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In this paper, in order to increase the accuracy of interacting multiple model (IMM) algorithm in 
presence of low and medium maneuvers, a new IMM algorithm based on Augmented Kalman Filter 
(AUKF) has been proposed. The accuracy of the IMM algorithm depends upon having a set of filters 
with motion models which are similar at all times to the real target situations. One way to increase the 
accuracy of this estimator is to substitute more accurate filters instead of the Standard Kalman Filter 
(SKF) in it. In order to improve the performance of IMM algorithm, this paper proposes to replace each 
SKF in the IMM algorithm with the AUKF. Due to the better accuracy of the AUKF than SKF in presence 
of low and medium maneuvers, this substitution will improve the performance of IMM algorithm in these 
maneuvering levels. The Monte-Carlo simulation results show the accuracy of the proposed method. 
 
Key words: Maneuvering target tracking, interacting multiple model (IMM), standard kalman filter (SKF), 
augmented kalman filter (AUKF). 

 
 
INTRODUCTION 
 
Standard kalman filter (SKF) is very popular for state 
estimation problems and provides good tracking accuracy 
in non-maneuvering mode (Lee et al., 2004, 2005; Bahari 
et al., 2011). However, it does not have desirable 
accuracy in presence of maneuver.  There are two main 
approaches to reduce this problem (Lee et al., 2004): the 
Input Estimation (IE) approaches and the Multiple Model 
(MM) approaches. 
 
 
THE IE APPROACH 
 
The IE approach was developed, in order to aid the SKF 
to cope with the unknown target maneuvers. This 
approach was introduced by Chan et al. (1979) and 
includes two main steps. In the first step, the acceleration 
is estimated by applying the least-square estimation on 
the measurement residuals, and finally the estimated 
acceleration  in  conjunction  with  the  SKF  are  used  to  
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produce new estimation. This approach was based on 
the constant input assumption and various literatures 
have developed it on the basis of constant velocity or 
acceleration consideration (Blair, 1993; Wang and 
Varshney, 1993). However, this method has not been 
successful because the real targets move with non-
constant velocity or acceleration. To aid the IE 
approaches to cope with this trouble, Khaloozadeh and 
Karsaz (2009) have recently proposed a new SKF-based 
target tracker with IE approach. This method is an 
Augmented Kalman Filter (AUKF), and it has obtained 
lots of attention (Bahari and Pariz, 2009; Bahari et al., 
2009, 2011; Beheshtipour and Khaloozadeh, 2009; Yang 
and Ji, 2010) due to the elimination of the constant input 
assumption in the previous IE approaches. The AUKF 
has a special form in the state space equation and 
estimates target acceleration along with the other states, 
simultaneously. This estimator has satisfactory tracking 
performance in low and medium maneuver levels.  
 
 

THE MM APPROACH 
 
The second approach  to  overcome the  shortcoming   of  
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SKF in presence of maneuver includes MM approaches. 
The MM algorithms are developed due to the behavior of 
a target cannot be specified by a single model precisely. 
Among different MM techniques (Krishnamurthy and 
Evans, 1998; Li and Bar-Shalom, 1996; Bar-Shalom et 
al., 1989) the Interacting Multiple Model (IMM) algorithm 
is an interesting one to the excellent trade-off between 
complexity and performance (Mazor et al., 2000; Kim and 
Kim, 2007). This estimator includes the important areas 
of application such as: traffic forecasts (Zhang and Liu, 
2009), Underwater Target Tracking (Xu et al., 2008), 
ground target tracking (Guo et al., 2008) and tactical 
ballistic missile tracking (Cooperman, 2002). However, 
the major requirement of this estimator is that it should 
have a set of filters with motion models similar to the real 
target situations at all times. The main weakness of this 
algorithm occurs when target undergoes an unknown 
acceleration levels and none of the existing elemental 
filters fit well. Therefore, in order to achieve good 
performance, a large number of models may be required 
to cover all possible system behavior patterns. This 
requirement is not reasonable in real-time applications, 
due to the lack of computational resources (Li and Bar-
Shalom, 1996).  Due to the modularity properties of the 
IMM algorithm (Mazor et al., 2000), one way to cope with 
this trouble is to implement better filter into the IMM 
algorithm instead of SKF (li and He, 1999). Such 
substitutions can be found in different literatures (Wu and 
Cheng, 1994; Boers and Driessen, 2003; Jwo and Tseng, 
2009). For example, in the work of Wu and Cheng 
(1994), a nonlinear IMM algorithm has been proposed 
that are obtained by the replacement of the SKF in the 
IMM algorithm with the Masreliez filter. This nonlinear 
IMM algorithm can effectively handle maneuvering target 
tracking in presence of non-Gaussian observation noise.  

