54277417.40 144     

 
 
 

Table 11. ANOVA for S/N ratio for lead time. 
 

Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 3.11 3 1.04 788.67 3.11 81.30 
QC 0.63 3 0.21 160.71 0.63 16.48 
Packing 0.07 3 0.02 17.45 0.06 1.70 
Error 0.01 6 0.00 1.00 0.02 0.52 
St 3.82 15 0.25  3.82 100.00 
Sm 49702.67 1     
ST 49706.49 16     

 
 
 
the WIP level. Both mean and signal to noise ANOVA 
indicates that batch sizes in stations PU and QC have 
impacts on average WIP level (for mean, 57.33 and 
10.96% whereas for S/N ratio, 81.33 and 16.48%, 
respectively). However, the batch size in packing station 
shows a little influence on average WIP level (only 0.42% 
for mean and 1.69% in S/N ratio). The cycle time in 
Gasketing station (just after PU) is the highest among all 
stations. This station (that is, Gasketing) is the bottleneck 
of the system. Thus, the decision in choosing the right 
batch size in station just before the bottleneck (PU station 
in this case) is very crucial. This is why PU yields the 
largest percentage. F-values for PU and QC are 
exceeded the critical limits (2.67 and 4.67 for mean and 
S/N ratio, respectively), but it is within the limit in case of 
packing station. This confirms that the  variance  effect  of 

these two individual factors (batch size for PU and QC) 
are significantly different from the error effect. Hence, the 
variation in WIP level is truly accounted by the change in 
the value of the batch size in stations PU and QC and the 
deviation due to experimental errors is small. Based on 
response table (Table 6) and ANOVA (Tables 8 and 9), 
the optimal batch sizes which yield the lowest WIP level 
are 8, 16 and 3 for stations PU, QC and packing in order. 

Tables 10 and 11 show the ANOVA for mean and S/N 
ratio for lead time, respectively. The percentage contribu-
tions due to error are 1.47 and 0.52% for mean and S/N 
ratio in order. These low percentages indicate that no 
important factor is omitted from experiments. PU yields 
the highest contribution (80.69% for mean and 81.30% 
for S/N ratio) and followed by station QC (16.11 and 
16.48%   for   mean   and   S/N   ratio,   respectively). The  
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Table 12. Experimental results of interaction effects for mean values of WIP and Lead time. 
 

Experiment Batch size used in station Average 
PU QC Packing WIP level (quantity) Lead time (min) 

1 8 16 

5 

55.02 556.52 
2 8 20 55.98 566.13 
3 8 24 57.52 581.73 
4 8 28 58.52 591.86 
5 10 16 55.63 562.63 
6 10 20 57.41 580.64 
7 10 24 57.93 585.89 
8 10 28 59.46 601.35 
9 20 16 60.09 607.68 
10 20 20 62.86 635.77 
11 20 24 62.41 631.13 
12 20 28 63.88 646.02 
13 25 16 62.37 630.80 
14 25 20 63.63 643.52 
15 25 24 64.65 653.82 
16 25 28 66.18 669.27 

 
 
 
packing station shows little effect on lead time since its 
contribution is only 1.5%.  

The critical F-values are 2.67 and 4.67, respectively for 
mean and S/N ratio, like earlier. The F values show that 
the batch sizes for three stations (i.e. PU, QC and 
Packing) are significant since the F values for these three 
stations are higher than the critical F value.  

Based on ANOVA (Tables 10  and  11) and response 
table (Table 7), the optimal batch sizes which yield the 
lowest throughput time are 8, 16 and 3 for station PU, QC 
and packing respectively. 
 
 
Interaction effect  
 
As described earlier, a second set of experiments is 
developed with only the batch sizes in stations PU and 
QC as control factor to look into their interaction effects. 
Batch size in packing station is kept fixed (as the 
contribution is little) at 5 and other parameter remains 
same as in the first set of experiments. Like earlier, 

5
16 4L

 orthogonal array is used. The mean values of 
average WIP level and average lead time with respect to 
their batch sizes in each experiment are shown in Table 
12.  