By using the above facts, this paper proposes a new 
maneuvering tracking algorithm which combines the 
benefits of both AUKF and IMM algorithms, 
simultaneously. In this method, the SKFs in the IMM 
algorithm are substituted with the AUKFs. By doing this 
substitution, the proposed AUKF-based IMM (IMMAUKF) 
algorithm has the complexity comparable with that of the 
AUKF and the tracking accuracy with that of the IMM 
algorithm. Due to the better accuracy of AUKF than SKF 
in presence of low and medium maneuvers, the proposed 
IMMAUKF algorithm yields better accuracy than 
conventional IMM algorithm in these maneuvering levels. 
 
 

THE PROBLEM STATEMENT 
 

The state and measurement equations of a maneuvering 
target in a two-dimensional plane are describes as 
follows: 
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Where; )(nX is the state vector, )(nz is the observation 

vector, )(nu is the unknown acceleration vector, 

)(nw  is the white system driving uncertainty,  )(nv is the 

white observation uncertainty, )(nQ is the process 

covariance matrix, )(nR  is the measurement covariance 

matrix.  
The state and acceleration vectors are defined as: 
 

 Tyx nvnynvnxnX )()()()()( 
 

 
T

yx nananu )]()([)( 
 

 

In the aforementioned equations, F , G , C  and H  

are: 
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where, T  is the time interval between two consecutive 
measurements. Due to the uncertainty in the acceleration 
vector, tracking a maneuvering target is very difficult. One 
successful method to cope with this trouble is the 
Augmented Kalman Filter (AUKF) which is described 
subsequently in ‘The AUKF algorithm’

 

 
 
THE AUKF ALGORITHM 
 
Augmented kalman filter (AUKF) has been developed 
based on the combination of Fisher and Bayesian 
uncertainties (Khaloozadeh and Karsaz, 2009). This 
method considers the acceleration as an additive state 
term in the state space equation and estimates the 
acceleration and the original states simultaneously. This 
method is described as follows: 
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According to the equations (3) and (4), the new 
augmented state space and measurement equations can 
be derived as: 
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The optimal target maneuver estimator for the 

abovementioned augmented system is: 
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Where, the kalman gain is computed as: 
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The augmented process noise covariance and the 
measurement noise covariance and the cross-covariance 
between them are calculated according to the following 
equations: 

 
 








































21

21

11

11

22
1

1

0

)()(

)()(

)]()([
)(

)(

nn,

nn,
nRnT

nTnQ

nVnW
nV

nW
E

Aug
T
Aug

AugAug

T
AugAug

Aug

Aug

 

Amirzadeh et al.          6789 
 
 
 

 

)11()}()({

)}()({)(

QnwnwE

nWnWEnQ

T

T
AugAugAug





                                       (11)
  

 

)12()(

)}()({)(

nRHHGQG

nVnVEnR

TT

T
AugAugAug





                                (12)
  

   )13()()( TTT
AugAugAug HQGVnWEnT 

                            (13)

 

 
More details about AUKF can be found in (Khaloozadeh 
and Karsaz, 2009, Bahari et al., 2009a,b; Beheshtipour 
and Khaloozadeh, 2009; Yang and ji, 2010). 
 
 
The IMMAUKF algorithm  
 

In many target tracking problems, it is difficult to describe 
the behavior of the target by using a single model 
completely. In order to cope with this trouble, Multiple 
Model (MM) approaches have been proposed. The MM 
approaches use a bank of filters, where each filter is 
matched to a specific target motion mode and the overall 
estimation is computed by the weighted sum of the 
estimates from each filter (Punithakumar et al., 2008). 
Among different MM approaches the Interacting Multiple 
Model (IMM) algorithm is an interesting one and it has 
applied to many important target tracking problems. Due 
to the modularity properties of the IMM algorithm, one 
major direction to improve the performance of this 
algorithm is to implement more accurate set of filters 
instead of the SKF in it (li and He, 1999). By use of this 
fact, this paper proposes to substitute each SKF in the 
IMM algorithm with the AUKF. Due to the better accuracy 
of AUKF than SKF in presence of low and medium 
maneuvers, this substitution will improve the performance 
of IMM algorithm in these maneuvering situations. The 
proposed AUKF-based IMM (IMMAUKF) algorithm has 
the complexity comparable with that of the AUKF and the 
performance with that of the IMM algorithm. Figure 1 
shows the structure of the proposed method. 

 Similar to the conventional IMM algorithm, the 
proposed IMMAUKF consists of four major steps: mixing, 
filtering, calculating of each mode probability, and state 
fusion (Bar-Shalom et al., 1989). One cycle of this 
method is summarized as follows: 
 
 

Step 1:  Mixing of the estimates  
 

In this step, the previous cycle of estimated states by 
each filter and its corresponding error covariances are 
merged together. In the following equations, the 

)11(ˆ  nnX i
Aug

 
and )11(ˆ  nnp i

Aug
 

are the estimated 

state of the i th model ( modelsofnumberNN,1,2,...,i  ) 

and its corresponding error covariance, respectively.  
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Figure 1. The proposed IMMAUKF method. 

 
 
 
These variables are obtained by use of the AUKF at time 

1n  after the measurement update. One cycle of this 

step is as follows: 
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In above equations,
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)11(  nnX
j
Aug and )11(  nnP

j
Aug are mixing probability, 

model transition probability for switching from i th model 

to j th one, normalization constant, model probability of 

the i th model at time 1n , mixed state estimate 

matched to j th  model and its corresponding mixed error 

covariance at time 1n , respectively. 

Step 2: Filtering algorithm 
 

The update equations for each model are performed  
according to the AUKF.  
 
 

Step 3: Update model probability 
 

The probability of the mode in effect is found by the 

likelihood function )(nj . This function and the update 

model probability of the
 

j th model, )(nj , are 

calculated as: 
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Where, )(
~

nZ
j
Aug  and )(nS

j
Aug  are the measurement 

residual and residual covariance of the j th       model. 

These variables are calculated by AUKF in step 2. 
 

 

Step 4: Estimate fusion 
 
Finally, all the state estimates  and  the  error  covariance  



 
 
 
 
from the individual filters are merged by the following 
equations:  
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Where, )( nnX j
Aug , )( nnP

j
Aug , )(ˆ nnX  and )(ˆ nnP

 
are the 

estimated state and the covariance of the j th model 

calculated in filtering algorithm (step 2), the combined 
state estimate and its corresponding error covariance, 
respectively.  
 
 
SIMULATION RESULTS 
 
In this section the efficiency of the proposed method is 
verified by simulation results. Conventional IMM 
algorithms use two or three models with different 
structures and noise levels to describe the behavior of 
the target. For the proposed IMMAUKF algorithm, two 
models have been considered: One AUKF model with 
low process noise corresponding to non-maneuvering 

mode )( 1M , and another AUKF model with high process 

noise corresponding to the maneuvering mode )( 2M .  

 

The )( 1M
 
and )( 2M

 
have the following parameters: 

1M : The covariance matrices of )( 1M
 
and the elements 

of augmented state error matrix are I(0.1)Q 2
M1   and 

10)1,0(1 M
AugP . Also, the initial augmented state 

)1,0(1 M
AugX  is randomly selected. 

2M : The covariance matrices of )( 2M  and the elements 

of augmented state error matrix are I(15)Q 2
M2   and 

10)1,0(2 M
AugP . Also, the initial augmented state )1,0(2 M

AugX  

is randomly selected. 