For both WIP level and lead time, there is a percentage 
difference of 13.4% when comparing experiments 1 and 
13, whereas it is only 6.4% for experiments 1 and 4. 
Experiments 1 and 13 are performed with same batch 
sizes (16 units) in QC station but different in station PU 
(which are recorded as 8 and 25, respectively). Other 
hand, for experiments 1  and 4,  the  batch  sizes  (8 units) 

are same in station PU but varying in station QC (16 and 
28 units). The percentage difference, higher in former 
than the latter case, indicates that change in batch sizes 
in PU station has more influence on WIP level compared 
to any change in batch size in station QC.  

The ANOVA results for interaction effects of batch 
sizes (in stations PU and QC) for mean and S/N ratio for 
WIP level are in Tables 13 and 14 and the same for lead 
time are in Tables 15 and 16 in order. ANOVA shows that 
batch size in station PU contributes 59.5% for mean 
(Table 13) and 83% S/N ratio (Table 14). The same are 
10.44% (Table 13) and 15.28% (Table 14) for the QC 
station. For lead time the contributions are 83 and 15% 
for  batch sizes in stations PU and QC, respectively for 
mean and S/N ratio (Tables 15 and 16). It means that 
change in the batch size in station PU has a greater 
impact on the average WIP level and lead time compared 
to change in the batch size of station QC. These findings 
confirm the results of the first set of experiments.  

For WIP level, the sum of square (SSQ) value for the 
interaction effect of PU and QC is very small (2.83) 
compared to the SSQ for error (670.93). Moreover, the F 
value for interaction effect is smaller than critical F value. 
For average lead time, the F-value of the interaction 
effect is significant but insignificant for error effect. The 
contribution of interaction effect is 0.14% only. These 
facts indicate that the contribution of the interaction 
effects of batch sizes in stations PU and QC are 
insignificant. Therefore, interaction effect of batch sizes in 
stations PU and QC can be omitted from the experiments. 
The result from the first set of experiments is thus can be 
confirmed to offer an optimum solution.  
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Table 13. ANOVA results for interaction effect for mean WIP level. 
 

Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 1406.80 3 468.934 93.66 1391.78 59.50 
QC 259.10 3 86.367 17.25 244.08 10.44 
PU X QC 2.83 3 0.944 0.19   
Error 670.93 134 5.007 1.00 703.27 30.06 
St 2339.67 143 16.361  2339.67 100.00 
Sm 522223.02 1     
ST 524562.69 144     

 
 
 

Table 14. ANOVA results for S/N ratio for interaction effect for WIP level. 
 

Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 3.249 3 1.083 306.54 3.24 83.36 
QC 0.604 3 0.201 57.02 0.59 15.28 
PU X QC 0.010 3 0.003 0.98   
Error 0.021 6 0.004 1.00 0.05 1.35 
St 3.885 15 0.259  3.89 100.00 
Sm 20263.057 1     
ST 20266.942 16     

 
 
 

Table 15. ANOVA results for interaction effect for mean lead time 
 
Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 143710.81 3 47903.60 3431.23 143668.93 83.35 
QC 26489.18 3 8829.73 632.45 26447.30 15.34 
PU X QC 290.88 3 96.96 6.94 248.99 0.14 
Error 1870.78 134 13.96 1.00 1996.43 1.16 
St 172361.65 143 1205.33  172361.65 100.00 
Sm 53415365.98 1     
ST 53587727.62 144     

 
 
 

Table 16. ANOVA results for S/N ratio for interaction effect for lead time 
 
Source SSQ DOF VAR Ftest SSq Rho (%) 
PU 3.240 3 1.08 302.59 3.23 83.32 
QC 0.604 3 0.20 56.41 0.59 15.31 
PU X QC 0.010 3 0.00 0.97   
Error 0.021 6 0.00 1.00 0.05 1.37 
St 3.876 15 0.26  3.88 100.00 
Sm 49602.704 1     
ST 49606.580 16     

 
 
 
Predicted values and expected gains 
 
The second set of experiments confirmed that the effect  
of interaction of batch sizes in stations PU and QC is not  
significant. Hence, the optimum level of batch sizes in PU  

and QC are 8 and 16, respectively, as selected based on 
the individual average effect in the first set of experiments, 
are justified. The optimal level of the design parameters 
is used to predict and to verify the improvement of the 
quality  characteristics. The predicted value for mean and 
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Table 17. Predicted values and expected gains for WIP and lead time. 
 