The model transition probability matrix between 1M
 
and 

2M
 
is considered as follows: 
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The accuracy of proposed IMMAUKF algorithm is 
compared with the conventional IMM  algorithm  with  one  
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CV model and CA model (IMM2) and Wang’s method 
(Wang and Varshney, 1993). The mathematical 
description for CV and CA models can be found in 
different literature (Yu et al., 2009). It should be noted 
that CV and CA models in the IMM2 algorithm has the 
same parameters and mode transition probabilities 

as 1M
 
and 2M , respectively. 

In the following example, the simulation results are 
given to show the accuracy of the proposed method. This 
example has been chosen from (Khaloozadeh and 
Karsaz, 2009). 

 
 
EXAMPLE 
 
In this example, the target initial condition is considered 

as TmsmmsmX )]( 15)( 001)( 20)( 01[)0( 11  . For 

time interval  st  1000   the target has the acceleration 

of 
Tggtu ] 0 0[)(  , 2 8.9  msg then it starts to 

maneuver with 
Tggtu ] 3.0, 2.0[)(   for interval 

sts  300 100  . In this simulation, the sampling time is 

sT  1 and the elements of the measurement noises are 

selected as
22 m )100(iiR . 

Figures 2 to 9 demonstrate the target range estimation 
and the corresponding errors of each method, target 
trajectory, errors of target position estimation in X and Y 
directions, speed trajectory, errors of target speed 
estimation in X and Y directions, target acceleration 
estimation in X and Y directions, target course estimation 
and the corresponding errors, and target azimuth 
estimation and the corresponding errors, respectively. 

Table 1 shows the results of state estimation for the 
IMMAUKF and IMM2 algorithms, and Wang’s method. In 
this table, the Root Mean Square Error (RMSE) of 
different parameters has been computed with the Monte-
Carlo analysis of 100 runs. 

 
 
Conclusion 
 
In this paper, a new IMM algorithm based on AUKF has 
been introduced which combines the benefits of both 
AUKF and IMM algorithm, simultaneously. In this method, 
the SKFs in the conventional IMM algorithms are 
substituted with the AUKFs. By doing these substitutions, 
the proposed IMMAUKF algorithm has the complexity 
comparable with that of the AUKF and the tracking 
accuracy with that of the IMM algorithm. Consequently, 
due to the better accuracy of AUKF than SKF in presence 
of low and medium maneuvers, the proposed IMMAUKF 
algorithm yields better accuracy than conventional IMM 
algorithm in presence of these kinds of maneuvers. The 
Monte-Carlo simulation results show the effectiveness of 
the proposed method. 
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Figure 2. The actual value and estimation of the target range and the corresponding errors. 
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Figure 3. Target trajectory. 
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Figure 4. Errors of target position estimation in X and Y directions.  
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Figure 5. Speed trajectory. 
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Figure 6. Errors of target speed estimation in X and Y directions.  
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Figure 7. Errors of target acceleration estimation in X and Y directions. 
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Figure 8. Mode probability evaluator.  
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Figure 9. The actual value and estimation of the target Azimuth and the corresponding errors. 
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Table 1. The RMSE of the estimated parameters. 
 

Example   Error  
Algorithm 

IMMAUKF IMM Wang IMP1 IMP2 

Low 
maneuver 

sT 1.0

gax 02.0

gax 03.0  

X-position( ) 3.50 4.05 9.98 13.38 64.85 

Y-position( ) 5.50 6.38 15.39 13.84 64.26 

X-velocity( ) 1.54 3.29 3.36 52.90 53.95 

Y-velocity( ) 2.58 4.42 5.47 41.71 52.91 

X-acceleration  0.26 1.87 0.47 85.96 44.23 

Y-acceleration  0.45 2.38 0.76 80.89 40.57 

Range( ) 6.15 6.50 17.91 5.49 65.65 

 

Medium 
maneuver 

sT 1

gax 2.0

gax 3.0  

X-position( ) 6.52 10.84 719.61 39.84 99.09 

Y-position( ) 6.71 12.30 1033.75 45.41 99.35 

X-velocity( ) 2.63 4.84 41.29 45.54 93.61 

Y-velocity( ) 2.75 4.74 59.48 41.88 95.36 

X-acceleration  1.11 1.63 1.23 31.86 9.81 

Y-acceleration  1.53 1.63 1.69 6.50 9.82 

Range ( ) 7.88 14.20 1254.66 44.50 99.37 
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