 Average WIP level Average lead time 
 Mean (units) S/N ratio (dB) Mean (min) S/N ratio (dB) 
Predicted value 54.704 -34.779 553.252 -54.871 
Expected Gain 8.46 1.24 85.54 1.24 

 
 
 

Table 18. Upper and lower limit for WIP level and lead time. 
 

Average WIP level Average lead time 
Mean S/N ratio Mean S/N ratio 

Upper limit Lower limit Upper limit Lower limit Lower limit Upper limit Lower limit Upper limit 
53.130 56.280 -34.850 -34.710 549.980 556.520 -54.940 -54.800 

 
 
 

Table 19. Average WIP level and lead time before and after optimization  
 

Experiment 
Average WIP level Average lead time 

Before 
(Opt.) 

After 
(Opt.) Improvement Units Before 

(Opt.) 
After 
(Opt.) Improvement Units 

1 61.11 53.43   635.67 555.76   
2 61.36 53.46   638.29 556.05   
3 60.95 53.47   634.06 556.16   
4 61.88 53.97   637.11 555.61   
5 62.16 53.97   639.95 555.61   
6 61.71 53.99   635.3 555.85   
7 66.39 57.62   642.5 557.63   
8 66.67 57.66   645.21 558.03   
9 66.24 57.65   641.04 557.93   
Mean 63.16 55.02 8.14 Min 638.79 556.51 82.28 units 
Standard 
Deviation 2.483 1.977 0.505 Min 3.687 1.033 2.654 units 

S/N Ratio -36.02 -34.82 1.199 dB -56.11 -54.91 1.198 dB 
Gain in Loss 
Reduction   0.241    0.241  

 
 
 
S/N ratio for WIP level and lead time as well as expected 
gains using the optimal batch sizes are calculated. Table 
17 shows the predicted values and expected gains for 
average WIP level and average lead time. 
The upper and lower limits of estimated performance at 
optimum condition with 95% confidence level are shown 
in Table 18. The average results for population of 
samples tested at optimum condition is expected to be 
within these ranges. Since the confidence interval is 
calculated at 95%, if several such sets of experiments are 
performed, 19 out of 20 of the sets are expected to fall 
within these limits.  

Confirmation experiment 
 
A confirmation test is carried out to verify the 
experimental outcomes. Table 19 shows the comparison 
of the WIP levels and lead time before and after 
optimization. The result of confirmation experiments gives 
a mean value of 55.02 units and an S/N ratio of -34.82 dB 
for WIP level and 556.51 min and S/N ratio of 54.91 dB 
for lead time. The mean value and S/N ratio after 
optimization are fall within the limit of the confidence 
interval. Hence, it is believed that the significant factors 
as well  as the appropriate levels for obtaining the desired  
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result are properly chosen. From the result of confirma-
tion experiment, the gain in mean is 8.14 units and in S/N 
ratio is 1.2 dB. Both the values are about the same as the 
conservative gain calculation in Table 17.  The gain in 
loss reduction is 0.241. It implies that there would be a 
24.1% improvement in the process.  
 
 
Conclusions 
 
From the experiences of the analysis and from the 
outcomes of the models, the authors would like to 
conclude that – 

The developed simulation models for the production 
system of the company under consideration are verified 
and validated as described. The comparison shows that 
simulated deliveries are acceptable for further 
investigations.  

The results show that Gasketing station is the 
bottleneck of the system and selection of batch size in 
PU station is the most critical decision. 

The interaction effect of batch sizes at PU and QC 
stations is not statistically significant. Therefore, the 
optimal batch sizes which yield the lowest WIP level and 
lead time are 8, 16 and 3 for stations PU, QC and 
packing in order. 

The percentage contributions due to error (less than 
2%) indicate that no important factor is omitted from 
experiments. The batch size at PU yields the highest 
contribution (80.69% and 57.33%) and followed by 
station QC (16.11% and 16.48%) on lead time and WIP 
level respectively. The packing station shows little effect 
on lead time (only 1.5%) and WIP (0.42%). 

The confirmation test ensures that the significant 
factors (that is, the batch sizes in stations PU, QC and 
packing) as well as the appropriate levels for obtaining 
the desired result are properly chosen. Total of 24% 
improvement is possible if the optimum batch sizes are 
used in the system.  
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